File size: 11,987 Bytes
a021116
 
 
 
 
 
 
 
 
fd40704
a021116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd40704
a021116
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd40704
 
 
 
 
 
 
 
 
 
 
 
a021116
 
fd40704
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
import gradio as gr
import cv2
import numpy as np
import os
import tempfile
import time
import axengine as axe
import common
import imgproc
import socket

rgb_range=255
scale=2
def from_numpy(x):
    return x if isinstance(x, np.ndarray) else np.array(x)

def quantize(img, rgb_range):
    pixel_range = 255 / rgb_range
    return np.round(np.clip(img * pixel_range, 0, 255)) / pixel_range

# 初始化EDSR和ESPCN模型
def init_SRmodel(EDSR_path="../model_convert/axmodel/edsr_baseline_x2_1.axmodel", 
                 ESPCN_path="../model_convert/axmodel/espcn_x2_T9.axmodel"):
    
    EDSR_session = axe.InferenceSession(EDSR_path)
    ESPCN_session = axe.InferenceSession(ESPCN_path)

    return [EDSR_session, ESPCN_session]

SR_sessions=init_SRmodel()

def EDSR_infer(frame, EDSR_session=SR_sessions[0]):
    output_names = [x.name for x in EDSR_session.get_outputs()]
    input_name = EDSR_session.get_inputs()[0].name
    
    lr_y_image, = common.set_channel(frame, n_channels=3)
    lr_y_image, = common.np_prepare(lr_y_image, rgb_range=rgb_range)
    
    sr = EDSR_session.run(output_names, {input_name: lr_y_image})
    
    if isinstance(sr, (list, tuple)):
        sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr]
    else:
        sr = from_numpy(sr)

    sr = quantize(sr, rgb_range).squeeze(0)
    normalized = sr * 255 / rgb_range
    ndarr = normalized.transpose(1, 2, 0).astype(np.uint8)

    return ndarr

def ESPCN_infer(frame, ESPCN_session=SR_sessions[1]):
    
    output_names = [x.name for x in ESPCN_session.get_outputs()]
    input_name = ESPCN_session.get_inputs()[0].name

    lr_y_image, lr_cb_image, lr_cr_image = imgproc.preprocess_one_frame(frame)
    bic_cb_image = cv2.resize(lr_cb_image,
                (int(lr_cb_image.shape[1] * scale),
                int(lr_cb_image.shape[0] * scale)),
                interpolation=cv2.INTER_CUBIC)
    bic_cr_image = cv2.resize(lr_cr_image,
                (int(lr_cr_image.shape[1] * scale),
                int(lr_cr_image.shape[0] * scale)),
                interpolation=cv2.INTER_CUBIC)
                
    sr = ESPCN_session.run(output_names, {input_name: lr_y_image})
    
    if isinstance(sr, (list, tuple)):
        sr = from_numpy(sr[0]) if len(sr) == 1 else [from_numpy(x) for x in sr]
    else:
        sr = from_numpy(sr)

    ndarr = imgproc.array_to_image(sr)
    sr_y_image = ndarr.astype(np.float32) / 255.0
    sr_ycbcr_image = cv2.merge([sr_y_image[:, :, 0], bic_cb_image, bic_cr_image])
    sr_image = imgproc.ycbcr_to_bgr(sr_ycbcr_image)
    sr_image = np.clip(sr_image* 255.0, 0 , 255).astype(np.uint8)

    return sr_image

# ======================
# 模拟超分辨率模型
# ======================
def EDSR_MODEL(input_data, is_video=False):

    if is_video:
        output_frames = []
        for frame in input_data:

            out = EDSR_infer(frame=frame)
            output_frames.append(out)
        return output_frames
    else:
        out = EDSR_infer(frame=input_data)
        return out

def ESPCN_MODEL(input_data, is_video=False):
    if is_video:
        output_frames = []
        for frame in input_data:
            out = ESPCN_infer(frame=frame)
            output_frames.append(out)
        return output_frames
    else:
        out = ESPCN_infer(frame=input_data)
        return out

# ======================
# 全局状态(单用户)
# ======================
class AppState:
    def __init__(self):
        self.original_img = None    # 原始图(BGR, 高分辨率)
        self.sr_img = None          # 超分图(BGR, 高分辨率)
        self.is_video = False

app_state = AppState()

# ======================
# 核心处理函数
# ======================
def process_super_resolution(input_file, model_choice):
    global app_state
    if input_file is None:
        raise gr.Error("请先上传图片或视频!")

    file_path = input_file
    app_state = AppState()
    info_text = ""

    is_video = any(ext in file_path.lower() for ext in ['.mp4', '.avi', '.mov', '.mkv'])

    if is_video:
        # --- 视频处理(直接保存高分辨率)---
        cap = cv2.VideoCapture(file_path)
        total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
        fps = cap.get(cv2.CAP_PROP_FPS)
        info_text += f"🎬 视频信息:\n- 总帧数: {total_frames}\n- 帧率: {fps:.2f} FPS\n"
        frames = []
        while True:
            ret, frame = cap.read()
            if not ret:
                break
            frames.append(frame)
        cap.release()

        model_func = EDSR_MODEL if model_choice == "EDSR_MODEL" else ESPCN_MODEL
        start_time = time.time()
        output_data = model_func(frames, is_video=True)
        infer_time = time.time() - start_time
        info_text += f"\n⏱️ 推理时间: {infer_time:.2f} 秒\n"

        full_video_path = os.path.join(tempfile.gettempdir(), f"sr_video_x2.mp4")
        h_out, w_out = output_data[0].shape[:2]
        info_text += f"- 超分后尺寸: {w_out} x {h_out}\n"
        fourcc = cv2.VideoWriter_fourcc(*'mp4v')
        out_video = cv2.VideoWriter(full_video_path, fourcc, fps, (w_out, h_out))
        for frame in output_data:
            out_video.write(frame)
        out_video.release()

        app_state.is_video = True

        return (
            gr.update(value=None, visible=False),  # image_display
            gr.update(visible=False),              # btn_original
            gr.update(visible=False),              # btn_sr
            gr.update(value="当前: 无", visible=False),
            gr.update(value=full_video_path, visible=True),
            gr.update(value=full_video_path, visible=True),
            gr.update(visible=False),
            info_text
        )

    else:
        # --- 图片处理(保存原始高分辨率)---
        img = cv2.imread(file_path)
        if img is None:
            raise gr.Error("无法读取图片!")
        h, w = img.shape[:2]
        info_text += f"🖼️ 图片信息:\n- 原始尺寸: {w} x {h}\n"

        app_state.original_img = img.copy()
        model_func = EDSR_MODEL if model_choice == "EDSR_MODEL" else ESPCN_MODEL
        start_time = time.time()
        sr_img = model_func(img, is_video=False)
        infer_time = time.time() - start_time
        info_text += f"\n⏱️ 推理时间: {infer_time:.2f} 秒\n"

        h_out, w_out = sr_img.shape[:2]
        info_text += f"- 超分后尺寸: {w_out} x {h_out}\n"

        sr_img_path = os.path.join(tempfile.gettempdir(), f"sr_image_x2.png")
        cv2.imwrite(sr_img_path, sr_img)
        app_state.sr_img = sr_img

        app_state.is_video = False

        # 默认显示原图(高分辨率,但 UI 会限制尺寸)
        return (
            gr.update(value=app_state.original_img[:, :, ::-1], visible=True),  # BGR→RGB
            gr.update(visible=True),
            gr.update(visible=True),
            gr.update(value="当前: 原图", visible=True),
            gr.update(visible=False),
            gr.update(visible=False),
            gr.update(value=sr_img_path, visible=True),
            info_text
        )

# ======================
# 切换显示函数(直接使用原始高分辨率图)
# ======================
def show_original():
    if app_state.original_img is None:
        return gr.update(), gr.update()
    # OpenCV BGR → RGB
    rgb_img = app_state.original_img[:, :, ::-1]
    return gr.update(value=rgb_img), gr.update(value="当前: 原图")

def show_sr():
    if app_state.sr_img is None:
        return gr.update(), gr.update()
    rgb_img = app_state.sr_img[:, :, ::-1]
    return gr.update(value=rgb_img), gr.update(value="当前: 超分图")

# ======================
# Gradio UI
# ======================
with gr.Blocks(title="超分辨率可视化工具") as demo:
    gr.Markdown("## 🚀 超分辨率模型效果可视化")
    gr.Markdown("上传图片或视频,选择模型,点击箭头切换原图/超分图!")

    input_file = gr.File(
        label="📂 上传图片或视频",
        file_types=["image", "video"],
        file_count="single"
    )

    with gr.Row():
        model_choice = gr.Radio(
            choices=["EDSR_MODEL", "ESPCN_MODEL"],
            value="EDSR_MODEL",
            label="🔍 选择超分辨率模型"
        )
        run_btn = gr.Button("🚀 开始超分", variant="primary")

    # 图片区:硬性限定尺寸,直接显示原始高分辨率图
    with gr.Column(visible=False) as image_section:
        image_label = gr.Textbox(value="当前: 原图", interactive=False, lines=1)
        image_display = gr.Image(
            label="🖼️ 图像显示",
            width=800,    # 👈 固定宽度
            height=600    # 👈 固定高度
        )
        with gr.Row():
            btn_original = gr.Button("◀ 原图")
            btn_sr = gr.Button("超分图 ▶")

    # 视频区:硬性限定高度
    output_video_player = gr.Video(
        label="▶️ 超分视频(高分辨率)",
        visible=False,
        height=450  # 宽度自适应,高度固定
    )

    with gr.Row():
        download_image = gr.File(label="📥 下载超分图片(原图)", visible=False)
        download_video = gr.File(label="📥 下载超分视频(完整分辨率)", visible=False)

    info_box = gr.Textbox(label="📊 处理信息", lines=6, interactive=False)

    run_btn.click(
        fn=process_super_resolution,
        inputs=[input_file, model_choice],
        outputs=[
            image_display,
            btn_original,
            btn_sr,
            image_label,
            output_video_player,
            download_video,
            download_image,
            info_box
        ]
    )

    btn_original.click(show_original, outputs=[image_display, image_label])
    btn_sr.click(show_sr, outputs=[image_display, image_label])

    def toggle_ui(file):
        if file is None:
            return (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=False)
            )
        if any(ext in file.lower() for ext in ['.mp4', '.avi', '.mov', '.mkv']):
            return (
                gr.update(visible=False),
                gr.update(visible=False),
                gr.update(visible=True),
                gr.update(visible=True)
            )
        else:
            return (
                gr.update(visible=True),
                gr.update(visible=True),
                gr.update(visible=False),
                gr.update(visible=False)
            )

    input_file.change(
        fn=toggle_ui,
        inputs=input_file,
        outputs=[
            image_section,
            download_image,
            output_video_player,
            download_video
        ]
    )
def get_local_ip():
    """获取本机局域网IP地址"""
    try:
        # 创建一个UDP连接(不会真正发送数据)
        with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as s:
            s.connect(("8.8.8.8", 80))  # 连接到公共DNS(Google)
            ip = s.getsockname()[0]
        return ip
    except Exception:
        # 回退到 localhost
        return "127.0.0.1"


if __name__ == "__main__":
    # demo.launch(server_name="0.0.0.0", server_port=7860, theme=gr.themes.Soft())

    server_port = 7860
    server_name = "0.0.0.0"
    
    # 获取本机IP
    local_ip = get_local_ip()
    
    # 打印可点击的URL(大多数终端支持点击)
    print("\n" + "="*50)
    print("🌐 SuperResolution 超分辨率 Web UI 已启动!")
    print(f"🔗 本地访问: http://127.0.0.1:{server_port}")
    if local_ip != "127.0.0.1":
        print(f"🔗 局域网访问: http://{local_ip}:{server_port}")
    print("="*50 + "\n")

    # 启动Gradio应用
    demo.launch(
        server_name=server_name,
        server_port=server_port,
        theme=gr.themes.Soft()
    )