Update README - GeoFractalDavid-Basin-k50 - Run 20251015_222757 - Acc 79.01%
Browse files
README.md
CHANGED
|
@@ -14,7 +14,7 @@ metrics:
|
|
| 14 |
- accuracy
|
| 15 |
library_name: pytorch
|
| 16 |
model-index:
|
| 17 |
-
- name: GeoFractalDavid-Basin-
|
| 18 |
results:
|
| 19 |
- task:
|
| 20 |
type: image-classification
|
|
@@ -23,27 +23,29 @@ model-index:
|
|
| 23 |
type: imagenet-1k
|
| 24 |
metrics:
|
| 25 |
- type: accuracy
|
| 26 |
-
value:
|
| 27 |
name: Validation Accuracy
|
| 28 |
---
|
| 29 |
|
| 30 |
-
# GeoFractalDavid-Basin-
|
| 31 |
|
| 32 |
**GeoFractalDavid** achieves classification through geometric compatibility rather than cross-entropy.
|
| 33 |
Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, and hierarchical structure.
|
| 34 |
|
| 35 |
## 🎯 Performance
|
| 36 |
|
| 37 |
-
- **Best Validation Accuracy**:
|
| 38 |
-
- **Epoch**:
|
| 39 |
-
- **Training Time**:
|
| 40 |
|
| 41 |
### Per-Scale Performance
|
| 42 |
-
- **Scale
|
| 43 |
-
- **Scale
|
| 44 |
-
- **Scale
|
| 45 |
-
- **Scale
|
| 46 |
-
- **Scale
|
|
|
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
## 🏗️ Architecture
|
|
@@ -53,9 +55,9 @@ Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, an
|
|
| 53 |
**Core Components**:
|
| 54 |
- **Feature Dimension**: 768
|
| 55 |
- **Number of Classes**: 1000
|
| 56 |
-
- **k-Simplex Structure**: k=
|
| 57 |
-
- **Scales**: [
|
| 58 |
-
- **Total Simplex Vertices**:
|
| 59 |
|
| 60 |
**Geometric Components**:
|
| 61 |
1. **Feature Similarity**: Cosine similarity to k-simplex centroids
|
|
@@ -70,9 +72,9 @@ Each scale learns to weight these components differently.
|
|
| 70 |
|
| 71 |
The alpha parameter controls middle-interval weighting in the Cantor staircase.
|
| 72 |
|
| 73 |
-
- **Initial**: 0.
|
| 74 |
-
- **Final**:
|
| 75 |
-
- **Change**: -0.
|
| 76 |
- **Converged to 0.5**: False
|
| 77 |
|
| 78 |
The Cantor staircase uses soft triadic decomposition with learnable alpha to map
|
|
@@ -83,30 +85,40 @@ features into [0,1] space with fractal structure.
|
|
| 83 |
Each class has a learned scalar Cantor prototype. The model pulls features toward
|
| 84 |
their class's Cantor position.
|
| 85 |
|
| 86 |
-
**Scale
|
| 87 |
-
- Mean: 0.
|
| 88 |
-
- Std: 0.
|
| 89 |
-
- Range: [
|
| 90 |
|
| 91 |
-
**Scale
|
| 92 |
-
- Mean: 0.
|
| 93 |
-
- Std: 0.
|
| 94 |
-
- Range: [-0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
**Scale 768D**:
|
| 97 |
-
- Mean: 0.
|
| 98 |
-
- Std: 0.
|
| 99 |
-
- Range: [-0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
|
| 101 |
-
**Scale
|
| 102 |
-
- Mean: 0.
|
| 103 |
-
- Std: 0.
|
| 104 |
-
- Range: [-0.
|
| 105 |
|
| 106 |
-
**Scale
|
| 107 |
-
- Mean: 0.
|
| 108 |
-
- Std: 0.
|
| 109 |
-
- Range: [-0.
|
| 110 |
|
| 111 |
|
| 112 |
Most classes cluster around 0.5 (middle Cantor region), with smooth spread across [0,1].
|
|
@@ -116,11 +128,13 @@ This creates a continuous manifold rather than discrete bins.
|
|
| 116 |
|
| 117 |
Each scale learns optimal weights for combining geometric components:
|
| 118 |
|
| 119 |
-
**Scale
|
| 120 |
-
**Scale
|
| 121 |
-
**Scale
|
| 122 |
-
**Scale
|
| 123 |
-
**Scale
|
|
|
|
|
|
|
| 124 |
|
| 125 |
|
| 126 |
**Pattern**: Lower scales rely on feature similarity, higher scales use crystal geometry.
|
|
|
|
| 14 |
- accuracy
|
| 15 |
library_name: pytorch
|
| 16 |
model-index:
|
| 17 |
+
- name: GeoFractalDavid-Basin-k50
|
| 18 |
results:
|
| 19 |
- task:
|
| 20 |
type: image-classification
|
|
|
|
| 23 |
type: imagenet-1k
|
| 24 |
metrics:
|
| 25 |
- type: accuracy
|
| 26 |
+
value: 79.01
|
| 27 |
name: Validation Accuracy
|
| 28 |
---
|
| 29 |
|
| 30 |
+
# GeoFractalDavid-Basin-k50: Geometric Basin Classification
|
| 31 |
|
| 32 |
**GeoFractalDavid** achieves classification through geometric compatibility rather than cross-entropy.
|
| 33 |
Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, and hierarchical structure.
|
| 34 |
|
| 35 |
## 🎯 Performance
|
| 36 |
|
| 37 |
+
- **Best Validation Accuracy**: 79.01%
|
| 38 |
+
- **Epoch**: 2/10
|
| 39 |
+
- **Training Time**: 5m
|
| 40 |
|
| 41 |
### Per-Scale Performance
|
| 42 |
+
- **Scale 576D**: 78.05%
|
| 43 |
+
- **Scale 640D**: 77.73%
|
| 44 |
+
- **Scale 704D**: 78.18%
|
| 45 |
+
- **Scale 768D**: 77.52%
|
| 46 |
+
- **Scale 832D**: 77.78%
|
| 47 |
+
- **Scale 896D**: 77.79%
|
| 48 |
+
- **Scale 960D**: 77.53%
|
| 49 |
|
| 50 |
|
| 51 |
## 🏗️ Architecture
|
|
|
|
| 55 |
**Core Components**:
|
| 56 |
- **Feature Dimension**: 768
|
| 57 |
- **Number of Classes**: 1000
|
| 58 |
+
- **k-Simplex Structure**: k=50 (51 vertices per class)
|
| 59 |
+
- **Scales**: [576, 640, 704, 768, 832, 896, 960]
|
| 60 |
+
- **Total Simplex Vertices**: 51,000
|
| 61 |
|
| 62 |
**Geometric Components**:
|
| 63 |
1. **Feature Similarity**: Cosine similarity to k-simplex centroids
|
|
|
|
| 72 |
|
| 73 |
The alpha parameter controls middle-interval weighting in the Cantor staircase.
|
| 74 |
|
| 75 |
+
- **Initial**: 0.4746
|
| 76 |
+
- **Final**: 0.3957
|
| 77 |
+
- **Change**: -0.0789
|
| 78 |
- **Converged to 0.5**: False
|
| 79 |
|
| 80 |
The Cantor staircase uses soft triadic decomposition with learnable alpha to map
|
|
|
|
| 85 |
Each class has a learned scalar Cantor prototype. The model pulls features toward
|
| 86 |
their class's Cantor position.
|
| 87 |
|
| 88 |
+
**Scale 576D**:
|
| 89 |
+
- Mean: 0.4079
|
| 90 |
+
- Std: 0.1335
|
| 91 |
+
- Range: [0.0001, 0.5663]
|
| 92 |
|
| 93 |
+
**Scale 640D**:
|
| 94 |
+
- Mean: 0.4078
|
| 95 |
+
- Std: 0.1341
|
| 96 |
+
- Range: [-0.0002, 0.5663]
|
| 97 |
+
|
| 98 |
+
**Scale 704D**:
|
| 99 |
+
- Mean: 0.4076
|
| 100 |
+
- Std: 0.1266
|
| 101 |
+
- Range: [0.0002, 0.5618]
|
| 102 |
|
| 103 |
**Scale 768D**:
|
| 104 |
+
- Mean: 0.4047
|
| 105 |
+
- Std: 0.1384
|
| 106 |
+
- Range: [-0.0000, 0.5645]
|
| 107 |
+
|
| 108 |
+
**Scale 832D**:
|
| 109 |
+
- Mean: 0.4062
|
| 110 |
+
- Std: 0.1359
|
| 111 |
+
- Range: [-0.0002, 0.5651]
|
| 112 |
|
| 113 |
+
**Scale 896D**:
|
| 114 |
+
- Mean: 0.4052
|
| 115 |
+
- Std: 0.1302
|
| 116 |
+
- Range: [-0.0001, 0.5604]
|
| 117 |
|
| 118 |
+
**Scale 960D**:
|
| 119 |
+
- Mean: 0.4056
|
| 120 |
+
- Std: 0.1329
|
| 121 |
+
- Range: [-0.0002, 0.5615]
|
| 122 |
|
| 123 |
|
| 124 |
Most classes cluster around 0.5 (middle Cantor region), with smooth spread across [0,1].
|
|
|
|
| 128 |
|
| 129 |
Each scale learns optimal weights for combining geometric components:
|
| 130 |
|
| 131 |
+
**Scale 576D**: Feature=0.642, Cantor=0.058, Crystal=0.301
|
| 132 |
+
**Scale 640D**: Feature=0.621, Cantor=0.058, Crystal=0.321
|
| 133 |
+
**Scale 704D**: Feature=0.836, Cantor=0.027, Crystal=0.137
|
| 134 |
+
**Scale 768D**: Feature=0.545, Cantor=0.071, Crystal=0.383
|
| 135 |
+
**Scale 832D**: Feature=0.606, Cantor=0.057, Crystal=0.337
|
| 136 |
+
**Scale 896D**: Feature=0.808, Cantor=0.028, Crystal=0.163
|
| 137 |
+
**Scale 960D**: Feature=0.713, Cantor=0.039, Crystal=0.248
|
| 138 |
|
| 139 |
|
| 140 |
**Pattern**: Lower scales rely on feature similarity, higher scales use crystal geometry.
|