AbstractPhil commited on
Commit
0fd7552
·
verified ·
1 Parent(s): 71c63c1

Update README - GeoFractalDavid-Basin-k50 - Run 20251015_222757 - Acc 79.01%

Browse files
Files changed (1) hide show
  1. README.md +55 -41
README.md CHANGED
@@ -14,7 +14,7 @@ metrics:
14
  - accuracy
15
  library_name: pytorch
16
  model-index:
17
- - name: GeoFractalDavid-Basin-k100
18
  results:
19
  - task:
20
  type: image-classification
@@ -23,27 +23,29 @@ model-index:
23
  type: imagenet-1k
24
  metrics:
25
  - type: accuracy
26
- value: 82.12
27
  name: Validation Accuracy
28
  ---
29
 
30
- # GeoFractalDavid-Basin-k100: Geometric Basin Classification
31
 
32
  **GeoFractalDavid** achieves classification through geometric compatibility rather than cross-entropy.
33
  Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, and hierarchical structure.
34
 
35
  ## 🎯 Performance
36
 
37
- - **Best Validation Accuracy**: 82.12%
38
- - **Epoch**: 10/10
39
- - **Training Time**: 31m 21s
40
 
41
  ### Per-Scale Performance
42
- - **Scale 384D**: 70.35%
43
- - **Scale 512D**: 67.95%
44
- - **Scale 768D**: 80.83%
45
- - **Scale 1024D**: 68.19%
46
- - **Scale 1280D**: 69.43%
 
 
47
 
48
 
49
  ## 🏗️ Architecture
@@ -53,9 +55,9 @@ Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, an
53
  **Core Components**:
54
  - **Feature Dimension**: 768
55
  - **Number of Classes**: 1000
56
- - **k-Simplex Structure**: k=100 (101 vertices per class)
57
- - **Scales**: [384, 512, 768, 1024, 1280]
58
- - **Total Simplex Vertices**: 101,000
59
 
60
  **Geometric Components**:
61
  1. **Feature Similarity**: Cosine similarity to k-simplex centroids
@@ -70,9 +72,9 @@ Each scale learns to weight these components differently.
70
 
71
  The alpha parameter controls middle-interval weighting in the Cantor staircase.
72
 
73
- - **Initial**: 0.4765
74
- - **Final**: -0.0067
75
- - **Change**: -0.4833
76
  - **Converged to 0.5**: False
77
 
78
  The Cantor staircase uses soft triadic decomposition with learnable alpha to map
@@ -83,30 +85,40 @@ features into [0,1] space with fractal structure.
83
  Each class has a learned scalar Cantor prototype. The model pulls features toward
84
  their class's Cantor position.
85
 
86
- **Scale 384D**:
87
- - Mean: 0.0564
88
- - Std: 0.1033
89
- - Range: [-0.1000, 0.4476]
90
 
91
- **Scale 512D**:
92
- - Mean: 0.0561
93
- - Std: 0.1032
94
- - Range: [-0.1000, 0.4475]
 
 
 
 
 
95
 
96
  **Scale 768D**:
97
- - Mean: 0.0583
98
- - Std: 0.1049
99
- - Range: [-0.1000, 0.4491]
 
 
 
 
 
100
 
101
- **Scale 1024D**:
102
- - Mean: 0.0571
103
- - Std: 0.1039
104
- - Range: [-0.1000, 0.4482]
105
 
106
- **Scale 1280D**:
107
- - Mean: 0.0571
108
- - Std: 0.1040
109
- - Range: [-0.1000, 0.4482]
110
 
111
 
112
  Most classes cluster around 0.5 (middle Cantor region), with smooth spread across [0,1].
@@ -116,11 +128,13 @@ This creates a continuous manifold rather than discrete bins.
116
 
117
  Each scale learns optimal weights for combining geometric components:
118
 
119
- **Scale 384D**: Feature=0.830, Cantor=0.021, Crystal=0.148
120
- **Scale 512D**: Feature=0.704, Cantor=0.022, Crystal=0.274
121
- **Scale 768D**: Feature=0.977, Cantor=0.001, Crystal=0.022
122
- **Scale 1024D**: Feature=0.877, Cantor=0.003, Crystal=0.119
123
- **Scale 1280D**: Feature=0.677, Cantor=0.003, Crystal=0.320
 
 
124
 
125
 
126
  **Pattern**: Lower scales rely on feature similarity, higher scales use crystal geometry.
 
14
  - accuracy
15
  library_name: pytorch
16
  model-index:
17
+ - name: GeoFractalDavid-Basin-k50
18
  results:
19
  - task:
20
  type: image-classification
 
23
  type: imagenet-1k
24
  metrics:
25
  - type: accuracy
26
+ value: 79.01
27
  name: Validation Accuracy
28
  ---
29
 
30
+ # GeoFractalDavid-Basin-k50: Geometric Basin Classification
31
 
32
  **GeoFractalDavid** achieves classification through geometric compatibility rather than cross-entropy.
33
  Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, and hierarchical structure.
34
 
35
  ## 🎯 Performance
36
 
37
+ - **Best Validation Accuracy**: 79.01%
38
+ - **Epoch**: 2/10
39
+ - **Training Time**: 5m
40
 
41
  ### Per-Scale Performance
42
+ - **Scale 576D**: 78.05%
43
+ - **Scale 640D**: 77.73%
44
+ - **Scale 704D**: 78.18%
45
+ - **Scale 768D**: 77.52%
46
+ - **Scale 832D**: 77.78%
47
+ - **Scale 896D**: 77.79%
48
+ - **Scale 960D**: 77.53%
49
 
50
 
51
  ## 🏗️ Architecture
 
55
  **Core Components**:
56
  - **Feature Dimension**: 768
57
  - **Number of Classes**: 1000
58
+ - **k-Simplex Structure**: k=50 (51 vertices per class)
59
+ - **Scales**: [576, 640, 704, 768, 832, 896, 960]
60
+ - **Total Simplex Vertices**: 51,000
61
 
62
  **Geometric Components**:
63
  1. **Feature Similarity**: Cosine similarity to k-simplex centroids
 
72
 
73
  The alpha parameter controls middle-interval weighting in the Cantor staircase.
74
 
75
+ - **Initial**: 0.4746
76
+ - **Final**: 0.3957
77
+ - **Change**: -0.0789
78
  - **Converged to 0.5**: False
79
 
80
  The Cantor staircase uses soft triadic decomposition with learnable alpha to map
 
85
  Each class has a learned scalar Cantor prototype. The model pulls features toward
86
  their class's Cantor position.
87
 
88
+ **Scale 576D**:
89
+ - Mean: 0.4079
90
+ - Std: 0.1335
91
+ - Range: [0.0001, 0.5663]
92
 
93
+ **Scale 640D**:
94
+ - Mean: 0.4078
95
+ - Std: 0.1341
96
+ - Range: [-0.0002, 0.5663]
97
+
98
+ **Scale 704D**:
99
+ - Mean: 0.4076
100
+ - Std: 0.1266
101
+ - Range: [0.0002, 0.5618]
102
 
103
  **Scale 768D**:
104
+ - Mean: 0.4047
105
+ - Std: 0.1384
106
+ - Range: [-0.0000, 0.5645]
107
+
108
+ **Scale 832D**:
109
+ - Mean: 0.4062
110
+ - Std: 0.1359
111
+ - Range: [-0.0002, 0.5651]
112
 
113
+ **Scale 896D**:
114
+ - Mean: 0.4052
115
+ - Std: 0.1302
116
+ - Range: [-0.0001, 0.5604]
117
 
118
+ **Scale 960D**:
119
+ - Mean: 0.4056
120
+ - Std: 0.1329
121
+ - Range: [-0.0002, 0.5615]
122
 
123
 
124
  Most classes cluster around 0.5 (middle Cantor region), with smooth spread across [0,1].
 
128
 
129
  Each scale learns optimal weights for combining geometric components:
130
 
131
+ **Scale 576D**: Feature=0.642, Cantor=0.058, Crystal=0.301
132
+ **Scale 640D**: Feature=0.621, Cantor=0.058, Crystal=0.321
133
+ **Scale 704D**: Feature=0.836, Cantor=0.027, Crystal=0.137
134
+ **Scale 768D**: Feature=0.545, Cantor=0.071, Crystal=0.383
135
+ **Scale 832D**: Feature=0.606, Cantor=0.057, Crystal=0.337
136
+ **Scale 896D**: Feature=0.808, Cantor=0.028, Crystal=0.163
137
+ **Scale 960D**: Feature=0.713, Cantor=0.039, Crystal=0.248
138
 
139
 
140
  **Pattern**: Lower scales rely on feature similarity, higher scales use crystal geometry.