AbstractPhil commited on
Commit
e48cd8b
·
verified ·
1 Parent(s): bf38616

Update README - GeoFractalDavid-Basin-k50 - Run 20251016_011725 - Acc 67.78%

Browse files
Files changed (1) hide show
  1. README.md +40 -47
README.md CHANGED
@@ -23,7 +23,7 @@ model-index:
23
  type: imagenet-1k
24
  metrics:
25
  - type: accuracy
26
- value: 71.07
27
  name: Validation Accuracy
28
  ---
29
 
@@ -34,18 +34,17 @@ Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, an
34
 
35
  ## 🎯 Performance
36
 
37
- - **Best Validation Accuracy**: 71.07%
38
- - **Epoch**: 8/10
39
- - **Training Time**: 18m
40
 
41
  ### Per-Scale Performance
42
- - **Scale 320D**: 60.61%
43
- - **Scale 384D**: 59.73%
44
- - **Scale 448D**: 56.30%
45
- - **Scale 512D**: 55.22%
46
- - **Scale 576D**: 67.16%
47
- - **Scale 640D**: 62.33%
48
- - **Scale 704D**: 54.53%
49
 
50
 
51
  ## 🏗️ Architecture
@@ -56,7 +55,7 @@ Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, an
56
  - **Feature Dimension**: 512
57
  - **Number of Classes**: 1000
58
  - **k-Simplex Structure**: k=50 (51 vertices per class)
59
- - **Scales**: [320, 384, 448, 512, 576, 640, 704]
60
  - **Total Simplex Vertices**: 51,000
61
 
62
  **Geometric Components**:
@@ -72,9 +71,9 @@ Each scale learns to weight these components differently.
72
 
73
  The alpha parameter controls middle-interval weighting in the Cantor staircase.
74
 
75
- - **Initial**: 0.3290
76
- - **Final**: -0.0550
77
- - **Change**: -0.3840
78
  - **Converged to 0.5**: False
79
 
80
  The Cantor staircase uses soft triadic decomposition with learnable alpha to map
@@ -85,40 +84,35 @@ features into [0,1] space with fractal structure.
85
  Each class has a learned scalar Cantor prototype. The model pulls features toward
86
  their class's Cantor position.
87
 
88
- **Scale 320D**:
89
- - Mean: 0.0267
90
- - Std: 0.0780
91
- - Range: [-0.1268, 0.1924]
92
-
93
- **Scale 384D**:
94
- - Mean: 0.0267
95
- - Std: 0.0780
96
- - Range: [-0.1267, 0.1921]
97
-
98
  **Scale 448D**:
99
- - Mean: 0.0267
100
- - Std: 0.0780
101
- - Range: [-0.1267, 0.1922]
102
 
103
  **Scale 512D**:
104
- - Mean: 0.0267
105
- - Std: 0.0780
106
- - Range: [-0.1265, 0.1924]
107
 
108
  **Scale 576D**:
109
- - Mean: 0.0267
110
- - Std: 0.0779
111
- - Range: [-0.1266, 0.1924]
112
 
113
  **Scale 640D**:
114
- - Mean: 0.0267
115
- - Std: 0.0780
116
- - Range: [-0.1268, 0.1925]
117
 
118
  **Scale 704D**:
119
- - Mean: 0.0267
120
- - Std: 0.0780
121
- - Range: [-0.1266, 0.1925]
 
 
 
 
 
122
 
123
 
124
  Most classes cluster around 0.5 (middle Cantor region), with smooth spread across [0,1].
@@ -128,13 +122,12 @@ This creates a continuous manifold rather than discrete bins.
128
 
129
  Each scale learns optimal weights for combining geometric components:
130
 
131
- **Scale 320D**: Feature=0.877, Cantor=0.026, Crystal=0.097
132
- **Scale 384D**: Feature=0.787, Cantor=0.028, Crystal=0.184
133
- **Scale 448D**: Feature=0.587, Cantor=0.030, Crystal=0.384
134
- **Scale 512D**: Feature=0.512, Cantor=0.030, Crystal=0.459
135
- **Scale 576D**: Feature=0.990, Cantor=0.001, Crystal=0.009
136
- **Scale 640D**: Feature=0.964, Cantor=0.002, Crystal=0.034
137
- **Scale 704D**: Feature=0.742, Cantor=0.003, Crystal=0.255
138
 
139
 
140
  **Pattern**: Lower scales rely on feature similarity, higher scales use crystal geometry.
 
23
  type: imagenet-1k
24
  metrics:
25
  - type: accuracy
26
+ value: 67.78
27
  name: Validation Accuracy
28
  ---
29
 
 
34
 
35
  ## 🎯 Performance
36
 
37
+ - **Best Validation Accuracy**: 67.78%
38
+ - **Epoch**: 2/10
39
+ - **Training Time**: 4m
40
 
41
  ### Per-Scale Performance
42
+ - **Scale 448D**: 65.68%
43
+ - **Scale 512D**: 65.72%
44
+ - **Scale 576D**: 66.88%
45
+ - **Scale 640D**: 65.49%
46
+ - **Scale 704D**: 66.07%
47
+ - **Scale 768D**: 65.25%
 
48
 
49
 
50
  ## 🏗️ Architecture
 
55
  - **Feature Dimension**: 512
56
  - **Number of Classes**: 1000
57
  - **k-Simplex Structure**: k=50 (51 vertices per class)
58
+ - **Scales**: [448, 512, 576, 640, 704, 768]
59
  - **Total Simplex Vertices**: 51,000
60
 
61
  **Geometric Components**:
 
71
 
72
  The alpha parameter controls middle-interval weighting in the Cantor staircase.
73
 
74
+ - **Initial**: 0.3301
75
+ - **Final**: 0.3377
76
+ - **Change**: +0.0076
77
  - **Converged to 0.5**: False
78
 
79
  The Cantor staircase uses soft triadic decomposition with learnable alpha to map
 
84
  Each class has a learned scalar Cantor prototype. The model pulls features toward
85
  their class's Cantor position.
86
 
 
 
 
 
 
 
 
 
 
 
87
  **Scale 448D**:
88
+ - Mean: 0.3299
89
+ - Std: 0.1153
90
+ - Range: [0.0698, 0.5232]
91
 
92
  **Scale 512D**:
93
+ - Mean: 0.3303
94
+ - Std: 0.1152
95
+ - Range: [0.0707, 0.5232]
96
 
97
  **Scale 576D**:
98
+ - Mean: 0.3406
99
+ - Std: 0.1138
100
+ - Range: [0.0846, 0.5392]
101
 
102
  **Scale 640D**:
103
+ - Mean: 0.3284
104
+ - Std: 0.1156
105
+ - Range: [0.0675, 0.5210]
106
 
107
  **Scale 704D**:
108
+ - Mean: 0.3376
109
+ - Std: 0.1141
110
+ - Range: [0.0799, 0.5346]
111
+
112
+ **Scale 768D**:
113
+ - Mean: 0.3321
114
+ - Std: 0.1149
115
+ - Range: [0.0728, 0.5256]
116
 
117
 
118
  Most classes cluster around 0.5 (middle Cantor region), with smooth spread across [0,1].
 
122
 
123
  Each scale learns optimal weights for combining geometric components:
124
 
125
+ **Scale 448D**: Feature=0.653, Cantor=0.071, Crystal=0.276
126
+ **Scale 512D**: Feature=0.610, Cantor=0.072, Crystal=0.318
127
+ **Scale 576D**: Feature=0.879, Cantor=0.026, Crystal=0.096
128
+ **Scale 640D**: Feature=0.578, Cantor=0.071, Crystal=0.351
129
+ **Scale 704D**: Feature=0.822, Cantor=0.030, Crystal=0.148
130
+ **Scale 768D**: Feature=0.668, Cantor=0.048, Crystal=0.285
 
131
 
132
 
133
  **Pattern**: Lower scales rely on feature similarity, higher scales use crystal geometry.