Update README - GeoFractalDavid-Basin-k50 - Run 20251016_011725 - Acc 67.78%
Browse files
README.md
CHANGED
|
@@ -23,7 +23,7 @@ model-index:
|
|
| 23 |
type: imagenet-1k
|
| 24 |
metrics:
|
| 25 |
- type: accuracy
|
| 26 |
-
value:
|
| 27 |
name: Validation Accuracy
|
| 28 |
---
|
| 29 |
|
|
@@ -34,18 +34,17 @@ Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, an
|
|
| 34 |
|
| 35 |
## 🎯 Performance
|
| 36 |
|
| 37 |
-
- **Best Validation Accuracy**:
|
| 38 |
-
- **Epoch**:
|
| 39 |
-
- **Training Time**:
|
| 40 |
|
| 41 |
### Per-Scale Performance
|
| 42 |
-
- **Scale
|
| 43 |
-
- **Scale
|
| 44 |
-
- **Scale
|
| 45 |
-
- **Scale
|
| 46 |
-
- **Scale
|
| 47 |
-
- **Scale
|
| 48 |
-
- **Scale 704D**: 54.53%
|
| 49 |
|
| 50 |
|
| 51 |
## 🏗️ Architecture
|
|
@@ -56,7 +55,7 @@ Features must "fit" geometric signatures: k-simplex shapes, Cantor positions, an
|
|
| 56 |
- **Feature Dimension**: 512
|
| 57 |
- **Number of Classes**: 1000
|
| 58 |
- **k-Simplex Structure**: k=50 (51 vertices per class)
|
| 59 |
-
- **Scales**: [
|
| 60 |
- **Total Simplex Vertices**: 51,000
|
| 61 |
|
| 62 |
**Geometric Components**:
|
|
@@ -72,9 +71,9 @@ Each scale learns to weight these components differently.
|
|
| 72 |
|
| 73 |
The alpha parameter controls middle-interval weighting in the Cantor staircase.
|
| 74 |
|
| 75 |
-
- **Initial**: 0.
|
| 76 |
-
- **Final**:
|
| 77 |
-
- **Change**:
|
| 78 |
- **Converged to 0.5**: False
|
| 79 |
|
| 80 |
The Cantor staircase uses soft triadic decomposition with learnable alpha to map
|
|
@@ -85,40 +84,35 @@ features into [0,1] space with fractal structure.
|
|
| 85 |
Each class has a learned scalar Cantor prototype. The model pulls features toward
|
| 86 |
their class's Cantor position.
|
| 87 |
|
| 88 |
-
**Scale 320D**:
|
| 89 |
-
- Mean: 0.0267
|
| 90 |
-
- Std: 0.0780
|
| 91 |
-
- Range: [-0.1268, 0.1924]
|
| 92 |
-
|
| 93 |
-
**Scale 384D**:
|
| 94 |
-
- Mean: 0.0267
|
| 95 |
-
- Std: 0.0780
|
| 96 |
-
- Range: [-0.1267, 0.1921]
|
| 97 |
-
|
| 98 |
**Scale 448D**:
|
| 99 |
-
- Mean: 0.
|
| 100 |
-
- Std: 0.
|
| 101 |
-
- Range: [
|
| 102 |
|
| 103 |
**Scale 512D**:
|
| 104 |
-
- Mean: 0.
|
| 105 |
-
- Std: 0.
|
| 106 |
-
- Range: [
|
| 107 |
|
| 108 |
**Scale 576D**:
|
| 109 |
-
- Mean: 0.
|
| 110 |
-
- Std: 0.
|
| 111 |
-
- Range: [
|
| 112 |
|
| 113 |
**Scale 640D**:
|
| 114 |
-
- Mean: 0.
|
| 115 |
-
- Std: 0.
|
| 116 |
-
- Range: [
|
| 117 |
|
| 118 |
**Scale 704D**:
|
| 119 |
-
- Mean: 0.
|
| 120 |
-
- Std: 0.
|
| 121 |
-
- Range: [
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
|
| 123 |
|
| 124 |
Most classes cluster around 0.5 (middle Cantor region), with smooth spread across [0,1].
|
|
@@ -128,13 +122,12 @@ This creates a continuous manifold rather than discrete bins.
|
|
| 128 |
|
| 129 |
Each scale learns optimal weights for combining geometric components:
|
| 130 |
|
| 131 |
-
**Scale
|
| 132 |
-
**Scale
|
| 133 |
-
**Scale
|
| 134 |
-
**Scale
|
| 135 |
-
**Scale
|
| 136 |
-
**Scale
|
| 137 |
-
**Scale 704D**: Feature=0.742, Cantor=0.003, Crystal=0.255
|
| 138 |
|
| 139 |
|
| 140 |
**Pattern**: Lower scales rely on feature similarity, higher scales use crystal geometry.
|
|
|
|
| 23 |
type: imagenet-1k
|
| 24 |
metrics:
|
| 25 |
- type: accuracy
|
| 26 |
+
value: 67.78
|
| 27 |
name: Validation Accuracy
|
| 28 |
---
|
| 29 |
|
|
|
|
| 34 |
|
| 35 |
## 🎯 Performance
|
| 36 |
|
| 37 |
+
- **Best Validation Accuracy**: 67.78%
|
| 38 |
+
- **Epoch**: 2/10
|
| 39 |
+
- **Training Time**: 4m
|
| 40 |
|
| 41 |
### Per-Scale Performance
|
| 42 |
+
- **Scale 448D**: 65.68%
|
| 43 |
+
- **Scale 512D**: 65.72%
|
| 44 |
+
- **Scale 576D**: 66.88%
|
| 45 |
+
- **Scale 640D**: 65.49%
|
| 46 |
+
- **Scale 704D**: 66.07%
|
| 47 |
+
- **Scale 768D**: 65.25%
|
|
|
|
| 48 |
|
| 49 |
|
| 50 |
## 🏗️ Architecture
|
|
|
|
| 55 |
- **Feature Dimension**: 512
|
| 56 |
- **Number of Classes**: 1000
|
| 57 |
- **k-Simplex Structure**: k=50 (51 vertices per class)
|
| 58 |
+
- **Scales**: [448, 512, 576, 640, 704, 768]
|
| 59 |
- **Total Simplex Vertices**: 51,000
|
| 60 |
|
| 61 |
**Geometric Components**:
|
|
|
|
| 71 |
|
| 72 |
The alpha parameter controls middle-interval weighting in the Cantor staircase.
|
| 73 |
|
| 74 |
+
- **Initial**: 0.3301
|
| 75 |
+
- **Final**: 0.3377
|
| 76 |
+
- **Change**: +0.0076
|
| 77 |
- **Converged to 0.5**: False
|
| 78 |
|
| 79 |
The Cantor staircase uses soft triadic decomposition with learnable alpha to map
|
|
|
|
| 84 |
Each class has a learned scalar Cantor prototype. The model pulls features toward
|
| 85 |
their class's Cantor position.
|
| 86 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
**Scale 448D**:
|
| 88 |
+
- Mean: 0.3299
|
| 89 |
+
- Std: 0.1153
|
| 90 |
+
- Range: [0.0698, 0.5232]
|
| 91 |
|
| 92 |
**Scale 512D**:
|
| 93 |
+
- Mean: 0.3303
|
| 94 |
+
- Std: 0.1152
|
| 95 |
+
- Range: [0.0707, 0.5232]
|
| 96 |
|
| 97 |
**Scale 576D**:
|
| 98 |
+
- Mean: 0.3406
|
| 99 |
+
- Std: 0.1138
|
| 100 |
+
- Range: [0.0846, 0.5392]
|
| 101 |
|
| 102 |
**Scale 640D**:
|
| 103 |
+
- Mean: 0.3284
|
| 104 |
+
- Std: 0.1156
|
| 105 |
+
- Range: [0.0675, 0.5210]
|
| 106 |
|
| 107 |
**Scale 704D**:
|
| 108 |
+
- Mean: 0.3376
|
| 109 |
+
- Std: 0.1141
|
| 110 |
+
- Range: [0.0799, 0.5346]
|
| 111 |
+
|
| 112 |
+
**Scale 768D**:
|
| 113 |
+
- Mean: 0.3321
|
| 114 |
+
- Std: 0.1149
|
| 115 |
+
- Range: [0.0728, 0.5256]
|
| 116 |
|
| 117 |
|
| 118 |
Most classes cluster around 0.5 (middle Cantor region), with smooth spread across [0,1].
|
|
|
|
| 122 |
|
| 123 |
Each scale learns optimal weights for combining geometric components:
|
| 124 |
|
| 125 |
+
**Scale 448D**: Feature=0.653, Cantor=0.071, Crystal=0.276
|
| 126 |
+
**Scale 512D**: Feature=0.610, Cantor=0.072, Crystal=0.318
|
| 127 |
+
**Scale 576D**: Feature=0.879, Cantor=0.026, Crystal=0.096
|
| 128 |
+
**Scale 640D**: Feature=0.578, Cantor=0.071, Crystal=0.351
|
| 129 |
+
**Scale 704D**: Feature=0.822, Cantor=0.030, Crystal=0.148
|
| 130 |
+
**Scale 768D**: Feature=0.668, Cantor=0.048, Crystal=0.285
|
|
|
|
| 131 |
|
| 132 |
|
| 133 |
**Pattern**: Lower scales rely on feature similarity, higher scales use crystal geometry.
|