File size: 37,453 Bytes
2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 3aac63e 2bbfd50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 |
"""
MobiusNet Trainer with TensorBoard, SafeTensors, and HuggingFace Upload
=======================================================================
"""
import os
import re
import json
import math
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from typing import Tuple, Optional, Dict, Any
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
from torch.utils.tensorboard import SummaryWriter
from tqdm.auto import tqdm
from datetime import datetime
from pathlib import Path
from safetensors.torch import save_file as save_safetensors, load_file as load_safetensors
from huggingface_hub import HfApi, login
# Colab HF login
try:
from google.colab import userdata
token = userdata.get('HF_TOKEN')
os.environ['HF_TOKEN'] = token
login(token=token)
print("Logged in to HuggingFace via Colab")
except:
# Not in Colab or token not set
pass
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print(f"Device: {device}")
# Enable TF32 for faster computation on Ampere+ GPUs
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
torch.set_float32_matmul_precision('high')
# ============================================================================
# MÖBIUS LENS
# ============================================================================
class MobiusLens(nn.Module):
def __init__(
self,
dim: int,
layer_idx: int,
total_layers: int,
scale_range: Tuple[float, float] = (1.0, 9.0),
):
super().__init__()
self.dim = dim
self.layer_idx = layer_idx
self.total_layers = total_layers
self.t = layer_idx / max(total_layers - 1, 1)
scale_span = scale_range[1] - scale_range[0]
step = scale_span / max(total_layers, 1)
scale_low = scale_range[0] + self.t * scale_span
scale_high = scale_low + step
self.register_buffer('scales', torch.tensor([scale_low, scale_high]))
self.twist_in_angle = nn.Parameter(torch.tensor(self.t * math.pi))
self.twist_in_proj = nn.Linear(dim, dim, bias=False)
nn.init.orthogonal_(self.twist_in_proj.weight)
self.omega = nn.Parameter(torch.tensor(math.pi))
self.alpha = nn.Parameter(torch.tensor(1.5))
self.phase_l = nn.Parameter(torch.zeros(2))
self.drift_l = nn.Parameter(torch.ones(2))
self.phase_m = nn.Parameter(torch.zeros(2))
self.drift_m = nn.Parameter(torch.zeros(2))
self.phase_r = nn.Parameter(torch.zeros(2))
self.drift_r = nn.Parameter(-torch.ones(2))
self.accum_weights = nn.Parameter(torch.tensor([0.4, 0.2, 0.4]))
self.xor_weight = nn.Parameter(torch.tensor(0.7))
self.gate_norm = nn.LayerNorm(dim)
self.twist_out_angle = nn.Parameter(torch.tensor(-self.t * math.pi))
self.twist_out_proj = nn.Linear(dim, dim, bias=False)
nn.init.orthogonal_(self.twist_out_proj.weight)
def _twist_in(self, x: Tensor) -> Tensor:
cos_t = torch.cos(self.twist_in_angle)
sin_t = torch.sin(self.twist_in_angle)
return x * cos_t + self.twist_in_proj(x) * sin_t
def _center_lens(self, x: Tensor) -> Tensor:
x_norm = torch.tanh(x)
t = x_norm.abs().mean(dim=-1, keepdim=True).unsqueeze(-2)
x_exp = x_norm.unsqueeze(-2)
s = self.scales.view(-1, 1)
def wave(phase, drift):
a = self.alpha.abs() + 0.1
pos = s * self.omega * (x_exp + drift.view(-1, 1) * t) + phase.view(-1, 1)
return torch.exp(-a * torch.sin(pos).pow(2)).prod(dim=-2)
L = wave(self.phase_l, self.drift_l)
M = wave(self.phase_m, self.drift_m)
R = wave(self.phase_r, self.drift_r)
w = torch.softmax(self.accum_weights, dim=0)
xor_w = torch.sigmoid(self.xor_weight)
xor_comp = (L + R - 2 * L * R).abs()
and_comp = L * R
lr = xor_w * xor_comp + (1 - xor_w) * and_comp
gate = w[0] * L + w[1] * M + w[2] * R
gate = gate * (0.5 + 0.5 * lr)
gate = torch.sigmoid(self.gate_norm(gate))
return x * gate
def _twist_out(self, x: Tensor) -> Tensor:
cos_t = torch.cos(self.twist_out_angle)
sin_t = torch.sin(self.twist_out_angle)
return x * cos_t + self.twist_out_proj(x) * sin_t
def forward(self, x: Tensor) -> Tensor:
return self._twist_out(self._center_lens(self._twist_in(x)))
def get_lens_stats(self) -> Dict[str, float]:
"""Return lens parameters for logging."""
return {
'omega': self.omega.item(),
'alpha': self.alpha.item(),
'twist_in_angle': self.twist_in_angle.item(),
'twist_out_angle': self.twist_out_angle.item(),
'xor_weight': torch.sigmoid(self.xor_weight).item(),
'accum_weights_l': torch.softmax(self.accum_weights, dim=0)[0].item(),
'accum_weights_m': torch.softmax(self.accum_weights, dim=0)[1].item(),
'accum_weights_r': torch.softmax(self.accum_weights, dim=0)[2].item(),
}
# ============================================================================
# MÖBIUS CONV BLOCK
# ============================================================================
class MobiusConvBlock(nn.Module):
def __init__(
self,
channels: int,
layer_idx: int,
total_layers: int,
scale_range: Tuple[float, float] = (1.0, 9.0),
reduction: float = 0.5,
):
super().__init__()
self.conv = nn.Sequential(
nn.Conv2d(channels, channels, 3, padding=1, groups=channels, bias=False),
nn.Conv2d(channels, channels, 1, bias=False),
nn.BatchNorm2d(channels),
)
self.lens = MobiusLens(channels, layer_idx, total_layers, scale_range)
third = channels // 3
which_third = layer_idx % 3
mask = torch.ones(channels)
start = which_third * third
end = start + third + (channels % 3 if which_third == 2 else 0)
mask[start:end] = reduction
self.register_buffer('thirds_mask', mask.view(1, -1, 1, 1))
self.residual_weight = nn.Parameter(torch.tensor(0.9))
def forward(self, x: Tensor) -> Tensor:
identity = x
h = self.conv(x)
B, D, H, W = h.shape
h = h.permute(0, 2, 3, 1)
h = self.lens(h)
h = h.permute(0, 3, 1, 2)
h = h * self.thirds_mask
rw = torch.sigmoid(self.residual_weight)
return rw * identity + (1 - rw) * h
def get_residual_weight(self) -> float:
return torch.sigmoid(self.residual_weight).item()
# ============================================================================
# MÖBIUS NET
# ============================================================================
class MobiusNet(nn.Module):
def __init__(
self,
in_chans: int = 3,
num_classes: int = 200,
channels: Tuple[int, ...] = (64, 128, 256, 512),
depths: Tuple[int, ...] = (2, 2, 2, 2),
scale_range: Tuple[float, float] = (0.5, 2.5),
use_integrator: bool = True,
):
super().__init__()
num_stages = len(depths)
total_layers = sum(depths)
self.total_layers = total_layers
self.scale_range = scale_range
self.channels = tuple(channels)
self.depths = tuple(depths)
self.num_stages = num_stages
self.use_integrator = use_integrator
self.num_classes = num_classes
self.in_chans = in_chans
channels = list(channels)
while len(channels) < num_stages:
channels.append(channels[-1])
self.stem = nn.Sequential(
nn.Conv2d(in_chans, channels[0], 3, stride=1, padding=1, bias=False),
nn.BatchNorm2d(channels[0]),
)
layer_idx = 0
self.stages = nn.ModuleList()
self.downsamples = nn.ModuleList()
for stage_idx in range(num_stages):
ch = channels[stage_idx]
stage = nn.ModuleList()
for _ in range(depths[stage_idx]):
stage.append(MobiusConvBlock(ch, layer_idx, total_layers, scale_range))
layer_idx += 1
self.stages.append(stage)
if stage_idx < num_stages - 1:
ch_next = channels[stage_idx + 1]
self.downsamples.append(nn.Sequential(
nn.Conv2d(ch, ch_next, 3, stride=2, padding=1, bias=False),
nn.BatchNorm2d(ch_next),
))
final_ch = channels[num_stages - 1]
if use_integrator:
self.integrator = nn.Sequential(
nn.Conv2d(final_ch, final_ch, 3, padding=1, bias=False),
nn.BatchNorm2d(final_ch),
nn.GELU(),
)
else:
self.integrator = nn.Identity()
self.pool = nn.AdaptiveAvgPool2d(1)
self.head = nn.Linear(final_ch, num_classes)
def forward(self, x: Tensor) -> Tensor:
x = self.stem(x)
for i, stage in enumerate(self.stages):
for block in stage:
x = block(x)
if i < len(self.downsamples):
x = self.downsamples[i](x)
x = self.integrator(x)
return self.head(self.pool(x).flatten(1))
def get_config(self) -> Dict[str, Any]:
"""Return model configuration for saving."""
return {
'in_chans': self.in_chans,
'num_classes': self.num_classes,
'channels': self.channels,
'depths': self.depths,
'scale_range': self.scale_range,
'use_integrator': self.use_integrator,
'total_layers': self.total_layers,
'num_stages': self.num_stages,
}
def get_all_lens_stats(self) -> Dict[str, Dict[str, float]]:
"""Return stats from all lenses for logging."""
stats = {}
layer_idx = 0
for stage_idx, stage in enumerate(self.stages):
for block_idx, block in enumerate(stage):
key = f"stage{stage_idx}_block{block_idx}"
stats[key] = block.lens.get_lens_stats()
stats[key]['residual_weight'] = block.get_residual_weight()
layer_idx += 1
return stats
# ============================================================================
# TINY IMAGENET DATASET
# ============================================================================
def get_tiny_imagenet_loaders(data_dir='./data/tiny-imagenet-200', batch_size=128):
train_dir = os.path.join(data_dir, 'train')
val_dir = os.path.join(data_dir, 'val')
val_images_dir = os.path.join(val_dir, 'images')
if os.path.exists(val_images_dir):
print("Reorganizing validation folder...")
reorganize_val_folder(val_dir)
train_transform = transforms.Compose([
transforms.RandomCrop(64, padding=8),
transforms.RandomHorizontalFlip(),
transforms.AutoAugment(transforms.AutoAugmentPolicy.IMAGENET),
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
val_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
])
train_dataset = datasets.ImageFolder(train_dir, transform=train_transform)
val_dataset = datasets.ImageFolder(val_dir, transform=val_transform)
train_loader = DataLoader(
train_dataset, batch_size=batch_size, shuffle=True,
num_workers=8, pin_memory=True, persistent_workers=True
)
val_loader = DataLoader(
val_dataset, batch_size=256, shuffle=False,
num_workers=4, pin_memory=True, persistent_workers=True
)
return train_loader, val_loader
def reorganize_val_folder(val_dir):
"""Reorganize Tiny ImageNet val folder into class subfolders."""
val_images_dir = os.path.join(val_dir, 'images')
val_annotations = os.path.join(val_dir, 'val_annotations.txt')
if not os.path.exists(val_images_dir):
return
with open(val_annotations, 'r') as f:
for line in f:
parts = line.strip().split('\t')
img_name, class_id = parts[0], parts[1]
class_dir = os.path.join(val_dir, class_id)
os.makedirs(class_dir, exist_ok=True)
src = os.path.join(val_images_dir, img_name)
dst = os.path.join(class_dir, img_name)
if os.path.exists(src):
shutil.move(src, dst)
if os.path.exists(val_images_dir):
shutil.rmtree(val_images_dir)
if os.path.exists(val_annotations):
os.remove(val_annotations)
print("Validation folder reorganized.")
# ============================================================================
# PRESETS
# ============================================================================
PRESETS = {
'mobius_tiny_s': {
'channels': (64, 128, 256),
'depths': (2, 2, 2),
'scale_range': (0.5, 2.5),
},
'mobius_tiny_m': {
'channels': (64, 128, 256, 512, 768),
'depths': (2, 2, 4, 2, 2),
'scale_range': (0.25, 2.75),
},
'mobius_tiny_l': {
'channels': (96, 192, 384, 768),
'depths': (3, 3, 3, 3),
'scale_range': (0.5, 3.5),
},
'mobius_base': {
'channels': (128, 256, 512, 768, 1024),
'depths': (2, 2, 2, 2, 2),
'scale_range': (0.25, 2.75),
},
}
# ============================================================================
# CHECKPOINT MANAGER
# ============================================================================
class CheckpointManager:
def __init__(
self,
base_dir: str,
variant_name: str,
dataset_name: str,
hf_repo: str = "AbstractPhil/mobiusnet",
upload_every_n_epochs: int = 10,
save_every_n_epochs: int = 10,
timestamp: Optional[str] = None,
):
self.timestamp = timestamp or datetime.now().strftime("%Y%m%d_%H%M%S")
self.variant_name = variant_name
self.dataset_name = dataset_name
self.hf_repo = hf_repo
self.upload_every_n_epochs = upload_every_n_epochs
self.save_every_n_epochs = save_every_n_epochs
# Directory structure
self.run_name = f"{variant_name}_{dataset_name}"
self.run_dir = Path(base_dir) / "checkpoints" / self.run_name / self.timestamp
self.checkpoints_dir = self.run_dir / "checkpoints"
self.tensorboard_dir = self.run_dir / "tensorboard"
# Create directories
self.checkpoints_dir.mkdir(parents=True, exist_ok=True)
self.tensorboard_dir.mkdir(parents=True, exist_ok=True)
# TensorBoard writer
self.writer = SummaryWriter(log_dir=str(self.tensorboard_dir))
# HuggingFace API
self.hf_api = HfApi()
self.uploaded_files = set()
# Track best
self.best_acc = 0.0
self.best_epoch = 0
self.best_changed_since_upload = False
print(f"Checkpoint directory: {self.run_dir}")
@staticmethod
def extract_timestamp(checkpoint_path: str) -> Optional[str]:
"""Extract timestamp from checkpoint path."""
# Match YYYYMMDD_HHMMSS pattern
match = re.search(r'(\d{8}_\d{6})', checkpoint_path)
if match:
return match.group(1)
return None
def save_config(self, config: Dict[str, Any], training_config: Dict[str, Any]):
"""Save model and training configuration."""
full_config = {
'model': config,
'training': training_config,
'timestamp': self.timestamp,
'variant_name': self.variant_name,
'dataset_name': self.dataset_name,
}
config_path = self.run_dir / "config.json"
with open(config_path, 'w') as f:
json.dump(full_config, f, indent=2)
return config_path
def save_checkpoint(
self,
model: nn.Module,
optimizer: torch.optim.Optimizer,
scheduler: Any,
epoch: int,
train_acc: float,
val_acc: float,
train_loss: float,
is_best: bool = False,
):
"""Save checkpoint every N epochs, always save best (overwriting)."""
# Unwrap compiled model if necessary
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
# Checkpoint data
checkpoint = {
'epoch': epoch,
'train_acc': train_acc,
'val_acc': val_acc,
'train_loss': train_loss,
'best_acc': self.best_acc,
'optimizer_state_dict': optimizer.state_dict(),
'scheduler_state_dict': scheduler.state_dict(),
}
# Save epoch checkpoint every N epochs
if epoch % self.save_every_n_epochs == 0:
epoch_pt_path = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.pt"
torch.save({**checkpoint, 'model_state_dict': raw_model.state_dict()}, epoch_pt_path)
epoch_st_path = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.safetensors"
save_safetensors(raw_model.state_dict(), str(epoch_st_path))
# Save best model (overwrites previous best)
if is_best:
self.best_acc = val_acc
self.best_epoch = epoch
self.best_changed_since_upload = True
# PyTorch best
best_pt_path = self.checkpoints_dir / "best_model.pt"
torch.save({**checkpoint, 'model_state_dict': raw_model.state_dict()}, best_pt_path)
# SafeTensors best
best_st_path = self.checkpoints_dir / "best_model.safetensors"
save_safetensors(raw_model.state_dict(), str(best_st_path))
# Save accuracy info
acc_path = self.run_dir / "best_accuracy.json"
with open(acc_path, 'w') as f:
json.dump({
'best_acc': val_acc,
'best_epoch': epoch,
'train_acc': train_acc,
'train_loss': train_loss,
}, f, indent=2)
def save_final(self, model: nn.Module, final_acc: float, final_epoch: int):
"""Save final model."""
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
# SafeTensors final
final_st_path = self.checkpoints_dir / "final_model.safetensors"
save_safetensors(raw_model.state_dict(), str(final_st_path))
# PyTorch final
final_pt_path = self.checkpoints_dir / "final_model.pt"
torch.save({
'model_state_dict': raw_model.state_dict(),
'final_acc': final_acc,
'final_epoch': final_epoch,
'best_acc': self.best_acc,
'best_epoch': self.best_epoch,
}, final_pt_path)
# Final accuracy info
acc_path = self.run_dir / "final_accuracy.json"
with open(acc_path, 'w') as f:
json.dump({
'final_acc': final_acc,
'final_epoch': final_epoch,
'best_acc': self.best_acc,
'best_epoch': self.best_epoch,
}, f, indent=2)
return final_st_path, final_pt_path
def log_scalars(self, epoch: int, scalars: Dict[str, float], prefix: str = ""):
"""Log scalars to TensorBoard."""
for name, value in scalars.items():
tag = f"{prefix}/{name}" if prefix else name
self.writer.add_scalar(tag, value, epoch)
def log_lens_stats(self, epoch: int, model: nn.Module):
"""Log lens statistics to TensorBoard."""
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
stats = raw_model.get_all_lens_stats()
for block_name, block_stats in stats.items():
for stat_name, value in block_stats.items():
self.writer.add_scalar(f"lens/{block_name}/{stat_name}", value, epoch)
def log_histograms(self, epoch: int, model: nn.Module):
"""Log weight histograms to TensorBoard."""
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
for name, param in raw_model.named_parameters():
if param.requires_grad:
self.writer.add_histogram(f"weights/{name}", param.data, epoch)
if param.grad is not None:
self.writer.add_histogram(f"gradients/{name}", param.grad, epoch)
def upload_to_hf(self, epoch: int, force: bool = False):
"""Upload checkpoint every N epochs. Best uploads only on upload epochs if changed."""
if not force and epoch % self.upload_every_n_epochs != 0:
return
try:
hf_base_path = f"checkpoints/{self.run_name}/{self.timestamp}"
files_to_upload = []
# Always upload config
config_path = self.run_dir / "config.json"
if config_path.exists():
files_to_upload.append(config_path)
# Upload checkpoint if saved this epoch
if epoch % self.save_every_n_epochs == 0:
ckpt_st = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.safetensors"
ckpt_pt = self.checkpoints_dir / f"checkpoint_epoch_{epoch:04d}.pt"
if ckpt_st.exists():
files_to_upload.append(ckpt_st)
if ckpt_pt.exists():
files_to_upload.append(ckpt_pt)
# Upload best if it changed since last upload
if self.best_changed_since_upload:
best_files = [
self.checkpoints_dir / "best_model.safetensors",
self.checkpoints_dir / "best_model.pt",
self.run_dir / "best_accuracy.json",
]
for f in best_files:
if f.exists():
files_to_upload.append(f)
self.best_changed_since_upload = False
# Upload files
for local_path in files_to_upload:
rel_path = local_path.relative_to(self.run_dir)
hf_path = f"{hf_base_path}/{rel_path}"
try:
self.hf_api.upload_file(
path_or_fileobj=str(local_path),
path_in_repo=hf_path,
repo_id=self.hf_repo,
repo_type="model",
)
print(f"Uploaded: {hf_path}")
except Exception as e:
print(f"Failed to upload {rel_path}: {e}")
except Exception as e:
print(f"HuggingFace upload error: {e}")
def close(self):
"""Close TensorBoard writer."""
self.writer.close()
@staticmethod
def load_checkpoint(
checkpoint_path: str,
model: nn.Module,
optimizer: Optional[torch.optim.Optimizer] = None,
scheduler: Optional[Any] = None,
hf_repo: str = "AbstractPhil/mobiusnet",
device: torch.device = torch.device('cpu'),
) -> Dict[str, Any]:
"""
Load checkpoint from local path or HuggingFace repo.
Args:
checkpoint_path: Either:
- Local file path to .pt checkpoint
- Local directory containing checkpoints
- HuggingFace path like "checkpoints/variant_dataset/timestamp"
model: Model to load weights into
optimizer: Optional optimizer to restore state
scheduler: Optional scheduler to restore state
hf_repo: HuggingFace repo ID
device: Device to load tensors to
Returns:
Dict with checkpoint info (epoch, best_acc, etc.)
"""
from huggingface_hub import hf_hub_download, list_repo_files
checkpoint_file = None
# Check if it's a local file
if os.path.isfile(checkpoint_path):
checkpoint_file = checkpoint_path
# Check if it's a local directory
elif os.path.isdir(checkpoint_path):
# Look for best_model.pt or latest checkpoint
best_path = os.path.join(checkpoint_path, "checkpoints", "best_model.pt")
if os.path.exists(best_path):
checkpoint_file = best_path
else:
# Find latest epoch checkpoint
ckpt_dir = os.path.join(checkpoint_path, "checkpoints")
if os.path.isdir(ckpt_dir):
pt_files = sorted([f for f in os.listdir(ckpt_dir) if f.startswith("checkpoint_epoch_") and f.endswith(".pt")])
if pt_files:
checkpoint_file = os.path.join(ckpt_dir, pt_files[-1])
# Try HuggingFace download
if checkpoint_file is None:
print(f"Attempting to download from HuggingFace: {hf_repo}/{checkpoint_path}")
try:
# If checkpoint_path is a directory path in the repo
if not checkpoint_path.endswith(".pt"):
# Try to download best_model.pt
try:
checkpoint_file = hf_hub_download(
repo_id=hf_repo,
filename=f"{checkpoint_path}/checkpoints/best_model.pt",
repo_type="model",
)
print(f"Downloaded best_model.pt from {hf_repo}")
except:
# List files and find latest checkpoint
files = list_repo_files(repo_id=hf_repo, repo_type="model")
ckpt_files = sorted([f for f in files if checkpoint_path in f and f.endswith(".pt") and "checkpoint_epoch_" in f])
if ckpt_files:
checkpoint_file = hf_hub_download(
repo_id=hf_repo,
filename=ckpt_files[-1],
repo_type="model",
)
print(f"Downloaded {ckpt_files[-1]} from {hf_repo}")
else:
# Direct file path
checkpoint_file = hf_hub_download(
repo_id=hf_repo,
filename=checkpoint_path,
repo_type="model",
)
print(f"Downloaded {checkpoint_path} from {hf_repo}")
except Exception as e:
raise FileNotFoundError(f"Could not find or download checkpoint: {checkpoint_path}. Error: {e}")
if checkpoint_file is None:
raise FileNotFoundError(f"Could not find checkpoint: {checkpoint_path}")
print(f"Loading checkpoint from: {checkpoint_file}")
checkpoint = torch.load(checkpoint_file, map_location=device, weights_only=False)
# Load model weights
raw_model = model._orig_mod if hasattr(model, '_orig_mod') else model
raw_model.load_state_dict(checkpoint['model_state_dict'])
print(f"Loaded model weights")
# Load optimizer state
if optimizer is not None and 'optimizer_state_dict' in checkpoint:
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
print(f"Loaded optimizer state")
# Load scheduler state
if scheduler is not None and 'scheduler_state_dict' in checkpoint:
scheduler.load_state_dict(checkpoint['scheduler_state_dict'])
print(f"Loaded scheduler state")
info = {
'epoch': checkpoint.get('epoch', 0),
'best_acc': checkpoint.get('best_acc', 0.0),
'train_acc': checkpoint.get('train_acc', 0.0),
'val_acc': checkpoint.get('val_acc', 0.0),
'train_loss': checkpoint.get('train_loss', 0.0),
}
print(f"Resuming from epoch {info['epoch']} (best_acc: {info['best_acc']:.4f})")
return info
# ============================================================================
# TRAINING
# ============================================================================
def train_tiny_imagenet(
preset: str = 'mobius_tiny_m',
epochs: int = 100,
lr: float = 1e-3,
batch_size: int = 128,
use_integrator: bool = True,
data_dir: str = './data/tiny-imagenet-200',
output_dir: str = './outputs',
hf_repo: str = "AbstractPhil/mobiusnet",
save_every_n_epochs: int = 10,
upload_every_n_epochs: int = 10,
log_histograms_every: int = 10,
use_compile: bool = True,
continue_from: Optional[str] = None,
):
"""
Train MobiusNet on Tiny ImageNet.
Args:
preset: Model preset name
epochs: Total epochs to train
lr: Learning rate
batch_size: Batch size
use_integrator: Whether to use integrator layer
data_dir: Path to Tiny ImageNet data
output_dir: Output directory for checkpoints
hf_repo: HuggingFace repo for uploads/downloads
save_every_n_epochs: Save checkpoint every N epochs
upload_every_n_epochs: Upload to HF every N epochs
log_histograms_every: Log weight histograms every N epochs
use_compile: Whether to use torch.compile
continue_from: Resume from checkpoint. Can be:
- Local .pt file path
- Local checkpoint directory
- HuggingFace path (e.g., "checkpoints/mobius_base_tiny_imagenet/20240101_120000")
"""
config = PRESETS[preset]
dataset_name = "tiny_imagenet"
print("=" * 70)
print(f"MÖBIUS NET - {preset.upper()} - TINY IMAGENET")
print("=" * 70)
print(f"Device: {device}")
print(f"Channels: {config['channels']}")
print(f"Depths: {config['depths']}")
print(f"Scale range: {config['scale_range']}")
print(f"Integrator: {use_integrator}")
if continue_from:
print(f"Continuing from: {continue_from}")
print()
# Extract timestamp from checkpoint path if continuing
resume_timestamp = None
if continue_from:
resume_timestamp = CheckpointManager.extract_timestamp(continue_from)
if resume_timestamp:
print(f"Using original timestamp: {resume_timestamp}")
# Initialize checkpoint manager
ckpt_manager = CheckpointManager(
base_dir=output_dir,
variant_name=preset,
dataset_name=dataset_name,
hf_repo=hf_repo,
upload_every_n_epochs=upload_every_n_epochs,
save_every_n_epochs=save_every_n_epochs,
timestamp=resume_timestamp,
)
# Data
train_loader, val_loader = get_tiny_imagenet_loaders(data_dir, batch_size)
# Model
model = MobiusNet(
in_chans=3,
num_classes=200,
use_integrator=use_integrator,
**config
).to(device)
total_params = sum(p.numel() for p in model.parameters())
print(f"Total params: {total_params:,}")
print()
# Save config
training_config = {
'epochs': epochs,
'lr': lr,
'batch_size': batch_size,
'optimizer': 'AdamW',
'weight_decay': 0.05,
'scheduler': 'CosineAnnealingLR',
'total_params': total_params,
}
ckpt_manager.save_config(model.get_config(), training_config)
# Compile model
if use_compile:
model = torch.compile(model, mode='reduce-overhead')
# Optimizer and scheduler
optimizer = torch.optim.AdamW(model.parameters(), lr=lr, weight_decay=0.05)
scheduler = torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs)
# Load checkpoint if continuing
start_epoch = 1
best_acc = 0.0
if continue_from:
ckpt_info = CheckpointManager.load_checkpoint(
checkpoint_path=continue_from,
model=model,
optimizer=optimizer,
scheduler=scheduler,
hf_repo=hf_repo,
device=device,
)
start_epoch = ckpt_info['epoch'] + 1
best_acc = ckpt_info['best_acc']
ckpt_manager.best_acc = best_acc
ckpt_manager.best_epoch = ckpt_info['epoch']
print(f"Resuming training from epoch {start_epoch}")
for epoch in range(start_epoch, epochs + 1):
# Training
model.train()
train_loss, train_correct, train_total = 0, 0, 0
pbar = tqdm(train_loader, desc=f"Epoch {epoch:3d}")
for x, y in pbar:
x, y = x.to(device), y.to(device)
optimizer.zero_grad()
logits = model(x)
loss = F.cross_entropy(logits, y)
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1.0)
optimizer.step()
train_loss += loss.item() * x.size(0)
train_correct += (logits.argmax(1) == y).sum().item()
train_total += x.size(0)
pbar.set_postfix(loss=f"{loss.item():.4f}")
scheduler.step()
# Validation
model.eval()
val_correct, val_total = 0, 0
with torch.no_grad():
for x, y in val_loader:
x, y = x.to(device), y.to(device)
logits = model(x)
val_correct += (logits.argmax(1) == y).sum().item()
val_total += x.size(0)
# Metrics
train_acc = train_correct / train_total
val_acc = val_correct / val_total
avg_loss = train_loss / train_total
current_lr = scheduler.get_last_lr()[0]
is_best = val_acc > best_acc
if is_best:
best_acc = val_acc
marker = " ★" if is_best else ""
print(f"Epoch {epoch:3d} | Loss: {avg_loss:.4f} | "
f"Train: {train_acc:.4f} | Val: {val_acc:.4f} | Best: {best_acc:.4f}{marker}")
# TensorBoard logging
ckpt_manager.log_scalars(epoch, {
'loss': avg_loss,
'train_acc': train_acc,
'val_acc': val_acc,
'best_acc': best_acc,
'learning_rate': current_lr,
}, prefix="train")
# Log lens stats
ckpt_manager.log_lens_stats(epoch, model)
# Log histograms periodically
if epoch % log_histograms_every == 0:
ckpt_manager.log_histograms(epoch, model)
# Save checkpoint
ckpt_manager.save_checkpoint(
model=model,
optimizer=optimizer,
scheduler=scheduler,
epoch=epoch,
train_acc=train_acc,
val_acc=val_acc,
train_loss=avg_loss,
is_best=is_best,
)
# Upload to HuggingFace (handles both checkpoint and best)
ckpt_manager.upload_to_hf(epoch)
# Save final model
ckpt_manager.save_final(model, val_acc, epochs)
# Final upload
ckpt_manager.upload_to_hf(epochs, force=True)
ckpt_manager.close()
print()
print("=" * 70)
print("FINAL RESULTS")
print("=" * 70)
print(f"Preset: {preset}")
print(f"Best accuracy: {best_acc:.4f}")
print(f"Total params: {total_params:,}")
print(f"Checkpoints: {ckpt_manager.run_dir}")
print("=" * 70)
return model, best_acc
# ============================================================================
# RUN
# ============================================================================
if __name__ == '__main__':
model, best_acc = train_tiny_imagenet(
preset='mobius_base',
epochs=200,
lr=3e-4,
batch_size=128,
use_integrator=True,
data_dir='./data/tiny-imagenet-200',
output_dir='./outputs',
hf_repo='AbstractPhil/mobiusnet',
save_every_n_epochs=10,
upload_every_n_epochs=10,
log_histograms_every=10,
use_compile=True,
continue_from='/content/outputs/checkpoints/mobius_base_tiny_imagenet/20260110_132436/checkpoints/best_model.pt', # Set to path or HF checkpoint to resume
# Examples:
# continue_from="./outputs/checkpoints/mobius_base_tiny_imagenet/20240101_120000"
# continue_from="./outputs/checkpoints/mobius_base_tiny_imagenet/20240101_120000/checkpoints/best_model.pt"
# continue_from="checkpoints/mobius_base_tiny_imagenet/20240101_120000" # downloads from HF
) |