File size: 10,219 Bytes
c1e8b54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
# ============================================
# PentachoraViT CIFAR-100 Evaluation
# ============================================

import torch
import torch.nn.functional as F
from collections import defaultdict
import numpy as np
from tqdm import tqdm
import matplotlib.pyplot as plt

def evaluate_pentachora_vit(model, test_loader, device='cuda'):
    """Properly evaluate PentachoraViT model."""
    model.eval()

    # Get class names
    class_names = get_cifar100_class_names()

    # Check model configuration
    print(f"Model Configuration:")
    print(f"  Internal dim: {model.dim}")
    print(f"  Vocab dim: {model.vocab_dim}")
    print(f"  Num classes: {model.num_classes}")

    # Get the class crystals
    if hasattr(model, 'cls_tokens') and hasattr(model.cls_tokens, 'class_pentachora'):
        crystals = model.cls_tokens.class_pentachora  # [100, 5, vocab_dim]
        print(f"  Crystal shape: {crystals.shape}")
    else:
        print("  No crystals found!")
        return None

    # Track metrics
    all_predictions = []
    all_targets = []
    all_confidences = []
    geometric_alignments_by_class = defaultdict(list)
    aux_predictions = []

    with torch.no_grad():
        for images, targets in tqdm(test_loader, desc="Evaluating"):
            images = images.to(device)
            targets = targets.to(device)

            # Get model outputs dictionary
            outputs = model(images)

            # Main predictions from primary head
            logits = outputs['logits']  # [batch, 100]
            probs = F.softmax(logits, dim=1)
            confidence, predicted = torch.max(probs, 1)

            # Store predictions
            all_predictions.extend(predicted.cpu().numpy())
            all_targets.extend(targets.cpu().numpy())
            all_confidences.extend(confidence.cpu().numpy())

            # Auxiliary predictions
            if 'aux_logits' in outputs:
                aux_probs = F.softmax(outputs['aux_logits'], dim=1)
                _, aux_pred = torch.max(aux_probs, 1)
                aux_predictions.extend(aux_pred.cpu().numpy())

            # Geometric alignments - these show how patches align with class crystals
            if 'geometric_alignments' in outputs:
                # Shape: [batch, num_patches, num_classes]
                geo_align = outputs['geometric_alignments']
                # Average over patches to get per-sample class alignments
                geo_align_mean = geo_align.mean(dim=1)  # [batch, num_classes]

                for i, target_class in enumerate(targets):
                    class_idx = target_class.item()
                    # Store alignment score for the true class
                    geometric_alignments_by_class[class_idx].append(
                        geo_align_mean[i, class_idx].item()
                    )

    # Convert to numpy arrays
    all_predictions = np.array(all_predictions)
    all_targets = np.array(all_targets)
    all_confidences = np.array(all_confidences)

    # Calculate per-class metrics
    class_results = []
    for class_idx in range(len(class_names)):
        mask = all_targets == class_idx
        if mask.sum() == 0:
            continue

        class_preds = all_predictions[mask]
        correct = (class_preds == class_idx).sum()
        total = mask.sum()
        accuracy = 100.0 * correct / total

        # Average confidence for this class
        class_conf = all_confidences[mask].mean()

        # Geometric alignment for this class
        geo_align = np.mean(geometric_alignments_by_class[class_idx]) if geometric_alignments_by_class[class_idx] else 0

        # Crystal statistics
        class_crystal = crystals[class_idx].detach().cpu()  # [5, vocab_dim]
        vertex_variance = class_crystal.var(dim=0).mean().item()

        # Crystal norm (average magnitude)
        crystal_norm = class_crystal.norm(dim=-1).mean().item()

        class_results.append({
            'class_idx': class_idx,
            'class_name': class_names[class_idx],
            'accuracy': accuracy,
            'correct': int(correct),
            'total': int(total),
            'avg_confidence': class_conf,
            'geometric_alignment': geo_align,
            'vertex_variance': vertex_variance,
            'crystal_norm': crystal_norm
        })

    # Sort by accuracy
    class_results.sort(key=lambda x: x['accuracy'], reverse=True)

    # Overall metrics
    overall_acc = 100.0 * (all_predictions == all_targets).mean()

    # Auxiliary head accuracy if available
    aux_acc = None
    if aux_predictions:
        aux_predictions = np.array(aux_predictions)
        aux_acc = 100.0 * (aux_predictions == all_targets).mean()

    # Print results
    print(f"\n" + "="*80)
    print(f"EVALUATION RESULTS")
    print(f"="*80)
    print(f"\nOverall Accuracy: {overall_acc:.2f}%")
    if aux_acc:
        print(f"Auxiliary Head Accuracy: {aux_acc:.2f}%")

    # Top 10 classes
    print(f"\nTop 10 Classes:")
    print(f"{'Class':<20} {'Acc%':<8} {'Conf':<8} {'GeoAlign':<10} {'CrystalNorm':<12}")
    print("-"*70)
    for r in class_results[:10]:
        print(f"{r['class_name']:<20} {r['accuracy']:>6.1f} {r['avg_confidence']:>7.3f} "
              f"{r['geometric_alignment']:>9.3f} {r['crystal_norm']:>11.3f}")

    # Bottom 10 classes
    print(f"\nBottom 10 Classes:")
    print(f"{'Class':<20} {'Acc%':<8} {'Conf':<8} {'GeoAlign':<10} {'CrystalNorm':<12}")
    print("-"*70)
    for r in class_results[-10:]:
        print(f"{r['class_name']:<20} {r['accuracy']:>6.1f} {r['avg_confidence']:>7.3f} "
              f"{r['geometric_alignment']:>9.3f} {r['crystal_norm']:>11.3f}")

    # Analyze correlations
    accuracies = [r['accuracy'] for r in class_results]
    geo_aligns = [r['geometric_alignment'] for r in class_results]
    crystal_norms = [r['crystal_norm'] for r in class_results]
    vertex_vars = [r['vertex_variance'] for r in class_results]

    print(f"\nCorrelations with Accuracy:")
    print(f"  Geometric Alignment: {np.corrcoef(accuracies, geo_aligns)[0,1]:.3f}")
    print(f"  Crystal Norm: {np.corrcoef(accuracies, crystal_norms)[0,1]:.3f}")
    print(f"  Vertex Variance: {np.corrcoef(accuracies, vertex_vars)[0,1]:.3f}")

    # Visualizations
    fig, axes = plt.subplots(2, 2, figsize=(12, 10))

    # 1. Accuracy distribution
    ax = axes[0, 0]
    ax.hist(accuracies, bins=20, edgecolor='black', alpha=0.7)
    ax.axvline(overall_acc, color='red', linestyle='--', label=f'Overall: {overall_acc:.1f}%')
    ax.set_xlabel('Accuracy (%)')
    ax.set_ylabel('Count')
    ax.set_title('Per-Class Accuracy Distribution')
    ax.legend()
    ax.grid(True, alpha=0.3)

    # 2. Accuracy vs Geometric Alignment
    ax = axes[0, 1]
    scatter = ax.scatter(geo_aligns, accuracies, c=crystal_norms, cmap='viridis', alpha=0.6)
    ax.set_xlabel('Geometric Alignment Score')
    ax.set_ylabel('Accuracy (%)')
    ax.set_title('Accuracy vs Geometric Alignment\n(color = crystal norm)')
    plt.colorbar(scatter, ax=ax)
    ax.grid(True, alpha=0.3)

    # 3. Crystal Analysis
    ax = axes[1, 0]
    ax.scatter(crystal_norms, accuracies, alpha=0.6)
    ax.set_xlabel('Crystal Norm (avg magnitude)')
    ax.set_ylabel('Accuracy (%)')
    ax.set_title('Accuracy vs Crystal Norm')
    ax.grid(True, alpha=0.3)

    # 4. Top/Bottom comparison
    ax = axes[1, 1]
    top10_acc = [r['accuracy'] for r in class_results[:10]]
    bottom10_acc = [r['accuracy'] for r in class_results[-10:]]
    top10_geo = [r['geometric_alignment'] for r in class_results[:10]]
    bottom10_geo = [r['geometric_alignment'] for r in class_results[-10:]]

    x = np.arange(10)
    width = 0.35
    ax.bar(x - width/2, top10_acc, width, label='Top 10 Accuracy', color='green', alpha=0.7)
    ax.bar(x + width/2, bottom10_acc, width, label='Bottom 10 Accuracy', color='red', alpha=0.7)
    ax.set_xlabel('Rank within group')
    ax.set_ylabel('Accuracy (%)')
    ax.set_title('Top 10 vs Bottom 10 Classes')
    ax.legend()
    ax.grid(True, alpha=0.3)

    plt.tight_layout()
    plt.show()
    # ===================================================================================
    # FULL 100-CLASS DIAGNOSTIC SPECTRUM (SORTED BY CLASS IDX FOR CONSISTENCY)
    # ===================================================================================
    print(f"\n{'='*90}")
    print("Sparky — Full Class Spectrum")
    print(f"{'='*90}")
    print(f"{'Idx':<5} {'Class':<20} {'Acc%':<8} {'Conf':<8} {'GeoAlign':<10} {'CrystalNorm':<12} {'Variance':<10}")
    print("-" * 90)

    for r in sorted(class_results, key=lambda x: x['class_idx']):
        print(f"{r['class_idx']:<5} {r['class_name']:<20} "
              f"{r['accuracy']:>6.1f} {r['avg_confidence']:>7.3f} "
              f"{r['geometric_alignment']:>9.3f} {r['crystal_norm']:>11.3f} "
              f"{r['vertex_variance']:>9.8f}")

    return class_results, overall_acc

# Run evaluation
if 'model' in globals():
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    _, test_loader = get_cifar100_dataloaders(batch_size=100)

    results, overall = evaluate_pentachora_vit(model, test_loader, device)

    # Additional crystal analysis
    print("\nCrystal Geometry Analysis:")
    print("-"*50)

    # Get crystals
    crystals = model.cls_tokens.class_pentachora.detach().cpu()

    # Compute pairwise similarities between class crystals
    crystals_flat = crystals.mean(dim=1)  # Average over 5 vertices
    crystals_norm = F.normalize(crystals_flat, dim=1)
    similarities = torch.matmul(crystals_norm, crystals_norm.T)

    # Find confused pairs (high similarity, both low accuracy)
    print("\nMost similar classes with poor performance:")
    for i in range(100):
        for j in range(i+1, 100):
            if results[i]['accuracy'] < 20 and results[j]['accuracy'] < 20:
                sim = similarities[results[i]['class_idx'], results[j]['class_idx']].item()
                if sim > 0.5:
                    print(f"  {results[i]['class_name']:<15} ({results[i]['accuracy']:.1f}%) ↔ "
                          f"{results[j]['class_name']:<15} ({results[j]['accuracy']:.1f}%) : {sim:.3f}")
    
else:
    print("No model found in memory!")