File size: 11,273 Bytes
12d62d9
 
f3307b8
 
12d62d9
 
 
 
 
 
 
 
 
 
 
 
 
 
f3307b8
12d62d9
 
 
 
f3307b8
12d62d9
 
 
 
f3307b8
12d62d9
 
 
 
 
 
 
 
 
f3307b8
12d62d9
 
 
f3307b8
12d62d9
 
 
f3307b8
 
 
 
 
 
12d62d9
 
 
f3307b8
12d62d9
 
 
 
 
 
 
f3307b8
 
 
 
 
 
 
 
 
 
12d62d9
 
 
 
 
 
f3307b8
12d62d9
 
f3307b8
12d62d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3307b8
12d62d9
 
 
f3307b8
 
12d62d9
f3307b8
12d62d9
 
 
 
 
f3307b8
12d62d9
 
 
 
f3307b8
f459cdd
12d62d9
 
 
 
 
 
 
 
f3307b8
12d62d9
 
 
f3307b8
 
 
 
 
 
 
12d62d9
 
 
 
 
f459cdd
12d62d9
f3307b8
12d62d9
 
 
 
 
 
 
 
f3307b8
12d62d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3307b8
 
12d62d9
f3307b8
 
 
 
 
 
 
 
 
 
12d62d9
 
 
f3307b8
12d62d9
 
 
 
 
 
 
 
 
 
 
 
f3307b8
12d62d9
f3307b8
 
12d62d9
f3307b8
 
 
1d40566
f3307b8
 
 
 
 
 
1d40566
f3307b8
 
 
 
 
12d62d9
 
f3307b8
12d62d9
 
 
f3307b8
 
12d62d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f3307b8
 
 
 
 
 
12d62d9
 
f3307b8
12d62d9
 
 
 
 
f3307b8
 
 
7465a5c
f3307b8
 
 
 
 
 
 
 
 
 
 
12d62d9
 
 
 
 
 
 
f3307b8
12d62d9
f3307b8
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
"""
Baseline Vision Transformer with Frozen Pentachora Embeddings
Clean architecture with geometric semantic anchors
Assumes PentachoronStabilizer is loaded externally
"""

import torch
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from einops import rearrange
import math
from typing import Optional, Tuple, Dict, Any


class PentachoraEmbedding(nn.Module):
    """
    A single frozen pentachora embedding (5 vertices in geometric space).
    Accepts pre-computed vertices only. No random initialization.
    """
    
    def __init__(self, vertices: torch.Tensor):
        super().__init__()
        #assert vertices.shape == (5, 128), f"Expected shape (5, 128), got {vertices.shape}"
        
        self.embed_dim = vertices.shape[-1]
        
        # Store provided vertices as frozen buffer
        self.register_buffer('vertices', vertices)
        self.vertices.requires_grad = False
        
        # Precompute normalized versions and centroid
        with torch.no_grad():
            self.register_buffer('vertices_norm', F.normalize(self.vertices, dim=-1))
            self.register_buffer('centroid', self.vertices.mean(dim=0))
            self.register_buffer('centroid_norm', F.normalize(self.centroid, dim=-1))
    
    def get_vertices(self) -> torch.Tensor:
        """Get all 5 vertices."""
        return self.vertices
    
    def get_centroid(self) -> torch.Tensor:
        """Get the centroid of the pentachora."""
        return self.centroid
    
    def compute_rose_score(self, features: torch.Tensor) -> torch.Tensor:
        """
        Compute Rose similarity score with this pentachora.
        Uses external PentachoronStabilizer.rose_score_magnitude
        """
        # Prepare vertices for rose scoring
        verts = self.vertices.unsqueeze(0)  # [1, 5, D]
        if features.dim() == 1:
            features = features.unsqueeze(0)
        
        # Expand vertices to batch size if needed
        B = features.shape[0]
        if B > 1:
            verts = verts.expand(B, -1, -1)
        
        return PentachoronStabilizer.rose_score_magnitude(features, verts)
    
    def compute_similarity(self, features: torch.Tensor, mode: str = 'centroid') -> torch.Tensor:
        """
        Compute similarity between features and this pentachora.
        
        Args:
            features: [batch, dim] or [batch, seq, dim]
            mode: 'centroid', 'max' (max over vertices), or 'rose' (Rose score)
        
        Returns:
            similarities: [batch] or [batch, seq]
        """
        if mode == 'rose':
            return self.compute_rose_score(features)
        
        features_norm = F.normalize(features, dim=-1)
        
        if mode == 'centroid':
            # Dot product with centroid
            return torch.matmul(features_norm, self.centroid_norm)
        else:  # mode == 'max'
            # Max similarity across vertices
            sims = torch.matmul(features_norm, self.vertices_norm.T)
            return sims.max(dim=-1)[0]


class TransformerBlock(nn.Module):
    """Standard transformer block with multi-head attention and MLP."""
    
    def __init__(
        self,
        dim: int,
        num_heads: int = 8,
        mlp_ratio: float = 4.0,
        dropout: float = 0.0,
        attn_dropout: float = 0.0
    ):
        super().__init__()
        
        self.norm1 = nn.LayerNorm(dim)
        self.attn = nn.MultiheadAttention(
            dim, 
            num_heads, 
            dropout=attn_dropout,
            batch_first=True
        )
        
        self.norm2 = nn.LayerNorm(dim)
        mlp_hidden_dim = int(dim * mlp_ratio)
        self.mlp = nn.Sequential(
            nn.Linear(dim, mlp_hidden_dim),
            nn.GELU(),
            nn.Dropout(dropout),
            nn.Linear(mlp_hidden_dim, dim),
            nn.Dropout(dropout)
        )
    
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # Self-attention
        x_norm = self.norm1(x)
        attn_out, _ = self.attn(x_norm, x_norm, x_norm)
        x = x + attn_out
        
        # MLP
        x = x + self.mlp(self.norm2(x))
        
        return x


class BaselineViT(nn.Module):
    """
    Clean baseline Vision Transformer with frozen pentachora embeddings.
    """
    
    def __init__(
        self,
        pentachora_list: list,  # List of torch.Tensor, each [5, vocab_dim]
        vocab_dim: int = 256,
        img_size: int = 32,
        patch_size: int = 4,
        embed_dim: int = 512,
        depth: int = 12,
        num_heads: int = 8,
        mlp_ratio: float = 4.0,
        dropout: float = 0.0,
        attn_dropout: float = 0.0,
        similarity_mode: str = 'rose'  # 'centroid', 'max', or 'rose'
    ):
        super().__init__()
        
        # Validate pentachora list
        assert isinstance(pentachora_list, list), f"Expected list, got {type(pentachora_list)}"
        assert len(pentachora_list) > 0, "Empty pentachora list"
        
        # Validate each pentachora
        for i, penta in enumerate(pentachora_list):
            assert isinstance(penta, torch.Tensor), f"Item {i} is not a tensor"
        
        self.num_classes = len(pentachora_list)
        self.embed_dim = embed_dim
        self.num_patches = (img_size // patch_size) ** 2
        self.similarity_mode = similarity_mode
        self.pentachora_dim = vocab_dim
        
        # Create individual pentachora embeddings from list
        self.class_pentachora = nn.ModuleList([
            PentachoraEmbedding(vertices=penta)
            for penta in pentachora_list
        ])
        
        # Patch embedding
        self.patch_embed = nn.Conv2d(3, embed_dim, kernel_size=patch_size, stride=patch_size)
        
        # CLS token - learnable
        self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))
        
        # Position embeddings
        self.pos_embed = nn.Parameter(torch.zeros(1, 1 + self.num_patches, embed_dim))
        self.pos_drop = nn.Dropout(dropout)
        
        # Transformer blocks
        self.blocks = nn.ModuleList([
            TransformerBlock(
                dim=embed_dim,
                num_heads=num_heads,
                mlp_ratio=mlp_ratio,
                dropout=dropout,
                attn_dropout=attn_dropout
            )
            for i in range(depth)
        ])
        
        # Final norm
        self.norm = nn.LayerNorm(embed_dim)
        
        # Project to pentachora dimension if needed
        if self.pentachora_dim != embed_dim:
            self.to_pentachora_dim = nn.Linear(embed_dim, self.pentachora_dim)
        else:
            self.to_pentachora_dim = nn.Identity()
        
        # Temperature for similarity-based classification
        self.temperature = nn.Parameter(torch.ones(1) * np.log(1/0.07))
        
        self.register_buffer(
            'all_centroids',
            torch.stack([penta.centroid for penta in self.class_pentachora])
        )
        self.register_buffer(
            'all_centroids_norm',
            F.normalize(self.all_centroids, dim=-1)
        )

        # Initialize weights
        self.init_weights()
    
    def init_weights(self):
        """Initialize model weights."""
        nn.init.trunc_normal_(self.cls_token, std=0.02)
        nn.init.trunc_normal_(self.pos_embed, std=0.02)
        
        for m in self.modules():
            if isinstance(m, nn.Linear):
                nn.init.trunc_normal_(m.weight, std=0.02)
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.LayerNorm):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
    
    # Then get_class_centroids becomes:
    def get_class_centroids(self) -> torch.Tensor:
        return self.all_centroids_norm
        
    def compute_pentachora_similarities(self, features: torch.Tensor) -> torch.Tensor:
        """
        Compute similarities between features and all class pentachora (vectorized).
        """
        if self.similarity_mode == 'rose':
            # Stack all vertices into single tensor for batch Rose scoring
            all_vertices = torch.stack([penta.vertices for penta in self.class_pentachora])  # [100, 5, vocab_dim]
            # Expand features for batch computation
            features_exp = features.unsqueeze(1).expand(-1, self.num_classes, -1)  # [B, 100, vocab_dim]
            # Compute Rose scores in parallel
            return PentachoronStabilizer.rose_score_magnitude(features_exp.reshape(-1, self.embed_dim), all_vertices.repeat(features.shape[0], 1, 1)).reshape(features.shape[0], -1)
        else:
            # Stack all centroids
            centroids = torch.stack([penta.centroid_norm for penta in self.class_pentachora])  # [100, vocab_dim]
            features_norm = F.normalize(features, dim=-1)  # [B, vocab_dim]
            return torch.matmul(features_norm, centroids.T)  # [B, 100]

    
    def forward_features(self, x: torch.Tensor) -> torch.Tensor:
        """Extract features from images."""
        B = x.shape[0]
        
        # Patch embedding
        x = self.patch_embed(x)  # [B, embed_dim, H', W']
        x = x.flatten(2).transpose(1, 2)  # [B, num_patches, embed_dim]
        
        # Add CLS token
        cls_tokens = self.cls_token.expand(B, -1, -1)
        x = torch.cat([cls_tokens, x], dim=1)
        
        # Add position embeddings
        x = x + self.pos_embed
        x = self.pos_drop(x)
        
        # Apply transformer blocks
        for block in self.blocks:
            x = block(x)
        
        # Final norm
        x = self.norm(x)
        
        # Return CLS token
        return x[:, 0]
    
    def forward(self, x: torch.Tensor, return_features: bool = False) -> Dict[str, torch.Tensor]:
        """
        Forward pass.
        
        Returns dict with:
            - logits: classification logits
            - features: CLS features (if return_features=True)
            - similarities: raw similarities to pentachora
        """
        features = self.forward_features(x)
        
        output = {}
        
        # Project to pentachora dimension
        features_proj = self.to_pentachora_dim(features)
        
        # Compute similarities based on mode
        if self.similarity_mode == 'rose':
            # Use Rose scoring
            similarities = self.compute_pentachora_similarities(features_proj)
        else:
            # Use centroid or max similarity
            features_norm = F.normalize(features_proj, dim=-1)
            centroids = self.get_class_centroids()
            similarities = torch.matmul(features_norm, centroids.T)
        
        # Scale by temperature
        logits = similarities * self.temperature.exp()
        
        output['logits'] = logits
        output['similarities'] = similarities
        
        if return_features:
            output['features'] = features
        
        return output


# Test - requires external setup
if __name__ == "__main__":
    print("BaselineViT requires:")
    print("  1. PentachoronStabilizer loaded externally")
    print("  2. pentachora_batch tensor [num_classes, 5, vocab_dim]")
    print("\nNo random initialization. No fallbacks.")