Upload checkpoint from checkpoint-135
Browse files- .gitattributes +1 -0
- README.md +219 -0
- added_tokens.json +28 -0
- chat_template.jinja +86 -0
- config.json +68 -0
- generation_config.json +12 -0
- latest +1 -0
- merges.txt +0 -0
- model-00001-of-00002.safetensors +3 -0
- model-00002-of-00002.safetensors +3 -0
- model.safetensors.index.json +406 -0
- rng_state_0.pth +3 -0
- rng_state_1.pth +3 -0
- rng_state_2.pth +3 -0
- rng_state_3.pth +3 -0
- rng_state_4.pth +3 -0
- rng_state_5.pth +3 -0
- rng_state_6.pth +3 -0
- rng_state_7.pth +3 -0
- scheduler.pt +3 -0
- special_tokens_map.json +31 -0
- tokenizer.json +3 -0
- tokenizer_config.json +239 -0
- trainer_state.json +2279 -0
- training_args.bin +3 -0
- vocab.json +0 -0
- zero_to_fp32.py +760 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            tokenizer.json filter=lfs diff=lfs merge=lfs -text
         | 
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,219 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            license: apache-2.0
         | 
| 3 | 
            +
            base_model: Asap7772/qwen3-4b-impabs-warmstart-sft-1e-5-1epoch-0828
         | 
| 4 | 
            +
            tags:
         | 
| 5 | 
            +
            - trl
         | 
| 6 | 
            +
            - dpo
         | 
| 7 | 
            +
            - rlhf
         | 
| 8 | 
            +
            - alignment
         | 
| 9 | 
            +
            ---
         | 
| 10 | 
            +
             | 
| 11 | 
            +
            # Asap7772/Qwen3-4B-second-stage-DPO-lr-1e-7-beta-0.1-loss-sigmoid-rpo-1.0-ckpt-135
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            This model is a fine-tuned version of [Asap7772/qwen3-4b-impabs-warmstart-sft-1e-5-1epoch-0828](https://huggingface.co/Asap7772/qwen3-4b-impabs-warmstart-sft-1e-5-1epoch-0828) using TRL (Transformer Reinforcement Learning).
         | 
| 14 | 
            +
             | 
| 15 | 
            +
            ## Model Details
         | 
| 16 | 
            +
             | 
| 17 | 
            +
            - **Base Model**: Asap7772/qwen3-4b-impabs-warmstart-sft-1e-5-1epoch-0828
         | 
| 18 | 
            +
            - **Checkpoint**: checkpoint-135
         | 
| 19 | 
            +
            - **Fine-tuning Method**: DPO (Direct Preference Optimization)
         | 
| 20 | 
            +
            - **Framework**: TRL
         | 
| 21 | 
            +
             | 
| 22 | 
            +
            ## Usage
         | 
| 23 | 
            +
             | 
| 24 | 
            +
            ```python
         | 
| 25 | 
            +
            from transformers import AutoModelForCausalLM, AutoTokenizer
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            model = AutoModelForCausalLM.from_pretrained("Asap7772/Qwen3-4B-second-stage-DPO-lr-1e-7-beta-0.1-loss-sigmoid-rpo-1.0-ckpt-135")
         | 
| 28 | 
            +
            tokenizer = AutoTokenizer.from_pretrained("Asap7772/Qwen3-4B-second-stage-DPO-lr-1e-7-beta-0.1-loss-sigmoid-rpo-1.0-ckpt-135")
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            # Your inference code here
         | 
| 31 | 
            +
            ```
         | 
| 32 | 
            +
             | 
| 33 | 
            +
            ## Training Details
         | 
| 34 | 
            +
             | 
| 35 | 
            +
            This model was trained using the TRL library with DPO (Direct Preference Optimization).
         | 
| 36 | 
            +
             | 
| 37 | 
            +
            ### Training Arguments
         | 
| 38 | 
            +
             | 
| 39 | 
            +
            ```json
         | 
| 40 | 
            +
            {
         | 
| 41 | 
            +
              "output_dir": "/iris/u/asap7772/trl/checkpoints/Qwen3-4B-second-stage-DPO-lr-1e-7-beta-0.1-loss-sigmoid-rpo-1.0",
         | 
| 42 | 
            +
              "overwrite_output_dir": false,
         | 
| 43 | 
            +
              "do_train": false,
         | 
| 44 | 
            +
              "do_eval": true,
         | 
| 45 | 
            +
              "do_predict": false,
         | 
| 46 | 
            +
              "eval_strategy": "epoch",
         | 
| 47 | 
            +
              "prediction_loss_only": false,
         | 
| 48 | 
            +
              "per_device_train_batch_size": 1,
         | 
| 49 | 
            +
              "per_device_eval_batch_size": 8,
         | 
| 50 | 
            +
              "per_gpu_train_batch_size": null,
         | 
| 51 | 
            +
              "per_gpu_eval_batch_size": null,
         | 
| 52 | 
            +
              "gradient_accumulation_steps": 16,
         | 
| 53 | 
            +
              "eval_accumulation_steps": null,
         | 
| 54 | 
            +
              "eval_delay": 0,
         | 
| 55 | 
            +
              "torch_empty_cache_steps": null,
         | 
| 56 | 
            +
              "learning_rate": 1e-07,
         | 
| 57 | 
            +
              "weight_decay": 0.01,
         | 
| 58 | 
            +
              "adam_beta1": 0.9,
         | 
| 59 | 
            +
              "adam_beta2": 0.999,
         | 
| 60 | 
            +
              "adam_epsilon": 1e-08,
         | 
| 61 | 
            +
              "max_grad_norm": 1.0,
         | 
| 62 | 
            +
              "num_train_epochs": 5,
         | 
| 63 | 
            +
              "max_steps": -1,
         | 
| 64 | 
            +
              "lr_scheduler_type": "linear",
         | 
| 65 | 
            +
              "lr_scheduler_kwargs": {},
         | 
| 66 | 
            +
              "warmup_ratio": 0.05,
         | 
| 67 | 
            +
              "warmup_steps": 0,
         | 
| 68 | 
            +
              "log_level": "passive",
         | 
| 69 | 
            +
              "log_level_replica": "warning",
         | 
| 70 | 
            +
              "log_on_each_node": true,
         | 
| 71 | 
            +
              "logging_dir": "/iris/u/asap7772/trl/checkpoints/Qwen3-4B-second-stage-DPO-lr-1e-7-beta-0.1-loss-sigmoid-rpo-1.0/runs/Sep15_09-27-29_iris-hgx-2.stanford.edu",
         | 
| 72 | 
            +
              "logging_strategy": "steps",
         | 
| 73 | 
            +
              "logging_first_step": true,
         | 
| 74 | 
            +
              "logging_steps": 1,
         | 
| 75 | 
            +
              "logging_nan_inf_filter": true,
         | 
| 76 | 
            +
              "save_strategy": "epoch",
         | 
| 77 | 
            +
              "save_steps": 500,
         | 
| 78 | 
            +
              "save_total_limit": null,
         | 
| 79 | 
            +
              "save_safetensors": true,
         | 
| 80 | 
            +
              "save_on_each_node": false,
         | 
| 81 | 
            +
              "save_only_model": false,
         | 
| 82 | 
            +
              "restore_callback_states_from_checkpoint": false,
         | 
| 83 | 
            +
              "no_cuda": false,
         | 
| 84 | 
            +
              "use_cpu": false,
         | 
| 85 | 
            +
              "use_mps_device": false,
         | 
| 86 | 
            +
              "seed": 42,
         | 
| 87 | 
            +
              "data_seed": null,
         | 
| 88 | 
            +
              "jit_mode_eval": false,
         | 
| 89 | 
            +
              "use_ipex": false,
         | 
| 90 | 
            +
              "bf16": true,
         | 
| 91 | 
            +
              "fp16": false,
         | 
| 92 | 
            +
              "fp16_opt_level": "O1",
         | 
| 93 | 
            +
              "half_precision_backend": "auto",
         | 
| 94 | 
            +
              "bf16_full_eval": false,
         | 
| 95 | 
            +
              "fp16_full_eval": false,
         | 
| 96 | 
            +
              "tf32": null,
         | 
| 97 | 
            +
              "local_rank": 0,
         | 
| 98 | 
            +
              "ddp_backend": null,
         | 
| 99 | 
            +
              "tpu_num_cores": null,
         | 
| 100 | 
            +
              "tpu_metrics_debug": false,
         | 
| 101 | 
            +
              "debug": [],
         | 
| 102 | 
            +
              "dataloader_drop_last": true,
         | 
| 103 | 
            +
              "eval_steps": 1,
         | 
| 104 | 
            +
              "dataloader_num_workers": 0,
         | 
| 105 | 
            +
              "dataloader_prefetch_factor": null,
         | 
| 106 | 
            +
              "past_index": -1,
         | 
| 107 | 
            +
              "run_name": "Qwen3-4B-second-stage-DPO-lr-1e-7-beta-0.1-loss-sigmoid-rpo-1.0",
         | 
| 108 | 
            +
              "disable_tqdm": false,
         | 
| 109 | 
            +
              "remove_unused_columns": false,
         | 
| 110 | 
            +
              "label_names": null,
         | 
| 111 | 
            +
              "load_best_model_at_end": false,
         | 
| 112 | 
            +
              "metric_for_best_model": null,
         | 
| 113 | 
            +
              "greater_is_better": null,
         | 
| 114 | 
            +
              "ignore_data_skip": false,
         | 
| 115 | 
            +
              "fsdp": [],
         | 
| 116 | 
            +
              "fsdp_min_num_params": 0,
         | 
| 117 | 
            +
              "fsdp_config": {
         | 
| 118 | 
            +
                "min_num_params": 0,
         | 
| 119 | 
            +
                "xla": false,
         | 
| 120 | 
            +
                "xla_fsdp_v2": false,
         | 
| 121 | 
            +
                "xla_fsdp_grad_ckpt": false
         | 
| 122 | 
            +
              },
         | 
| 123 | 
            +
              "fsdp_transformer_layer_cls_to_wrap": null,
         | 
| 124 | 
            +
              "accelerator_config": "AcceleratorConfig(split_batches=False, dispatch_batches=None, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False)",
         | 
| 125 | 
            +
              "parallelism_config": null,
         | 
| 126 | 
            +
              "deepspeed": null,
         | 
| 127 | 
            +
              "label_smoothing_factor": 0.0,
         | 
| 128 | 
            +
              "optim": "adamw_torch",
         | 
| 129 | 
            +
              "optim_args": null,
         | 
| 130 | 
            +
              "adafactor": false,
         | 
| 131 | 
            +
              "group_by_length": false,
         | 
| 132 | 
            +
              "length_column_name": "length",
         | 
| 133 | 
            +
              "report_to": [
         | 
| 134 | 
            +
                "wandb"
         | 
| 135 | 
            +
              ],
         | 
| 136 | 
            +
              "ddp_find_unused_parameters": null,
         | 
| 137 | 
            +
              "ddp_bucket_cap_mb": null,
         | 
| 138 | 
            +
              "ddp_broadcast_buffers": null,
         | 
| 139 | 
            +
              "dataloader_pin_memory": false,
         | 
| 140 | 
            +
              "dataloader_persistent_workers": false,
         | 
| 141 | 
            +
              "skip_memory_metrics": true,
         | 
| 142 | 
            +
              "use_legacy_prediction_loop": false,
         | 
| 143 | 
            +
              "push_to_hub": false,
         | 
| 144 | 
            +
              "resume_from_checkpoint": null,
         | 
| 145 | 
            +
              "hub_model_id": null,
         | 
| 146 | 
            +
              "hub_strategy": "every_save",
         | 
| 147 | 
            +
              "hub_token": null,
         | 
| 148 | 
            +
              "hub_private_repo": null,
         | 
| 149 | 
            +
              "hub_always_push": false,
         | 
| 150 | 
            +
              "hub_revision": null,
         | 
| 151 | 
            +
              "gradient_checkpointing": true,
         | 
| 152 | 
            +
              "gradient_checkpointing_kwargs": null,
         | 
| 153 | 
            +
              "include_inputs_for_metrics": false,
         | 
| 154 | 
            +
              "include_for_metrics": [],
         | 
| 155 | 
            +
              "eval_do_concat_batches": true,
         | 
| 156 | 
            +
              "fp16_backend": "auto",
         | 
| 157 | 
            +
              "push_to_hub_model_id": null,
         | 
| 158 | 
            +
              "push_to_hub_organization": null,
         | 
| 159 | 
            +
              "push_to_hub_token": null,
         | 
| 160 | 
            +
              "mp_parameters": "",
         | 
| 161 | 
            +
              "auto_find_batch_size": false,
         | 
| 162 | 
            +
              "full_determinism": false,
         | 
| 163 | 
            +
              "torchdynamo": null,
         | 
| 164 | 
            +
              "ray_scope": "last",
         | 
| 165 | 
            +
              "ddp_timeout": 1800,
         | 
| 166 | 
            +
              "torch_compile": false,
         | 
| 167 | 
            +
              "torch_compile_backend": null,
         | 
| 168 | 
            +
              "torch_compile_mode": null,
         | 
| 169 | 
            +
              "include_tokens_per_second": false,
         | 
| 170 | 
            +
              "include_num_input_tokens_seen": false,
         | 
| 171 | 
            +
              "neftune_noise_alpha": null,
         | 
| 172 | 
            +
              "optim_target_modules": null,
         | 
| 173 | 
            +
              "batch_eval_metrics": false,
         | 
| 174 | 
            +
              "eval_on_start": false,
         | 
| 175 | 
            +
              "use_liger_kernel": false,
         | 
| 176 | 
            +
              "liger_kernel_config": null,
         | 
| 177 | 
            +
              "eval_use_gather_object": false,
         | 
| 178 | 
            +
              "average_tokens_across_devices": true,
         | 
| 179 | 
            +
              "model_init_kwargs": null,
         | 
| 180 | 
            +
              "ref_model_init_kwargs": null,
         | 
| 181 | 
            +
              "model_adapter_name": null,
         | 
| 182 | 
            +
              "ref_adapter_name": null,
         | 
| 183 | 
            +
              "force_use_ref_model": false,
         | 
| 184 | 
            +
              "disable_dropout": true,
         | 
| 185 | 
            +
              "use_logits_to_keep": false,
         | 
| 186 | 
            +
              "dataset_num_proc": null,
         | 
| 187 | 
            +
              "padding_value": null,
         | 
| 188 | 
            +
              "label_pad_token_id": -100,
         | 
| 189 | 
            +
              "max_prompt_length": 8192,
         | 
| 190 | 
            +
              "max_completion_length": 1024,
         | 
| 191 | 
            +
              "max_length": 9216,
         | 
| 192 | 
            +
              "truncation_mode": "keep_end",
         | 
| 193 | 
            +
              "padding_free": false,
         | 
| 194 | 
            +
              "precompute_ref_log_probs": false,
         | 
| 195 | 
            +
              "precompute_ref_batch_size": null,
         | 
| 196 | 
            +
              "tools": null,
         | 
| 197 | 
            +
              "loss_type": "sigmoid",
         | 
| 198 | 
            +
              "use_liger_loss": false,
         | 
| 199 | 
            +
              "base_model_attribute_name": "model",
         | 
| 200 | 
            +
              "beta": 0.1,
         | 
| 201 | 
            +
              "f_divergence_type": "FDivergenceType.REVERSE_KL",
         | 
| 202 | 
            +
              "f_alpha_divergence_coef": 1.0,
         | 
| 203 | 
            +
              "reference_free": false,
         | 
| 204 | 
            +
              "label_smoothing": 0.0,
         | 
| 205 | 
            +
              "use_weighting": false,
         | 
| 206 | 
            +
              "rpo_alpha": 1.0,
         | 
| 207 | 
            +
              "ld_alpha": null,
         | 
| 208 | 
            +
              "discopop_tau": 0.05,
         | 
| 209 | 
            +
              "loss_weights": null,
         | 
| 210 | 
            +
              "sync_ref_model": false,
         | 
| 211 | 
            +
              "ref_model_mixup_alpha": 0.6,
         | 
| 212 | 
            +
              "ref_model_sync_steps": 512,
         | 
| 213 | 
            +
              "generate_during_eval": false,
         | 
| 214 | 
            +
              "distributed_state": "Distributed environment: DEEPSPEED  Backend: nccl\nNum processes: 8\nProcess index: 0\nLocal process index: 0\nDevice: cuda:0\n",
         | 
| 215 | 
            +
              "_n_gpu": 1,
         | 
| 216 | 
            +
              "__cached__setup_devices": "cuda:0",
         | 
| 217 | 
            +
              "deepspeed_plugin": "DeepSpeedPlugin(hf_ds_config=<transformers.integrations.deepspeed.HfTrainerDeepSpeedConfig object at 0x7f06dacf49d0>, gradient_accumulation_steps='auto', gradient_clipping='auto', zero_stage=3, is_train_batch_min=True, offload_optimizer_device='cpu', offload_param_device='cpu', offload_optimizer_nvme_path='none', offload_param_nvme_path='none', zero3_init_flag=True, zero3_save_16bit_model=True, transformer_moe_cls_names=None, enable_msamp=False, msamp_opt_level='O1')"
         | 
| 218 | 
            +
            }
         | 
| 219 | 
            +
            ```
         | 
    	
        added_tokens.json
    ADDED
    
    | @@ -0,0 +1,28 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "</think>": 151668,
         | 
| 3 | 
            +
              "</tool_call>": 151658,
         | 
| 4 | 
            +
              "</tool_response>": 151666,
         | 
| 5 | 
            +
              "<think>": 151667,
         | 
| 6 | 
            +
              "<tool_call>": 151657,
         | 
| 7 | 
            +
              "<tool_response>": 151665,
         | 
| 8 | 
            +
              "<|box_end|>": 151649,
         | 
| 9 | 
            +
              "<|box_start|>": 151648,
         | 
| 10 | 
            +
              "<|endoftext|>": 151643,
         | 
| 11 | 
            +
              "<|file_sep|>": 151664,
         | 
| 12 | 
            +
              "<|fim_middle|>": 151660,
         | 
| 13 | 
            +
              "<|fim_pad|>": 151662,
         | 
| 14 | 
            +
              "<|fim_prefix|>": 151659,
         | 
| 15 | 
            +
              "<|fim_suffix|>": 151661,
         | 
| 16 | 
            +
              "<|im_end|>": 151645,
         | 
| 17 | 
            +
              "<|im_start|>": 151644,
         | 
| 18 | 
            +
              "<|image_pad|>": 151655,
         | 
| 19 | 
            +
              "<|object_ref_end|>": 151647,
         | 
| 20 | 
            +
              "<|object_ref_start|>": 151646,
         | 
| 21 | 
            +
              "<|quad_end|>": 151651,
         | 
| 22 | 
            +
              "<|quad_start|>": 151650,
         | 
| 23 | 
            +
              "<|repo_name|>": 151663,
         | 
| 24 | 
            +
              "<|video_pad|>": 151656,
         | 
| 25 | 
            +
              "<|vision_end|>": 151653,
         | 
| 26 | 
            +
              "<|vision_pad|>": 151654,
         | 
| 27 | 
            +
              "<|vision_start|>": 151652
         | 
| 28 | 
            +
            }
         | 
    	
        chat_template.jinja
    ADDED
    
    | @@ -0,0 +1,86 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {%- if tools %}
         | 
| 2 | 
            +
                {{- '<|im_start|>system\n' }}
         | 
| 3 | 
            +
                {%- if messages[0].role == 'system' %}
         | 
| 4 | 
            +
                    {{- messages[0].content + '\n\n' }}
         | 
| 5 | 
            +
                {%- endif %}
         | 
| 6 | 
            +
                {{- "# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
         | 
| 7 | 
            +
                {%- for tool in tools %}
         | 
| 8 | 
            +
                    {{- "\n" }}
         | 
| 9 | 
            +
                    {{- tool | tojson }}
         | 
| 10 | 
            +
                {%- endfor %}
         | 
| 11 | 
            +
                {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
         | 
| 12 | 
            +
            {%- else %}
         | 
| 13 | 
            +
                {%- if messages[0].role == 'system' %}
         | 
| 14 | 
            +
                    {{- '<|im_start|>system\n' + messages[0].content + '<|im_end|>\n' }}
         | 
| 15 | 
            +
                {%- endif %}
         | 
| 16 | 
            +
            {%- endif %}
         | 
| 17 | 
            +
            {%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}
         | 
| 18 | 
            +
            {%- for message in messages[::-1] %}
         | 
| 19 | 
            +
                {%- set index = (messages|length - 1) - loop.index0 %}
         | 
| 20 | 
            +
                {%- if ns.multi_step_tool and message.role == "user" and message.content is string and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}
         | 
| 21 | 
            +
                    {%- set ns.multi_step_tool = false %}
         | 
| 22 | 
            +
                    {%- set ns.last_query_index = index %}
         | 
| 23 | 
            +
                {%- endif %}
         | 
| 24 | 
            +
            {%- endfor %}
         | 
| 25 | 
            +
            {%- for message in messages %}
         | 
| 26 | 
            +
                {%- if message.content is string %}
         | 
| 27 | 
            +
                    {%- set content = message.content %}
         | 
| 28 | 
            +
                {%- else %}
         | 
| 29 | 
            +
                    {%- set content = '' %}
         | 
| 30 | 
            +
                {%- endif %}
         | 
| 31 | 
            +
                {%- if (message.role == "user") or (message.role == "system" and not loop.first) %}
         | 
| 32 | 
            +
                    {{- '<|im_start|>' + message.role + '\n' + content + '<|im_end|>' + '\n' }}
         | 
| 33 | 
            +
                {%- elif message.role == "assistant" %}
         | 
| 34 | 
            +
                    {%- set reasoning_content = '' %}
         | 
| 35 | 
            +
                    {%- if message.reasoning_content is string %}
         | 
| 36 | 
            +
                        {%- set reasoning_content = message.reasoning_content %}
         | 
| 37 | 
            +
                    {%- else %}
         | 
| 38 | 
            +
                        {%- if '</think>' in content %}
         | 
| 39 | 
            +
                            {%- set reasoning_content = content.split('</think>')[0].rstrip('\n').split('<think>')[-1].lstrip('\n') %}
         | 
| 40 | 
            +
                            {%- set content = content.split('</think>')[-1].lstrip('\n') %}
         | 
| 41 | 
            +
                        {%- endif %}
         | 
| 42 | 
            +
                    {%- endif %}
         | 
| 43 | 
            +
                    {%- if loop.index0 > ns.last_query_index %}
         | 
| 44 | 
            +
                        {%- if loop.last or (not loop.last and reasoning_content) %}
         | 
| 45 | 
            +
                            {{- '<|im_start|>' + message.role + '\n<think>\n' + reasoning_content.strip('\n') + '\n</think>\n\n' + content.lstrip('\n') }}
         | 
| 46 | 
            +
                        {%- else %}
         | 
| 47 | 
            +
                            {{- '<|im_start|>' + message.role + '\n' + content }}
         | 
| 48 | 
            +
                        {%- endif %}
         | 
| 49 | 
            +
                    {%- else %}
         | 
| 50 | 
            +
                        {{- '<|im_start|>' + message.role + '\n' + content }}
         | 
| 51 | 
            +
                    {%- endif %}
         | 
| 52 | 
            +
                    {%- if message.tool_calls %}
         | 
| 53 | 
            +
                        {%- for tool_call in message.tool_calls %}
         | 
| 54 | 
            +
                            {%- if (loop.first and content) or (not loop.first) %}
         | 
| 55 | 
            +
                                {{- '\n' }}
         | 
| 56 | 
            +
                            {%- endif %}
         | 
| 57 | 
            +
                            {%- if tool_call.function %}
         | 
| 58 | 
            +
                                {%- set tool_call = tool_call.function %}
         | 
| 59 | 
            +
                            {%- endif %}
         | 
| 60 | 
            +
                            {{- '<tool_call>\n{"name": "' }}
         | 
| 61 | 
            +
                            {{- tool_call.name }}
         | 
| 62 | 
            +
                            {{- '", "arguments": ' }}
         | 
| 63 | 
            +
                            {%- if tool_call.arguments is string %}
         | 
| 64 | 
            +
                                {{- tool_call.arguments }}
         | 
| 65 | 
            +
                            {%- else %}
         | 
| 66 | 
            +
                                {{- tool_call.arguments | tojson }}
         | 
| 67 | 
            +
                            {%- endif %}
         | 
| 68 | 
            +
                            {{- '}\n</tool_call>' }}
         | 
| 69 | 
            +
                        {%- endfor %}
         | 
| 70 | 
            +
                    {%- endif %}
         | 
| 71 | 
            +
                    {{- '<|im_end|>\n' }}
         | 
| 72 | 
            +
                {%- elif message.role == "tool" %}
         | 
| 73 | 
            +
                    {%- if loop.first or (messages[loop.index0 - 1].role != "tool") %}
         | 
| 74 | 
            +
                        {{- '<|im_start|>user' }}
         | 
| 75 | 
            +
                    {%- endif %}
         | 
| 76 | 
            +
                    {{- '\n<tool_response>\n' }}
         | 
| 77 | 
            +
                    {{- content }}
         | 
| 78 | 
            +
                    {{- '\n</tool_response>' }}
         | 
| 79 | 
            +
                    {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
         | 
| 80 | 
            +
                        {{- '<|im_end|>\n' }}
         | 
| 81 | 
            +
                    {%- endif %}
         | 
| 82 | 
            +
                {%- endif %}
         | 
| 83 | 
            +
            {%- endfor %}
         | 
| 84 | 
            +
            {%- if add_generation_prompt %}
         | 
| 85 | 
            +
                {{- '<|im_start|>assistant\n' }}
         | 
| 86 | 
            +
            {%- endif %}
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,68 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "Qwen3ForCausalLM"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "attention_bias": false,
         | 
| 6 | 
            +
              "attention_dropout": 0.0,
         | 
| 7 | 
            +
              "dtype": "bfloat16",
         | 
| 8 | 
            +
              "eos_token_id": 151645,
         | 
| 9 | 
            +
              "head_dim": 128,
         | 
| 10 | 
            +
              "hidden_act": "silu",
         | 
| 11 | 
            +
              "hidden_size": 2560,
         | 
| 12 | 
            +
              "initializer_range": 0.02,
         | 
| 13 | 
            +
              "intermediate_size": 9728,
         | 
| 14 | 
            +
              "layer_types": [
         | 
| 15 | 
            +
                "full_attention",
         | 
| 16 | 
            +
                "full_attention",
         | 
| 17 | 
            +
                "full_attention",
         | 
| 18 | 
            +
                "full_attention",
         | 
| 19 | 
            +
                "full_attention",
         | 
| 20 | 
            +
                "full_attention",
         | 
| 21 | 
            +
                "full_attention",
         | 
| 22 | 
            +
                "full_attention",
         | 
| 23 | 
            +
                "full_attention",
         | 
| 24 | 
            +
                "full_attention",
         | 
| 25 | 
            +
                "full_attention",
         | 
| 26 | 
            +
                "full_attention",
         | 
| 27 | 
            +
                "full_attention",
         | 
| 28 | 
            +
                "full_attention",
         | 
| 29 | 
            +
                "full_attention",
         | 
| 30 | 
            +
                "full_attention",
         | 
| 31 | 
            +
                "full_attention",
         | 
| 32 | 
            +
                "full_attention",
         | 
| 33 | 
            +
                "full_attention",
         | 
| 34 | 
            +
                "full_attention",
         | 
| 35 | 
            +
                "full_attention",
         | 
| 36 | 
            +
                "full_attention",
         | 
| 37 | 
            +
                "full_attention",
         | 
| 38 | 
            +
                "full_attention",
         | 
| 39 | 
            +
                "full_attention",
         | 
| 40 | 
            +
                "full_attention",
         | 
| 41 | 
            +
                "full_attention",
         | 
| 42 | 
            +
                "full_attention",
         | 
| 43 | 
            +
                "full_attention",
         | 
| 44 | 
            +
                "full_attention",
         | 
| 45 | 
            +
                "full_attention",
         | 
| 46 | 
            +
                "full_attention",
         | 
| 47 | 
            +
                "full_attention",
         | 
| 48 | 
            +
                "full_attention",
         | 
| 49 | 
            +
                "full_attention",
         | 
| 50 | 
            +
                "full_attention"
         | 
| 51 | 
            +
              ],
         | 
| 52 | 
            +
              "max_position_embeddings": 262144,
         | 
| 53 | 
            +
              "max_window_layers": 36,
         | 
| 54 | 
            +
              "model_type": "qwen3",
         | 
| 55 | 
            +
              "num_attention_heads": 32,
         | 
| 56 | 
            +
              "num_hidden_layers": 36,
         | 
| 57 | 
            +
              "num_key_value_heads": 8,
         | 
| 58 | 
            +
              "pad_token_id": 151643,
         | 
| 59 | 
            +
              "rms_norm_eps": 1e-06,
         | 
| 60 | 
            +
              "rope_scaling": null,
         | 
| 61 | 
            +
              "rope_theta": 5000000,
         | 
| 62 | 
            +
              "sliding_window": null,
         | 
| 63 | 
            +
              "tie_word_embeddings": true,
         | 
| 64 | 
            +
              "transformers_version": "4.56.1",
         | 
| 65 | 
            +
              "use_cache": true,
         | 
| 66 | 
            +
              "use_sliding_window": false,
         | 
| 67 | 
            +
              "vocab_size": 151936
         | 
| 68 | 
            +
            }
         | 
    	
        generation_config.json
    ADDED
    
    | @@ -0,0 +1,12 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "do_sample": true,
         | 
| 3 | 
            +
              "eos_token_id": [
         | 
| 4 | 
            +
                151645,
         | 
| 5 | 
            +
                151643
         | 
| 6 | 
            +
              ],
         | 
| 7 | 
            +
              "pad_token_id": 151643,
         | 
| 8 | 
            +
              "temperature": 0.7,
         | 
| 9 | 
            +
              "top_k": 20,
         | 
| 10 | 
            +
              "top_p": 0.8,
         | 
| 11 | 
            +
              "transformers_version": "4.56.1"
         | 
| 12 | 
            +
            }
         | 
    	
        latest
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            global_step135
         | 
    	
        merges.txt
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        model-00001-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:107094cfafebdfcc548258dece36eab7f75c4872b9e9e4e906cf1130d65f802b
         | 
| 3 | 
            +
            size 4967215360
         | 
    	
        model-00002-of-00002.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:cd07ecba75303c70ebf6b161d984c36801a5953ef26852e8f50923153e717a38
         | 
| 3 | 
            +
            size 3077766632
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,406 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_parameters": 196096,
         | 
| 4 | 
            +
                "total_size": 8044936192
         | 
| 5 | 
            +
              },
         | 
| 6 | 
            +
              "weight_map": {
         | 
| 7 | 
            +
                "model.embed_tokens.weight": "model-00001-of-00002.safetensors",
         | 
| 8 | 
            +
                "model.layers.0.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 9 | 
            +
                "model.layers.0.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 10 | 
            +
                "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 11 | 
            +
                "model.layers.0.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 12 | 
            +
                "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 13 | 
            +
                "model.layers.0.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 14 | 
            +
                "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 15 | 
            +
                "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 16 | 
            +
                "model.layers.0.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 17 | 
            +
                "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 18 | 
            +
                "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 19 | 
            +
                "model.layers.1.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 20 | 
            +
                "model.layers.1.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 21 | 
            +
                "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 22 | 
            +
                "model.layers.1.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 23 | 
            +
                "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 24 | 
            +
                "model.layers.1.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 25 | 
            +
                "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 26 | 
            +
                "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 27 | 
            +
                "model.layers.1.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 28 | 
            +
                "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 29 | 
            +
                "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 30 | 
            +
                "model.layers.10.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 31 | 
            +
                "model.layers.10.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 32 | 
            +
                "model.layers.10.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 33 | 
            +
                "model.layers.10.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 34 | 
            +
                "model.layers.10.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 35 | 
            +
                "model.layers.10.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 36 | 
            +
                "model.layers.10.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 37 | 
            +
                "model.layers.10.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 38 | 
            +
                "model.layers.10.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 39 | 
            +
                "model.layers.10.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 40 | 
            +
                "model.layers.10.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 41 | 
            +
                "model.layers.11.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 42 | 
            +
                "model.layers.11.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 43 | 
            +
                "model.layers.11.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 44 | 
            +
                "model.layers.11.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 45 | 
            +
                "model.layers.11.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 46 | 
            +
                "model.layers.11.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 47 | 
            +
                "model.layers.11.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 48 | 
            +
                "model.layers.11.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 49 | 
            +
                "model.layers.11.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 50 | 
            +
                "model.layers.11.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 51 | 
            +
                "model.layers.11.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 52 | 
            +
                "model.layers.12.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 53 | 
            +
                "model.layers.12.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 54 | 
            +
                "model.layers.12.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 55 | 
            +
                "model.layers.12.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 56 | 
            +
                "model.layers.12.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 57 | 
            +
                "model.layers.12.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 58 | 
            +
                "model.layers.12.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 59 | 
            +
                "model.layers.12.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 60 | 
            +
                "model.layers.12.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 61 | 
            +
                "model.layers.12.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 62 | 
            +
                "model.layers.12.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 63 | 
            +
                "model.layers.13.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 64 | 
            +
                "model.layers.13.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 65 | 
            +
                "model.layers.13.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 66 | 
            +
                "model.layers.13.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 67 | 
            +
                "model.layers.13.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 68 | 
            +
                "model.layers.13.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 69 | 
            +
                "model.layers.13.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 70 | 
            +
                "model.layers.13.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 71 | 
            +
                "model.layers.13.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 72 | 
            +
                "model.layers.13.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 73 | 
            +
                "model.layers.13.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 74 | 
            +
                "model.layers.14.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 75 | 
            +
                "model.layers.14.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 76 | 
            +
                "model.layers.14.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 77 | 
            +
                "model.layers.14.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 78 | 
            +
                "model.layers.14.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 79 | 
            +
                "model.layers.14.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 80 | 
            +
                "model.layers.14.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 81 | 
            +
                "model.layers.14.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 82 | 
            +
                "model.layers.14.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 83 | 
            +
                "model.layers.14.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 84 | 
            +
                "model.layers.14.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 85 | 
            +
                "model.layers.15.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 86 | 
            +
                "model.layers.15.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 87 | 
            +
                "model.layers.15.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 88 | 
            +
                "model.layers.15.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 89 | 
            +
                "model.layers.15.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 90 | 
            +
                "model.layers.15.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 91 | 
            +
                "model.layers.15.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 92 | 
            +
                "model.layers.15.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 93 | 
            +
                "model.layers.15.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 94 | 
            +
                "model.layers.15.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 95 | 
            +
                "model.layers.15.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 96 | 
            +
                "model.layers.16.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 97 | 
            +
                "model.layers.16.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 98 | 
            +
                "model.layers.16.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 99 | 
            +
                "model.layers.16.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 100 | 
            +
                "model.layers.16.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 101 | 
            +
                "model.layers.16.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 102 | 
            +
                "model.layers.16.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 103 | 
            +
                "model.layers.16.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 104 | 
            +
                "model.layers.16.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 105 | 
            +
                "model.layers.16.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 106 | 
            +
                "model.layers.16.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 107 | 
            +
                "model.layers.17.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 108 | 
            +
                "model.layers.17.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 109 | 
            +
                "model.layers.17.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 110 | 
            +
                "model.layers.17.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 111 | 
            +
                "model.layers.17.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 112 | 
            +
                "model.layers.17.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 113 | 
            +
                "model.layers.17.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 114 | 
            +
                "model.layers.17.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 115 | 
            +
                "model.layers.17.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 116 | 
            +
                "model.layers.17.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 117 | 
            +
                "model.layers.17.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 118 | 
            +
                "model.layers.18.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 119 | 
            +
                "model.layers.18.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 120 | 
            +
                "model.layers.18.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 121 | 
            +
                "model.layers.18.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 122 | 
            +
                "model.layers.18.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 123 | 
            +
                "model.layers.18.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 124 | 
            +
                "model.layers.18.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 125 | 
            +
                "model.layers.18.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 126 | 
            +
                "model.layers.18.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 127 | 
            +
                "model.layers.18.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 128 | 
            +
                "model.layers.18.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 129 | 
            +
                "model.layers.19.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 130 | 
            +
                "model.layers.19.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 131 | 
            +
                "model.layers.19.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 132 | 
            +
                "model.layers.19.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 133 | 
            +
                "model.layers.19.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 134 | 
            +
                "model.layers.19.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 135 | 
            +
                "model.layers.19.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 136 | 
            +
                "model.layers.19.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 137 | 
            +
                "model.layers.19.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 138 | 
            +
                "model.layers.19.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 139 | 
            +
                "model.layers.19.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 140 | 
            +
                "model.layers.2.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 141 | 
            +
                "model.layers.2.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 142 | 
            +
                "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 143 | 
            +
                "model.layers.2.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 144 | 
            +
                "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 145 | 
            +
                "model.layers.2.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 146 | 
            +
                "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 147 | 
            +
                "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 148 | 
            +
                "model.layers.2.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 149 | 
            +
                "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 150 | 
            +
                "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 151 | 
            +
                "model.layers.20.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 152 | 
            +
                "model.layers.20.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 153 | 
            +
                "model.layers.20.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 154 | 
            +
                "model.layers.20.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 155 | 
            +
                "model.layers.20.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 156 | 
            +
                "model.layers.20.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 157 | 
            +
                "model.layers.20.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 158 | 
            +
                "model.layers.20.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 159 | 
            +
                "model.layers.20.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 160 | 
            +
                "model.layers.20.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 161 | 
            +
                "model.layers.20.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 162 | 
            +
                "model.layers.21.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 163 | 
            +
                "model.layers.21.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 164 | 
            +
                "model.layers.21.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 165 | 
            +
                "model.layers.21.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 166 | 
            +
                "model.layers.21.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 167 | 
            +
                "model.layers.21.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 168 | 
            +
                "model.layers.21.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 169 | 
            +
                "model.layers.21.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 170 | 
            +
                "model.layers.21.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 171 | 
            +
                "model.layers.21.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 172 | 
            +
                "model.layers.21.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 173 | 
            +
                "model.layers.22.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 174 | 
            +
                "model.layers.22.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 175 | 
            +
                "model.layers.22.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 176 | 
            +
                "model.layers.22.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 177 | 
            +
                "model.layers.22.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 178 | 
            +
                "model.layers.22.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 179 | 
            +
                "model.layers.22.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 180 | 
            +
                "model.layers.22.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 181 | 
            +
                "model.layers.22.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 182 | 
            +
                "model.layers.22.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 183 | 
            +
                "model.layers.22.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 184 | 
            +
                "model.layers.23.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 185 | 
            +
                "model.layers.23.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 186 | 
            +
                "model.layers.23.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 187 | 
            +
                "model.layers.23.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 188 | 
            +
                "model.layers.23.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 189 | 
            +
                "model.layers.23.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 190 | 
            +
                "model.layers.23.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 191 | 
            +
                "model.layers.23.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 192 | 
            +
                "model.layers.23.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 193 | 
            +
                "model.layers.23.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 194 | 
            +
                "model.layers.23.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 195 | 
            +
                "model.layers.24.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 196 | 
            +
                "model.layers.24.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 197 | 
            +
                "model.layers.24.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 198 | 
            +
                "model.layers.24.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 199 | 
            +
                "model.layers.24.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 200 | 
            +
                "model.layers.24.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 201 | 
            +
                "model.layers.24.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 202 | 
            +
                "model.layers.24.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 203 | 
            +
                "model.layers.24.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 204 | 
            +
                "model.layers.24.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 205 | 
            +
                "model.layers.24.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 206 | 
            +
                "model.layers.25.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 207 | 
            +
                "model.layers.25.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 208 | 
            +
                "model.layers.25.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 209 | 
            +
                "model.layers.25.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 210 | 
            +
                "model.layers.25.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 211 | 
            +
                "model.layers.25.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 212 | 
            +
                "model.layers.25.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 213 | 
            +
                "model.layers.25.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 214 | 
            +
                "model.layers.25.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 215 | 
            +
                "model.layers.25.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 216 | 
            +
                "model.layers.25.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 217 | 
            +
                "model.layers.26.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 218 | 
            +
                "model.layers.26.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 219 | 
            +
                "model.layers.26.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 220 | 
            +
                "model.layers.26.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 221 | 
            +
                "model.layers.26.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 222 | 
            +
                "model.layers.26.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 223 | 
            +
                "model.layers.26.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 224 | 
            +
                "model.layers.26.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 225 | 
            +
                "model.layers.26.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 226 | 
            +
                "model.layers.26.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 227 | 
            +
                "model.layers.26.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 228 | 
            +
                "model.layers.27.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 229 | 
            +
                "model.layers.27.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 230 | 
            +
                "model.layers.27.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 231 | 
            +
                "model.layers.27.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 232 | 
            +
                "model.layers.27.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 233 | 
            +
                "model.layers.27.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 234 | 
            +
                "model.layers.27.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 235 | 
            +
                "model.layers.27.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 236 | 
            +
                "model.layers.27.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 237 | 
            +
                "model.layers.27.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 238 | 
            +
                "model.layers.27.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 239 | 
            +
                "model.layers.28.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 240 | 
            +
                "model.layers.28.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 241 | 
            +
                "model.layers.28.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 242 | 
            +
                "model.layers.28.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 243 | 
            +
                "model.layers.28.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 244 | 
            +
                "model.layers.28.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 245 | 
            +
                "model.layers.28.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 246 | 
            +
                "model.layers.28.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 247 | 
            +
                "model.layers.28.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 248 | 
            +
                "model.layers.28.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 249 | 
            +
                "model.layers.28.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 250 | 
            +
                "model.layers.29.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 251 | 
            +
                "model.layers.29.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 252 | 
            +
                "model.layers.29.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 253 | 
            +
                "model.layers.29.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 254 | 
            +
                "model.layers.29.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 255 | 
            +
                "model.layers.29.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 256 | 
            +
                "model.layers.29.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 257 | 
            +
                "model.layers.29.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 258 | 
            +
                "model.layers.29.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 259 | 
            +
                "model.layers.29.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 260 | 
            +
                "model.layers.29.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 261 | 
            +
                "model.layers.3.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 262 | 
            +
                "model.layers.3.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 263 | 
            +
                "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 264 | 
            +
                "model.layers.3.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 265 | 
            +
                "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 266 | 
            +
                "model.layers.3.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 267 | 
            +
                "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 268 | 
            +
                "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 269 | 
            +
                "model.layers.3.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 270 | 
            +
                "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 271 | 
            +
                "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 272 | 
            +
                "model.layers.30.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 273 | 
            +
                "model.layers.30.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 274 | 
            +
                "model.layers.30.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 275 | 
            +
                "model.layers.30.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 276 | 
            +
                "model.layers.30.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 277 | 
            +
                "model.layers.30.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 278 | 
            +
                "model.layers.30.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 279 | 
            +
                "model.layers.30.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 280 | 
            +
                "model.layers.30.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 281 | 
            +
                "model.layers.30.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 282 | 
            +
                "model.layers.30.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 283 | 
            +
                "model.layers.31.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 284 | 
            +
                "model.layers.31.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 285 | 
            +
                "model.layers.31.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 286 | 
            +
                "model.layers.31.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 287 | 
            +
                "model.layers.31.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 288 | 
            +
                "model.layers.31.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 289 | 
            +
                "model.layers.31.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 290 | 
            +
                "model.layers.31.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 291 | 
            +
                "model.layers.31.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 292 | 
            +
                "model.layers.31.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 293 | 
            +
                "model.layers.31.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 294 | 
            +
                "model.layers.32.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 295 | 
            +
                "model.layers.32.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 296 | 
            +
                "model.layers.32.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 297 | 
            +
                "model.layers.32.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 298 | 
            +
                "model.layers.32.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 299 | 
            +
                "model.layers.32.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 300 | 
            +
                "model.layers.32.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 301 | 
            +
                "model.layers.32.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 302 | 
            +
                "model.layers.32.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 303 | 
            +
                "model.layers.32.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 304 | 
            +
                "model.layers.32.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 305 | 
            +
                "model.layers.33.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 306 | 
            +
                "model.layers.33.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 307 | 
            +
                "model.layers.33.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 308 | 
            +
                "model.layers.33.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 309 | 
            +
                "model.layers.33.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 310 | 
            +
                "model.layers.33.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 311 | 
            +
                "model.layers.33.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 312 | 
            +
                "model.layers.33.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 313 | 
            +
                "model.layers.33.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 314 | 
            +
                "model.layers.33.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 315 | 
            +
                "model.layers.33.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 316 | 
            +
                "model.layers.34.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 317 | 
            +
                "model.layers.34.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 318 | 
            +
                "model.layers.34.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 319 | 
            +
                "model.layers.34.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 320 | 
            +
                "model.layers.34.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 321 | 
            +
                "model.layers.34.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 322 | 
            +
                "model.layers.34.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 323 | 
            +
                "model.layers.34.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 324 | 
            +
                "model.layers.34.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 325 | 
            +
                "model.layers.34.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 326 | 
            +
                "model.layers.34.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 327 | 
            +
                "model.layers.35.input_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 328 | 
            +
                "model.layers.35.mlp.down_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 329 | 
            +
                "model.layers.35.mlp.gate_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 330 | 
            +
                "model.layers.35.mlp.up_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 331 | 
            +
                "model.layers.35.post_attention_layernorm.weight": "model-00002-of-00002.safetensors",
         | 
| 332 | 
            +
                "model.layers.35.self_attn.k_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 333 | 
            +
                "model.layers.35.self_attn.k_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 334 | 
            +
                "model.layers.35.self_attn.o_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 335 | 
            +
                "model.layers.35.self_attn.q_norm.weight": "model-00002-of-00002.safetensors",
         | 
| 336 | 
            +
                "model.layers.35.self_attn.q_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 337 | 
            +
                "model.layers.35.self_attn.v_proj.weight": "model-00002-of-00002.safetensors",
         | 
| 338 | 
            +
                "model.layers.4.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 339 | 
            +
                "model.layers.4.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 340 | 
            +
                "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 341 | 
            +
                "model.layers.4.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 342 | 
            +
                "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 343 | 
            +
                "model.layers.4.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 344 | 
            +
                "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 345 | 
            +
                "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 346 | 
            +
                "model.layers.4.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 347 | 
            +
                "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 348 | 
            +
                "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 349 | 
            +
                "model.layers.5.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 350 | 
            +
                "model.layers.5.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 351 | 
            +
                "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 352 | 
            +
                "model.layers.5.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 353 | 
            +
                "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 354 | 
            +
                "model.layers.5.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 355 | 
            +
                "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 356 | 
            +
                "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 357 | 
            +
                "model.layers.5.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 358 | 
            +
                "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 359 | 
            +
                "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 360 | 
            +
                "model.layers.6.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 361 | 
            +
                "model.layers.6.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 362 | 
            +
                "model.layers.6.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 363 | 
            +
                "model.layers.6.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 364 | 
            +
                "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 365 | 
            +
                "model.layers.6.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 366 | 
            +
                "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 367 | 
            +
                "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 368 | 
            +
                "model.layers.6.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 369 | 
            +
                "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 370 | 
            +
                "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 371 | 
            +
                "model.layers.7.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 372 | 
            +
                "model.layers.7.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 373 | 
            +
                "model.layers.7.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 374 | 
            +
                "model.layers.7.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 375 | 
            +
                "model.layers.7.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 376 | 
            +
                "model.layers.7.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 377 | 
            +
                "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 378 | 
            +
                "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 379 | 
            +
                "model.layers.7.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 380 | 
            +
                "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 381 | 
            +
                "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 382 | 
            +
                "model.layers.8.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 383 | 
            +
                "model.layers.8.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 384 | 
            +
                "model.layers.8.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 385 | 
            +
                "model.layers.8.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 386 | 
            +
                "model.layers.8.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 387 | 
            +
                "model.layers.8.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 388 | 
            +
                "model.layers.8.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 389 | 
            +
                "model.layers.8.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 390 | 
            +
                "model.layers.8.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 391 | 
            +
                "model.layers.8.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 392 | 
            +
                "model.layers.8.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 393 | 
            +
                "model.layers.9.input_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 394 | 
            +
                "model.layers.9.mlp.down_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 395 | 
            +
                "model.layers.9.mlp.gate_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 396 | 
            +
                "model.layers.9.mlp.up_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 397 | 
            +
                "model.layers.9.post_attention_layernorm.weight": "model-00001-of-00002.safetensors",
         | 
| 398 | 
            +
                "model.layers.9.self_attn.k_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 399 | 
            +
                "model.layers.9.self_attn.k_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 400 | 
            +
                "model.layers.9.self_attn.o_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 401 | 
            +
                "model.layers.9.self_attn.q_norm.weight": "model-00001-of-00002.safetensors",
         | 
| 402 | 
            +
                "model.layers.9.self_attn.q_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 403 | 
            +
                "model.layers.9.self_attn.v_proj.weight": "model-00001-of-00002.safetensors",
         | 
| 404 | 
            +
                "model.norm.weight": "model-00002-of-00002.safetensors"
         | 
| 405 | 
            +
              }
         | 
| 406 | 
            +
            }
         | 
    	
        rng_state_0.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:72e1b7d09d327da58dbf4f6ec91c25f8266fe9a398376fbb9f55466fba682801
         | 
| 3 | 
            +
            size 16389
         | 
    	
        rng_state_1.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:b97114733f7d9f71d4fe5cf9c672395a21afc8c2d9910bc8f8d1aec20ef50fe7
         | 
| 3 | 
            +
            size 16389
         | 
    	
        rng_state_2.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:0eb9f1668c686a559f86c6a7d79fbf9c53dde5e1386ed17acd9234f519c7d6f4
         | 
| 3 | 
            +
            size 16389
         | 
    	
        rng_state_3.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:7802066665f429dc81402261bdd2fe5a2b86f195839dcaafee252a7936c58395
         | 
| 3 | 
            +
            size 16389
         | 
    	
        rng_state_4.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:19ab5c5e0552eff918c411c59be2a0f8003290ae5b74428a65debca9250295fd
         | 
| 3 | 
            +
            size 16389
         | 
    	
        rng_state_5.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e15ece2216eb800331569258df1ca68a32b091e22dc07b06537dd3e7abecaec9
         | 
| 3 | 
            +
            size 16389
         | 
    	
        rng_state_6.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:2f78f2e6557578841f88d7d977a66dcc5ccc8e45c0dea5ff3d7e07de7a27de3f
         | 
| 3 | 
            +
            size 16389
         | 
    	
        rng_state_7.pth
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:020cdda2a92333ab58d00856b156214e46b7374245507464250503080f07d9f0
         | 
| 3 | 
            +
            size 16389
         | 
    	
        scheduler.pt
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:dd4f970a43642d01289826979c401878bee63bc6647c3ab462cecf4c26cab0b3
         | 
| 3 | 
            +
            size 1465
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,31 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "additional_special_tokens": [
         | 
| 3 | 
            +
                "<|im_start|>",
         | 
| 4 | 
            +
                "<|im_end|>",
         | 
| 5 | 
            +
                "<|object_ref_start|>",
         | 
| 6 | 
            +
                "<|object_ref_end|>",
         | 
| 7 | 
            +
                "<|box_start|>",
         | 
| 8 | 
            +
                "<|box_end|>",
         | 
| 9 | 
            +
                "<|quad_start|>",
         | 
| 10 | 
            +
                "<|quad_end|>",
         | 
| 11 | 
            +
                "<|vision_start|>",
         | 
| 12 | 
            +
                "<|vision_end|>",
         | 
| 13 | 
            +
                "<|vision_pad|>",
         | 
| 14 | 
            +
                "<|image_pad|>",
         | 
| 15 | 
            +
                "<|video_pad|>"
         | 
| 16 | 
            +
              ],
         | 
| 17 | 
            +
              "eos_token": {
         | 
| 18 | 
            +
                "content": "<|im_end|>",
         | 
| 19 | 
            +
                "lstrip": false,
         | 
| 20 | 
            +
                "normalized": false,
         | 
| 21 | 
            +
                "rstrip": false,
         | 
| 22 | 
            +
                "single_word": false
         | 
| 23 | 
            +
              },
         | 
| 24 | 
            +
              "pad_token": {
         | 
| 25 | 
            +
                "content": "<|endoftext|>",
         | 
| 26 | 
            +
                "lstrip": false,
         | 
| 27 | 
            +
                "normalized": false,
         | 
| 28 | 
            +
                "rstrip": false,
         | 
| 29 | 
            +
                "single_word": false
         | 
| 30 | 
            +
              }
         | 
| 31 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:aeb13307a71acd8fe81861d94ad54ab689df773318809eed3cbe794b4492dae4
         | 
| 3 | 
            +
            size 11422654
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,239 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "add_bos_token": false,
         | 
| 3 | 
            +
              "add_prefix_space": false,
         | 
| 4 | 
            +
              "added_tokens_decoder": {
         | 
| 5 | 
            +
                "151643": {
         | 
| 6 | 
            +
                  "content": "<|endoftext|>",
         | 
| 7 | 
            +
                  "lstrip": false,
         | 
| 8 | 
            +
                  "normalized": false,
         | 
| 9 | 
            +
                  "rstrip": false,
         | 
| 10 | 
            +
                  "single_word": false,
         | 
| 11 | 
            +
                  "special": true
         | 
| 12 | 
            +
                },
         | 
| 13 | 
            +
                "151644": {
         | 
| 14 | 
            +
                  "content": "<|im_start|>",
         | 
| 15 | 
            +
                  "lstrip": false,
         | 
| 16 | 
            +
                  "normalized": false,
         | 
| 17 | 
            +
                  "rstrip": false,
         | 
| 18 | 
            +
                  "single_word": false,
         | 
| 19 | 
            +
                  "special": true
         | 
| 20 | 
            +
                },
         | 
| 21 | 
            +
                "151645": {
         | 
| 22 | 
            +
                  "content": "<|im_end|>",
         | 
| 23 | 
            +
                  "lstrip": false,
         | 
| 24 | 
            +
                  "normalized": false,
         | 
| 25 | 
            +
                  "rstrip": false,
         | 
| 26 | 
            +
                  "single_word": false,
         | 
| 27 | 
            +
                  "special": true
         | 
| 28 | 
            +
                },
         | 
| 29 | 
            +
                "151646": {
         | 
| 30 | 
            +
                  "content": "<|object_ref_start|>",
         | 
| 31 | 
            +
                  "lstrip": false,
         | 
| 32 | 
            +
                  "normalized": false,
         | 
| 33 | 
            +
                  "rstrip": false,
         | 
| 34 | 
            +
                  "single_word": false,
         | 
| 35 | 
            +
                  "special": true
         | 
| 36 | 
            +
                },
         | 
| 37 | 
            +
                "151647": {
         | 
| 38 | 
            +
                  "content": "<|object_ref_end|>",
         | 
| 39 | 
            +
                  "lstrip": false,
         | 
| 40 | 
            +
                  "normalized": false,
         | 
| 41 | 
            +
                  "rstrip": false,
         | 
| 42 | 
            +
                  "single_word": false,
         | 
| 43 | 
            +
                  "special": true
         | 
| 44 | 
            +
                },
         | 
| 45 | 
            +
                "151648": {
         | 
| 46 | 
            +
                  "content": "<|box_start|>",
         | 
| 47 | 
            +
                  "lstrip": false,
         | 
| 48 | 
            +
                  "normalized": false,
         | 
| 49 | 
            +
                  "rstrip": false,
         | 
| 50 | 
            +
                  "single_word": false,
         | 
| 51 | 
            +
                  "special": true
         | 
| 52 | 
            +
                },
         | 
| 53 | 
            +
                "151649": {
         | 
| 54 | 
            +
                  "content": "<|box_end|>",
         | 
| 55 | 
            +
                  "lstrip": false,
         | 
| 56 | 
            +
                  "normalized": false,
         | 
| 57 | 
            +
                  "rstrip": false,
         | 
| 58 | 
            +
                  "single_word": false,
         | 
| 59 | 
            +
                  "special": true
         | 
| 60 | 
            +
                },
         | 
| 61 | 
            +
                "151650": {
         | 
| 62 | 
            +
                  "content": "<|quad_start|>",
         | 
| 63 | 
            +
                  "lstrip": false,
         | 
| 64 | 
            +
                  "normalized": false,
         | 
| 65 | 
            +
                  "rstrip": false,
         | 
| 66 | 
            +
                  "single_word": false,
         | 
| 67 | 
            +
                  "special": true
         | 
| 68 | 
            +
                },
         | 
| 69 | 
            +
                "151651": {
         | 
| 70 | 
            +
                  "content": "<|quad_end|>",
         | 
| 71 | 
            +
                  "lstrip": false,
         | 
| 72 | 
            +
                  "normalized": false,
         | 
| 73 | 
            +
                  "rstrip": false,
         | 
| 74 | 
            +
                  "single_word": false,
         | 
| 75 | 
            +
                  "special": true
         | 
| 76 | 
            +
                },
         | 
| 77 | 
            +
                "151652": {
         | 
| 78 | 
            +
                  "content": "<|vision_start|>",
         | 
| 79 | 
            +
                  "lstrip": false,
         | 
| 80 | 
            +
                  "normalized": false,
         | 
| 81 | 
            +
                  "rstrip": false,
         | 
| 82 | 
            +
                  "single_word": false,
         | 
| 83 | 
            +
                  "special": true
         | 
| 84 | 
            +
                },
         | 
| 85 | 
            +
                "151653": {
         | 
| 86 | 
            +
                  "content": "<|vision_end|>",
         | 
| 87 | 
            +
                  "lstrip": false,
         | 
| 88 | 
            +
                  "normalized": false,
         | 
| 89 | 
            +
                  "rstrip": false,
         | 
| 90 | 
            +
                  "single_word": false,
         | 
| 91 | 
            +
                  "special": true
         | 
| 92 | 
            +
                },
         | 
| 93 | 
            +
                "151654": {
         | 
| 94 | 
            +
                  "content": "<|vision_pad|>",
         | 
| 95 | 
            +
                  "lstrip": false,
         | 
| 96 | 
            +
                  "normalized": false,
         | 
| 97 | 
            +
                  "rstrip": false,
         | 
| 98 | 
            +
                  "single_word": false,
         | 
| 99 | 
            +
                  "special": true
         | 
| 100 | 
            +
                },
         | 
| 101 | 
            +
                "151655": {
         | 
| 102 | 
            +
                  "content": "<|image_pad|>",
         | 
| 103 | 
            +
                  "lstrip": false,
         | 
| 104 | 
            +
                  "normalized": false,
         | 
| 105 | 
            +
                  "rstrip": false,
         | 
| 106 | 
            +
                  "single_word": false,
         | 
| 107 | 
            +
                  "special": true
         | 
| 108 | 
            +
                },
         | 
| 109 | 
            +
                "151656": {
         | 
| 110 | 
            +
                  "content": "<|video_pad|>",
         | 
| 111 | 
            +
                  "lstrip": false,
         | 
| 112 | 
            +
                  "normalized": false,
         | 
| 113 | 
            +
                  "rstrip": false,
         | 
| 114 | 
            +
                  "single_word": false,
         | 
| 115 | 
            +
                  "special": true
         | 
| 116 | 
            +
                },
         | 
| 117 | 
            +
                "151657": {
         | 
| 118 | 
            +
                  "content": "<tool_call>",
         | 
| 119 | 
            +
                  "lstrip": false,
         | 
| 120 | 
            +
                  "normalized": false,
         | 
| 121 | 
            +
                  "rstrip": false,
         | 
| 122 | 
            +
                  "single_word": false,
         | 
| 123 | 
            +
                  "special": false
         | 
| 124 | 
            +
                },
         | 
| 125 | 
            +
                "151658": {
         | 
| 126 | 
            +
                  "content": "</tool_call>",
         | 
| 127 | 
            +
                  "lstrip": false,
         | 
| 128 | 
            +
                  "normalized": false,
         | 
| 129 | 
            +
                  "rstrip": false,
         | 
| 130 | 
            +
                  "single_word": false,
         | 
| 131 | 
            +
                  "special": false
         | 
| 132 | 
            +
                },
         | 
| 133 | 
            +
                "151659": {
         | 
| 134 | 
            +
                  "content": "<|fim_prefix|>",
         | 
| 135 | 
            +
                  "lstrip": false,
         | 
| 136 | 
            +
                  "normalized": false,
         | 
| 137 | 
            +
                  "rstrip": false,
         | 
| 138 | 
            +
                  "single_word": false,
         | 
| 139 | 
            +
                  "special": false
         | 
| 140 | 
            +
                },
         | 
| 141 | 
            +
                "151660": {
         | 
| 142 | 
            +
                  "content": "<|fim_middle|>",
         | 
| 143 | 
            +
                  "lstrip": false,
         | 
| 144 | 
            +
                  "normalized": false,
         | 
| 145 | 
            +
                  "rstrip": false,
         | 
| 146 | 
            +
                  "single_word": false,
         | 
| 147 | 
            +
                  "special": false
         | 
| 148 | 
            +
                },
         | 
| 149 | 
            +
                "151661": {
         | 
| 150 | 
            +
                  "content": "<|fim_suffix|>",
         | 
| 151 | 
            +
                  "lstrip": false,
         | 
| 152 | 
            +
                  "normalized": false,
         | 
| 153 | 
            +
                  "rstrip": false,
         | 
| 154 | 
            +
                  "single_word": false,
         | 
| 155 | 
            +
                  "special": false
         | 
| 156 | 
            +
                },
         | 
| 157 | 
            +
                "151662": {
         | 
| 158 | 
            +
                  "content": "<|fim_pad|>",
         | 
| 159 | 
            +
                  "lstrip": false,
         | 
| 160 | 
            +
                  "normalized": false,
         | 
| 161 | 
            +
                  "rstrip": false,
         | 
| 162 | 
            +
                  "single_word": false,
         | 
| 163 | 
            +
                  "special": false
         | 
| 164 | 
            +
                },
         | 
| 165 | 
            +
                "151663": {
         | 
| 166 | 
            +
                  "content": "<|repo_name|>",
         | 
| 167 | 
            +
                  "lstrip": false,
         | 
| 168 | 
            +
                  "normalized": false,
         | 
| 169 | 
            +
                  "rstrip": false,
         | 
| 170 | 
            +
                  "single_word": false,
         | 
| 171 | 
            +
                  "special": false
         | 
| 172 | 
            +
                },
         | 
| 173 | 
            +
                "151664": {
         | 
| 174 | 
            +
                  "content": "<|file_sep|>",
         | 
| 175 | 
            +
                  "lstrip": false,
         | 
| 176 | 
            +
                  "normalized": false,
         | 
| 177 | 
            +
                  "rstrip": false,
         | 
| 178 | 
            +
                  "single_word": false,
         | 
| 179 | 
            +
                  "special": false
         | 
| 180 | 
            +
                },
         | 
| 181 | 
            +
                "151665": {
         | 
| 182 | 
            +
                  "content": "<tool_response>",
         | 
| 183 | 
            +
                  "lstrip": false,
         | 
| 184 | 
            +
                  "normalized": false,
         | 
| 185 | 
            +
                  "rstrip": false,
         | 
| 186 | 
            +
                  "single_word": false,
         | 
| 187 | 
            +
                  "special": false
         | 
| 188 | 
            +
                },
         | 
| 189 | 
            +
                "151666": {
         | 
| 190 | 
            +
                  "content": "</tool_response>",
         | 
| 191 | 
            +
                  "lstrip": false,
         | 
| 192 | 
            +
                  "normalized": false,
         | 
| 193 | 
            +
                  "rstrip": false,
         | 
| 194 | 
            +
                  "single_word": false,
         | 
| 195 | 
            +
                  "special": false
         | 
| 196 | 
            +
                },
         | 
| 197 | 
            +
                "151667": {
         | 
| 198 | 
            +
                  "content": "<think>",
         | 
| 199 | 
            +
                  "lstrip": false,
         | 
| 200 | 
            +
                  "normalized": false,
         | 
| 201 | 
            +
                  "rstrip": false,
         | 
| 202 | 
            +
                  "single_word": false,
         | 
| 203 | 
            +
                  "special": false
         | 
| 204 | 
            +
                },
         | 
| 205 | 
            +
                "151668": {
         | 
| 206 | 
            +
                  "content": "</think>",
         | 
| 207 | 
            +
                  "lstrip": false,
         | 
| 208 | 
            +
                  "normalized": false,
         | 
| 209 | 
            +
                  "rstrip": false,
         | 
| 210 | 
            +
                  "single_word": false,
         | 
| 211 | 
            +
                  "special": false
         | 
| 212 | 
            +
                }
         | 
| 213 | 
            +
              },
         | 
| 214 | 
            +
              "additional_special_tokens": [
         | 
| 215 | 
            +
                "<|im_start|>",
         | 
| 216 | 
            +
                "<|im_end|>",
         | 
| 217 | 
            +
                "<|object_ref_start|>",
         | 
| 218 | 
            +
                "<|object_ref_end|>",
         | 
| 219 | 
            +
                "<|box_start|>",
         | 
| 220 | 
            +
                "<|box_end|>",
         | 
| 221 | 
            +
                "<|quad_start|>",
         | 
| 222 | 
            +
                "<|quad_end|>",
         | 
| 223 | 
            +
                "<|vision_start|>",
         | 
| 224 | 
            +
                "<|vision_end|>",
         | 
| 225 | 
            +
                "<|vision_pad|>",
         | 
| 226 | 
            +
                "<|image_pad|>",
         | 
| 227 | 
            +
                "<|video_pad|>"
         | 
| 228 | 
            +
              ],
         | 
| 229 | 
            +
              "bos_token": null,
         | 
| 230 | 
            +
              "clean_up_tokenization_spaces": false,
         | 
| 231 | 
            +
              "eos_token": "<|im_end|>",
         | 
| 232 | 
            +
              "errors": "replace",
         | 
| 233 | 
            +
              "extra_special_tokens": {},
         | 
| 234 | 
            +
              "model_max_length": 262144,
         | 
| 235 | 
            +
              "pad_token": "<|endoftext|>",
         | 
| 236 | 
            +
              "split_special_tokens": false,
         | 
| 237 | 
            +
              "tokenizer_class": "Qwen2Tokenizer",
         | 
| 238 | 
            +
              "unk_token": null
         | 
| 239 | 
            +
            }
         | 
    	
        trainer_state.json
    ADDED
    
    | @@ -0,0 +1,2279 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "best_global_step": null,
         | 
| 3 | 
            +
              "best_metric": null,
         | 
| 4 | 
            +
              "best_model_checkpoint": null,
         | 
| 5 | 
            +
              "epoch": 5.0,
         | 
| 6 | 
            +
              "eval_steps": 1,
         | 
| 7 | 
            +
              "global_step": 135,
         | 
| 8 | 
            +
              "is_hyper_param_search": false,
         | 
| 9 | 
            +
              "is_local_process_zero": true,
         | 
| 10 | 
            +
              "is_world_process_zero": true,
         | 
| 11 | 
            +
              "log_history": [
         | 
| 12 | 
            +
                {
         | 
| 13 | 
            +
                  "epoch": 0.037122969837587005,
         | 
| 14 | 
            +
                  "grad_norm": 37.7234992980957,
         | 
| 15 | 
            +
                  "learning_rate": 0.0,
         | 
| 16 | 
            +
                  "logits/chosen": 0.43707275390625,
         | 
| 17 | 
            +
                  "logits/rejected": 0.40472412109375,
         | 
| 18 | 
            +
                  "logps/chosen": -176.875,
         | 
| 19 | 
            +
                  "logps/rejected": -148.3125,
         | 
| 20 | 
            +
                  "loss": 3.0214,
         | 
| 21 | 
            +
                  "nll_loss": 2.3330078125,
         | 
| 22 | 
            +
                  "rewards/accuracies": 0.0,
         | 
| 23 | 
            +
                  "rewards/chosen": 0.0,
         | 
| 24 | 
            +
                  "rewards/margins": 0.0,
         | 
| 25 | 
            +
                  "rewards/rejected": 0.0,
         | 
| 26 | 
            +
                  "step": 1
         | 
| 27 | 
            +
                },
         | 
| 28 | 
            +
                {
         | 
| 29 | 
            +
                  "epoch": 0.07424593967517401,
         | 
| 30 | 
            +
                  "grad_norm": 33.89510726928711,
         | 
| 31 | 
            +
                  "learning_rate": 1.4285714285714284e-08,
         | 
| 32 | 
            +
                  "logits/chosen": 0.40576171875,
         | 
| 33 | 
            +
                  "logits/rejected": 0.33673095703125,
         | 
| 34 | 
            +
                  "logps/chosen": -167.6875,
         | 
| 35 | 
            +
                  "logps/rejected": -161.625,
         | 
| 36 | 
            +
                  "loss": 2.9501,
         | 
| 37 | 
            +
                  "nll_loss": 2.26171875,
         | 
| 38 | 
            +
                  "rewards/accuracies": 0.0,
         | 
| 39 | 
            +
                  "rewards/chosen": 0.0,
         | 
| 40 | 
            +
                  "rewards/margins": 0.0,
         | 
| 41 | 
            +
                  "rewards/rejected": 0.0,
         | 
| 42 | 
            +
                  "step": 2
         | 
| 43 | 
            +
                },
         | 
| 44 | 
            +
                {
         | 
| 45 | 
            +
                  "epoch": 0.11136890951276102,
         | 
| 46 | 
            +
                  "grad_norm": 37.10581970214844,
         | 
| 47 | 
            +
                  "learning_rate": 2.857142857142857e-08,
         | 
| 48 | 
            +
                  "logits/chosen": 0.38861083984375,
         | 
| 49 | 
            +
                  "logits/rejected": 0.3741455078125,
         | 
| 50 | 
            +
                  "logps/chosen": -175.125,
         | 
| 51 | 
            +
                  "logps/rejected": -155.5625,
         | 
| 52 | 
            +
                  "loss": 3.0054,
         | 
| 53 | 
            +
                  "nll_loss": 2.310546875,
         | 
| 54 | 
            +
                  "rewards/accuracies": 0.2578125,
         | 
| 55 | 
            +
                  "rewards/chosen": 0.001953125,
         | 
| 56 | 
            +
                  "rewards/margins": -0.0054779052734375,
         | 
| 57 | 
            +
                  "rewards/rejected": 0.007439613342285156,
         | 
| 58 | 
            +
                  "step": 3
         | 
| 59 | 
            +
                },
         | 
| 60 | 
            +
                {
         | 
| 61 | 
            +
                  "epoch": 0.14849187935034802,
         | 
| 62 | 
            +
                  "grad_norm": 35.035152435302734,
         | 
| 63 | 
            +
                  "learning_rate": 4.285714285714285e-08,
         | 
| 64 | 
            +
                  "logits/chosen": 0.4200439453125,
         | 
| 65 | 
            +
                  "logits/rejected": 0.41497802734375,
         | 
| 66 | 
            +
                  "logps/chosen": -172.125,
         | 
| 67 | 
            +
                  "logps/rejected": -158.4375,
         | 
| 68 | 
            +
                  "loss": 2.9678,
         | 
| 69 | 
            +
                  "nll_loss": 2.2705078125,
         | 
| 70 | 
            +
                  "rewards/accuracies": 0.2265625,
         | 
| 71 | 
            +
                  "rewards/chosen": -0.009188652038574219,
         | 
| 72 | 
            +
                  "rewards/margins": -0.010580062866210938,
         | 
| 73 | 
            +
                  "rewards/rejected": 0.0013666152954101562,
         | 
| 74 | 
            +
                  "step": 4
         | 
| 75 | 
            +
                },
         | 
| 76 | 
            +
                {
         | 
| 77 | 
            +
                  "epoch": 0.18561484918793503,
         | 
| 78 | 
            +
                  "grad_norm": 36.488365173339844,
         | 
| 79 | 
            +
                  "learning_rate": 5.714285714285714e-08,
         | 
| 80 | 
            +
                  "logits/chosen": 0.3895263671875,
         | 
| 81 | 
            +
                  "logits/rejected": 0.38287353515625,
         | 
| 82 | 
            +
                  "logps/chosen": -175.125,
         | 
| 83 | 
            +
                  "logps/rejected": -152.21875,
         | 
| 84 | 
            +
                  "loss": 2.9839,
         | 
| 85 | 
            +
                  "nll_loss": 2.2900390625,
         | 
| 86 | 
            +
                  "rewards/accuracies": 0.234375,
         | 
| 87 | 
            +
                  "rewards/chosen": -0.0039196014404296875,
         | 
| 88 | 
            +
                  "rewards/margins": -0.007814407348632812,
         | 
| 89 | 
            +
                  "rewards/rejected": 0.0039081573486328125,
         | 
| 90 | 
            +
                  "step": 5
         | 
| 91 | 
            +
                },
         | 
| 92 | 
            +
                {
         | 
| 93 | 
            +
                  "epoch": 0.22273781902552203,
         | 
| 94 | 
            +
                  "grad_norm": 35.085018157958984,
         | 
| 95 | 
            +
                  "learning_rate": 7.142857142857142e-08,
         | 
| 96 | 
            +
                  "logits/chosen": 0.417724609375,
         | 
| 97 | 
            +
                  "logits/rejected": 0.39959716796875,
         | 
| 98 | 
            +
                  "logps/chosen": -168.4375,
         | 
| 99 | 
            +
                  "logps/rejected": -156.59375,
         | 
| 100 | 
            +
                  "loss": 2.9844,
         | 
| 101 | 
            +
                  "nll_loss": 2.2919921875,
         | 
| 102 | 
            +
                  "rewards/accuracies": 0.28125,
         | 
| 103 | 
            +
                  "rewards/chosen": 0.002349853515625,
         | 
| 104 | 
            +
                  "rewards/margins": 0.0003871917724609375,
         | 
| 105 | 
            +
                  "rewards/rejected": 0.0019512176513671875,
         | 
| 106 | 
            +
                  "step": 6
         | 
| 107 | 
            +
                },
         | 
| 108 | 
            +
                {
         | 
| 109 | 
            +
                  "epoch": 0.25986078886310904,
         | 
| 110 | 
            +
                  "grad_norm": 38.6133918762207,
         | 
| 111 | 
            +
                  "learning_rate": 8.57142857142857e-08,
         | 
| 112 | 
            +
                  "logits/chosen": 0.43389892578125,
         | 
| 113 | 
            +
                  "logits/rejected": 0.4083251953125,
         | 
| 114 | 
            +
                  "logps/chosen": -172.0625,
         | 
| 115 | 
            +
                  "logps/rejected": -149.53125,
         | 
| 116 | 
            +
                  "loss": 2.9744,
         | 
| 117 | 
            +
                  "nll_loss": 2.28662109375,
         | 
| 118 | 
            +
                  "rewards/accuracies": 0.296875,
         | 
| 119 | 
            +
                  "rewards/chosen": 0.00312042236328125,
         | 
| 120 | 
            +
                  "rewards/margins": 0.0039272308349609375,
         | 
| 121 | 
            +
                  "rewards/rejected": -0.000789642333984375,
         | 
| 122 | 
            +
                  "step": 7
         | 
| 123 | 
            +
                },
         | 
| 124 | 
            +
                {
         | 
| 125 | 
            +
                  "epoch": 0.29698375870069604,
         | 
| 126 | 
            +
                  "grad_norm": 38.21547317504883,
         | 
| 127 | 
            +
                  "learning_rate": 1e-07,
         | 
| 128 | 
            +
                  "logits/chosen": 0.381500244140625,
         | 
| 129 | 
            +
                  "logits/rejected": 0.3905029296875,
         | 
| 130 | 
            +
                  "logps/chosen": -176.875,
         | 
| 131 | 
            +
                  "logps/rejected": -152.5625,
         | 
| 132 | 
            +
                  "loss": 3.0114,
         | 
| 133 | 
            +
                  "nll_loss": 2.31640625,
         | 
| 134 | 
            +
                  "rewards/accuracies": 0.25,
         | 
| 135 | 
            +
                  "rewards/chosen": -0.0007686614990234375,
         | 
| 136 | 
            +
                  "rewards/margins": -0.004500389099121094,
         | 
| 137 | 
            +
                  "rewards/rejected": 0.003711700439453125,
         | 
| 138 | 
            +
                  "step": 8
         | 
| 139 | 
            +
                },
         | 
| 140 | 
            +
                {
         | 
| 141 | 
            +
                  "epoch": 0.33410672853828305,
         | 
| 142 | 
            +
                  "grad_norm": 39.607139587402344,
         | 
| 143 | 
            +
                  "learning_rate": 9.921874999999999e-08,
         | 
| 144 | 
            +
                  "logits/chosen": 0.37255859375,
         | 
| 145 | 
            +
                  "logits/rejected": 0.38885498046875,
         | 
| 146 | 
            +
                  "logps/chosen": -181.625,
         | 
| 147 | 
            +
                  "logps/rejected": -158.75,
         | 
| 148 | 
            +
                  "loss": 3.0305,
         | 
| 149 | 
            +
                  "nll_loss": 2.3447265625,
         | 
| 150 | 
            +
                  "rewards/accuracies": 0.328125,
         | 
| 151 | 
            +
                  "rewards/chosen": 0.008989334106445312,
         | 
| 152 | 
            +
                  "rewards/margins": 0.008792877197265625,
         | 
| 153 | 
            +
                  "rewards/rejected": 0.000186920166015625,
         | 
| 154 | 
            +
                  "step": 9
         | 
| 155 | 
            +
                },
         | 
| 156 | 
            +
                {
         | 
| 157 | 
            +
                  "epoch": 0.37122969837587005,
         | 
| 158 | 
            +
                  "grad_norm": 35.63096237182617,
         | 
| 159 | 
            +
                  "learning_rate": 9.84375e-08,
         | 
| 160 | 
            +
                  "logits/chosen": 0.4375,
         | 
| 161 | 
            +
                  "logits/rejected": 0.39324951171875,
         | 
| 162 | 
            +
                  "logps/chosen": -170.6875,
         | 
| 163 | 
            +
                  "logps/rejected": -157.5625,
         | 
| 164 | 
            +
                  "loss": 2.9717,
         | 
| 165 | 
            +
                  "nll_loss": 2.2802734375,
         | 
| 166 | 
            +
                  "rewards/accuracies": 0.3046875,
         | 
| 167 | 
            +
                  "rewards/chosen": 0.001560211181640625,
         | 
| 168 | 
            +
                  "rewards/margins": -0.0023441314697265625,
         | 
| 169 | 
            +
                  "rewards/rejected": 0.0039081573486328125,
         | 
| 170 | 
            +
                  "step": 10
         | 
| 171 | 
            +
                },
         | 
| 172 | 
            +
                {
         | 
| 173 | 
            +
                  "epoch": 0.40835266821345706,
         | 
| 174 | 
            +
                  "grad_norm": 39.5410041809082,
         | 
| 175 | 
            +
                  "learning_rate": 9.765624999999999e-08,
         | 
| 176 | 
            +
                  "logits/chosen": 0.38726806640625,
         | 
| 177 | 
            +
                  "logits/rejected": 0.34307861328125,
         | 
| 178 | 
            +
                  "logps/chosen": -174.0625,
         | 
| 179 | 
            +
                  "logps/rejected": -150.40625,
         | 
| 180 | 
            +
                  "loss": 2.9924,
         | 
| 181 | 
            +
                  "nll_loss": 2.302734375,
         | 
| 182 | 
            +
                  "rewards/accuracies": 0.3125,
         | 
| 183 | 
            +
                  "rewards/chosen": 0.014478683471679688,
         | 
| 184 | 
            +
                  "rewards/margins": 0.005096435546875,
         | 
| 185 | 
            +
                  "rewards/rejected": 0.0093841552734375,
         | 
| 186 | 
            +
                  "step": 11
         | 
| 187 | 
            +
                },
         | 
| 188 | 
            +
                {
         | 
| 189 | 
            +
                  "epoch": 0.44547563805104406,
         | 
| 190 | 
            +
                  "grad_norm": 37.51298522949219,
         | 
| 191 | 
            +
                  "learning_rate": 9.6875e-08,
         | 
| 192 | 
            +
                  "logits/chosen": 0.3577880859375,
         | 
| 193 | 
            +
                  "logits/rejected": 0.359130859375,
         | 
| 194 | 
            +
                  "logps/chosen": -177.625,
         | 
| 195 | 
            +
                  "logps/rejected": -156.8125,
         | 
| 196 | 
            +
                  "loss": 3.0106,
         | 
| 197 | 
            +
                  "nll_loss": 2.3212890625,
         | 
| 198 | 
            +
                  "rewards/accuracies": 0.296875,
         | 
| 199 | 
            +
                  "rewards/chosen": 0.015645980834960938,
         | 
| 200 | 
            +
                  "rewards/margins": 0.004897117614746094,
         | 
| 201 | 
            +
                  "rewards/rejected": 0.010748863220214844,
         | 
| 202 | 
            +
                  "step": 12
         | 
| 203 | 
            +
                },
         | 
| 204 | 
            +
                {
         | 
| 205 | 
            +
                  "epoch": 0.48259860788863107,
         | 
| 206 | 
            +
                  "grad_norm": 34.97195053100586,
         | 
| 207 | 
            +
                  "learning_rate": 9.609374999999999e-08,
         | 
| 208 | 
            +
                  "logits/chosen": 0.447021484375,
         | 
| 209 | 
            +
                  "logits/rejected": 0.3858642578125,
         | 
| 210 | 
            +
                  "logps/chosen": -175.625,
         | 
| 211 | 
            +
                  "logps/rejected": -155.25,
         | 
| 212 | 
            +
                  "loss": 2.9915,
         | 
| 213 | 
            +
                  "nll_loss": 2.29833984375,
         | 
| 214 | 
            +
                  "rewards/accuracies": 0.2265625,
         | 
| 215 | 
            +
                  "rewards/chosen": 0.0062618255615234375,
         | 
| 216 | 
            +
                  "rewards/margins": -0.009004592895507812,
         | 
| 217 | 
            +
                  "rewards/rejected": 0.01526641845703125,
         | 
| 218 | 
            +
                  "step": 13
         | 
| 219 | 
            +
                },
         | 
| 220 | 
            +
                {
         | 
| 221 | 
            +
                  "epoch": 0.5197215777262181,
         | 
| 222 | 
            +
                  "grad_norm": 39.796241760253906,
         | 
| 223 | 
            +
                  "learning_rate": 9.53125e-08,
         | 
| 224 | 
            +
                  "logits/chosen": 0.43328857421875,
         | 
| 225 | 
            +
                  "logits/rejected": 0.4168701171875,
         | 
| 226 | 
            +
                  "logps/chosen": -168.4375,
         | 
| 227 | 
            +
                  "logps/rejected": -146.90625,
         | 
| 228 | 
            +
                  "loss": 2.9739,
         | 
| 229 | 
            +
                  "nll_loss": 2.27734375,
         | 
| 230 | 
            +
                  "rewards/accuracies": 0.2421875,
         | 
| 231 | 
            +
                  "rewards/chosen": 0.01877593994140625,
         | 
| 232 | 
            +
                  "rewards/margins": -0.006046295166015625,
         | 
| 233 | 
            +
                  "rewards/rejected": 0.02483844757080078,
         | 
| 234 | 
            +
                  "step": 14
         | 
| 235 | 
            +
                },
         | 
| 236 | 
            +
                {
         | 
| 237 | 
            +
                  "epoch": 0.5568445475638051,
         | 
| 238 | 
            +
                  "grad_norm": 38.428070068359375,
         | 
| 239 | 
            +
                  "learning_rate": 9.453125e-08,
         | 
| 240 | 
            +
                  "logits/chosen": 0.3983154296875,
         | 
| 241 | 
            +
                  "logits/rejected": 0.394775390625,
         | 
| 242 | 
            +
                  "logps/chosen": -172.0625,
         | 
| 243 | 
            +
                  "logps/rejected": -147.90625,
         | 
| 244 | 
            +
                  "loss": 2.9338,
         | 
| 245 | 
            +
                  "nll_loss": 2.244140625,
         | 
| 246 | 
            +
                  "rewards/accuracies": 0.3046875,
         | 
| 247 | 
            +
                  "rewards/chosen": 0.030483245849609375,
         | 
| 248 | 
            +
                  "rewards/margins": 0.0029296875,
         | 
| 249 | 
            +
                  "rewards/rejected": 0.027555465698242188,
         | 
| 250 | 
            +
                  "step": 15
         | 
| 251 | 
            +
                },
         | 
| 252 | 
            +
                {
         | 
| 253 | 
            +
                  "epoch": 0.5939675174013921,
         | 
| 254 | 
            +
                  "grad_norm": 39.628963470458984,
         | 
| 255 | 
            +
                  "learning_rate": 9.375e-08,
         | 
| 256 | 
            +
                  "logits/chosen": 0.39715576171875,
         | 
| 257 | 
            +
                  "logits/rejected": 0.414306640625,
         | 
| 258 | 
            +
                  "logps/chosen": -178.0,
         | 
| 259 | 
            +
                  "logps/rejected": -159.875,
         | 
| 260 | 
            +
                  "loss": 3.0548,
         | 
| 261 | 
            +
                  "nll_loss": 2.3701171875,
         | 
| 262 | 
            +
                  "rewards/accuracies": 0.3828125,
         | 
| 263 | 
            +
                  "rewards/chosen": 0.05942535400390625,
         | 
| 264 | 
            +
                  "rewards/margins": 0.013860702514648438,
         | 
| 265 | 
            +
                  "rewards/rejected": 0.04556083679199219,
         | 
| 266 | 
            +
                  "step": 16
         | 
| 267 | 
            +
                },
         | 
| 268 | 
            +
                {
         | 
| 269 | 
            +
                  "epoch": 0.6310904872389791,
         | 
| 270 | 
            +
                  "grad_norm": 35.322757720947266,
         | 
| 271 | 
            +
                  "learning_rate": 9.296875e-08,
         | 
| 272 | 
            +
                  "logits/chosen": 0.38311767578125,
         | 
| 273 | 
            +
                  "logits/rejected": 0.3482666015625,
         | 
| 274 | 
            +
                  "logps/chosen": -173.21875,
         | 
| 275 | 
            +
                  "logps/rejected": -158.6875,
         | 
| 276 | 
            +
                  "loss": 2.9951,
         | 
| 277 | 
            +
                  "nll_loss": 2.3076171875,
         | 
| 278 | 
            +
                  "rewards/accuracies": 0.3828125,
         | 
| 279 | 
            +
                  "rewards/chosen": 0.05277252197265625,
         | 
| 280 | 
            +
                  "rewards/margins": 0.0072422027587890625,
         | 
| 281 | 
            +
                  "rewards/rejected": 0.0455322265625,
         | 
| 282 | 
            +
                  "step": 17
         | 
| 283 | 
            +
                },
         | 
| 284 | 
            +
                {
         | 
| 285 | 
            +
                  "epoch": 0.6682134570765661,
         | 
| 286 | 
            +
                  "grad_norm": 34.979583740234375,
         | 
| 287 | 
            +
                  "learning_rate": 9.218749999999999e-08,
         | 
| 288 | 
            +
                  "logits/chosen": 0.427734375,
         | 
| 289 | 
            +
                  "logits/rejected": 0.4029541015625,
         | 
| 290 | 
            +
                  "logps/chosen": -173.9375,
         | 
| 291 | 
            +
                  "logps/rejected": -152.125,
         | 
| 292 | 
            +
                  "loss": 3.002,
         | 
| 293 | 
            +
                  "nll_loss": 2.31689453125,
         | 
| 294 | 
            +
                  "rewards/accuracies": 0.3125,
         | 
| 295 | 
            +
                  "rewards/chosen": 0.0594482421875,
         | 
| 296 | 
            +
                  "rewards/margins": 0.007232666015625,
         | 
| 297 | 
            +
                  "rewards/rejected": 0.05219459533691406,
         | 
| 298 | 
            +
                  "step": 18
         | 
| 299 | 
            +
                },
         | 
| 300 | 
            +
                {
         | 
| 301 | 
            +
                  "epoch": 0.7053364269141531,
         | 
| 302 | 
            +
                  "grad_norm": 34.32613754272461,
         | 
| 303 | 
            +
                  "learning_rate": 9.140625e-08,
         | 
| 304 | 
            +
                  "logits/chosen": 0.32867431640625,
         | 
| 305 | 
            +
                  "logits/rejected": 0.3881378173828125,
         | 
| 306 | 
            +
                  "logps/chosen": -172.875,
         | 
| 307 | 
            +
                  "logps/rejected": -163.375,
         | 
| 308 | 
            +
                  "loss": 2.9933,
         | 
| 309 | 
            +
                  "nll_loss": 2.30517578125,
         | 
| 310 | 
            +
                  "rewards/accuracies": 0.3359375,
         | 
| 311 | 
            +
                  "rewards/chosen": 0.07083892822265625,
         | 
| 312 | 
            +
                  "rewards/margins": 0.007622718811035156,
         | 
| 313 | 
            +
                  "rewards/rejected": 0.06317138671875,
         | 
| 314 | 
            +
                  "step": 19
         | 
| 315 | 
            +
                },
         | 
| 316 | 
            +
                {
         | 
| 317 | 
            +
                  "epoch": 0.7424593967517401,
         | 
| 318 | 
            +
                  "grad_norm": 41.6298828125,
         | 
| 319 | 
            +
                  "learning_rate": 9.062499999999999e-08,
         | 
| 320 | 
            +
                  "logits/chosen": 0.4229736328125,
         | 
| 321 | 
            +
                  "logits/rejected": 0.375244140625,
         | 
| 322 | 
            +
                  "logps/chosen": -176.0,
         | 
| 323 | 
            +
                  "logps/rejected": -154.9375,
         | 
| 324 | 
            +
                  "loss": 2.9649,
         | 
| 325 | 
            +
                  "nll_loss": 2.279296875,
         | 
| 326 | 
            +
                  "rewards/accuracies": 0.3359375,
         | 
| 327 | 
            +
                  "rewards/chosen": 0.07122039794921875,
         | 
| 328 | 
            +
                  "rewards/margins": 0.010354995727539062,
         | 
| 329 | 
            +
                  "rewards/rejected": 0.0608367919921875,
         | 
| 330 | 
            +
                  "step": 20
         | 
| 331 | 
            +
                },
         | 
| 332 | 
            +
                {
         | 
| 333 | 
            +
                  "epoch": 0.7795823665893271,
         | 
| 334 | 
            +
                  "grad_norm": 37.83958053588867,
         | 
| 335 | 
            +
                  "learning_rate": 8.984375e-08,
         | 
| 336 | 
            +
                  "logits/chosen": 0.4124755859375,
         | 
| 337 | 
            +
                  "logits/rejected": 0.36822509765625,
         | 
| 338 | 
            +
                  "logps/chosen": -171.4375,
         | 
| 339 | 
            +
                  "logps/rejected": -147.25,
         | 
| 340 | 
            +
                  "loss": 2.9553,
         | 
| 341 | 
            +
                  "nll_loss": 2.263671875,
         | 
| 342 | 
            +
                  "rewards/accuracies": 0.3359375,
         | 
| 343 | 
            +
                  "rewards/chosen": 0.0637664794921875,
         | 
| 344 | 
            +
                  "rewards/margins": -0.0027446746826171875,
         | 
| 345 | 
            +
                  "rewards/rejected": 0.06647491455078125,
         | 
| 346 | 
            +
                  "step": 21
         | 
| 347 | 
            +
                },
         | 
| 348 | 
            +
                {
         | 
| 349 | 
            +
                  "epoch": 0.8167053364269141,
         | 
| 350 | 
            +
                  "grad_norm": 36.95314407348633,
         | 
| 351 | 
            +
                  "learning_rate": 8.90625e-08,
         | 
| 352 | 
            +
                  "logits/chosen": 0.4412841796875,
         | 
| 353 | 
            +
                  "logits/rejected": 0.4178466796875,
         | 
| 354 | 
            +
                  "logps/chosen": -172.3125,
         | 
| 355 | 
            +
                  "logps/rejected": -151.78125,
         | 
| 356 | 
            +
                  "loss": 2.9086,
         | 
| 357 | 
            +
                  "nll_loss": 2.22705078125,
         | 
| 358 | 
            +
                  "rewards/accuracies": 0.3828125,
         | 
| 359 | 
            +
                  "rewards/chosen": 0.083648681640625,
         | 
| 360 | 
            +
                  "rewards/margins": 0.020734786987304688,
         | 
| 361 | 
            +
                  "rewards/rejected": 0.06292724609375,
         | 
| 362 | 
            +
                  "step": 22
         | 
| 363 | 
            +
                },
         | 
| 364 | 
            +
                {
         | 
| 365 | 
            +
                  "epoch": 0.8538283062645011,
         | 
| 366 | 
            +
                  "grad_norm": 37.84122085571289,
         | 
| 367 | 
            +
                  "learning_rate": 8.828125e-08,
         | 
| 368 | 
            +
                  "logits/chosen": 0.43475341796875,
         | 
| 369 | 
            +
                  "logits/rejected": 0.39007568359375,
         | 
| 370 | 
            +
                  "logps/chosen": -174.5625,
         | 
| 371 | 
            +
                  "logps/rejected": -146.96875,
         | 
| 372 | 
            +
                  "loss": 2.9311,
         | 
| 373 | 
            +
                  "nll_loss": 2.248046875,
         | 
| 374 | 
            +
                  "rewards/accuracies": 0.4140625,
         | 
| 375 | 
            +
                  "rewards/chosen": 0.0770416259765625,
         | 
| 376 | 
            +
                  "rewards/margins": 0.017015457153320312,
         | 
| 377 | 
            +
                  "rewards/rejected": 0.06001091003417969,
         | 
| 378 | 
            +
                  "step": 23
         | 
| 379 | 
            +
                },
         | 
| 380 | 
            +
                {
         | 
| 381 | 
            +
                  "epoch": 0.8909512761020881,
         | 
| 382 | 
            +
                  "grad_norm": 34.304290771484375,
         | 
| 383 | 
            +
                  "learning_rate": 8.75e-08,
         | 
| 384 | 
            +
                  "logits/chosen": 0.455078125,
         | 
| 385 | 
            +
                  "logits/rejected": 0.4635009765625,
         | 
| 386 | 
            +
                  "logps/chosen": -161.5625,
         | 
| 387 | 
            +
                  "logps/rejected": -152.21875,
         | 
| 388 | 
            +
                  "loss": 2.9568,
         | 
| 389 | 
            +
                  "nll_loss": 2.2685546875,
         | 
| 390 | 
            +
                  "rewards/accuracies": 0.3359375,
         | 
| 391 | 
            +
                  "rewards/chosen": 0.06918716430664062,
         | 
| 392 | 
            +
                  "rewards/margins": 0.009189605712890625,
         | 
| 393 | 
            +
                  "rewards/rejected": 0.05999183654785156,
         | 
| 394 | 
            +
                  "step": 24
         | 
| 395 | 
            +
                },
         | 
| 396 | 
            +
                {
         | 
| 397 | 
            +
                  "epoch": 0.9280742459396751,
         | 
| 398 | 
            +
                  "grad_norm": 34.58511734008789,
         | 
| 399 | 
            +
                  "learning_rate": 8.671874999999999e-08,
         | 
| 400 | 
            +
                  "logits/chosen": 0.4024658203125,
         | 
| 401 | 
            +
                  "logits/rejected": 0.35870361328125,
         | 
| 402 | 
            +
                  "logps/chosen": -167.84375,
         | 
| 403 | 
            +
                  "logps/rejected": -155.6875,
         | 
| 404 | 
            +
                  "loss": 2.9536,
         | 
| 405 | 
            +
                  "nll_loss": 2.26953125,
         | 
| 406 | 
            +
                  "rewards/accuracies": 0.3359375,
         | 
| 407 | 
            +
                  "rewards/chosen": 0.084014892578125,
         | 
| 408 | 
            +
                  "rewards/margins": 0.009586334228515625,
         | 
| 409 | 
            +
                  "rewards/rejected": 0.0745086669921875,
         | 
| 410 | 
            +
                  "step": 25
         | 
| 411 | 
            +
                },
         | 
| 412 | 
            +
                {
         | 
| 413 | 
            +
                  "epoch": 0.9651972157772621,
         | 
| 414 | 
            +
                  "grad_norm": 32.51408386230469,
         | 
| 415 | 
            +
                  "learning_rate": 8.59375e-08,
         | 
| 416 | 
            +
                  "logits/chosen": 0.387939453125,
         | 
| 417 | 
            +
                  "logits/rejected": 0.41217041015625,
         | 
| 418 | 
            +
                  "logps/chosen": -171.625,
         | 
| 419 | 
            +
                  "logps/rejected": -156.21875,
         | 
| 420 | 
            +
                  "loss": 2.9408,
         | 
| 421 | 
            +
                  "nll_loss": 2.2529296875,
         | 
| 422 | 
            +
                  "rewards/accuracies": 0.3359375,
         | 
| 423 | 
            +
                  "rewards/chosen": 0.131378173828125,
         | 
| 424 | 
            +
                  "rewards/margins": 0.0060577392578125,
         | 
| 425 | 
            +
                  "rewards/rejected": 0.1253662109375,
         | 
| 426 | 
            +
                  "step": 26
         | 
| 427 | 
            +
                },
         | 
| 428 | 
            +
                {
         | 
| 429 | 
            +
                  "epoch": 1.0,
         | 
| 430 | 
            +
                  "grad_norm": 37.21652603149414,
         | 
| 431 | 
            +
                  "learning_rate": 8.515624999999999e-08,
         | 
| 432 | 
            +
                  "logits/chosen": 0.36829426884651184,
         | 
| 433 | 
            +
                  "logits/rejected": 0.33606770634651184,
         | 
| 434 | 
            +
                  "logps/chosen": -174.1999969482422,
         | 
| 435 | 
            +
                  "logps/rejected": -151.1666717529297,
         | 
| 436 | 
            +
                  "loss": 2.9704,
         | 
| 437 | 
            +
                  "nll_loss": 2.2901041507720947,
         | 
| 438 | 
            +
                  "rewards/accuracies": 0.4166666567325592,
         | 
| 439 | 
            +
                  "rewards/chosen": 0.16803385317325592,
         | 
| 440 | 
            +
                  "rewards/margins": 0.02587076835334301,
         | 
| 441 | 
            +
                  "rewards/rejected": 0.1422526091337204,
         | 
| 442 | 
            +
                  "step": 27
         | 
| 443 | 
            +
                },
         | 
| 444 | 
            +
                {
         | 
| 445 | 
            +
                  "epoch": 1.0,
         | 
| 446 | 
            +
                  "eval_logits/chosen": 0.3971354067325592,
         | 
| 447 | 
            +
                  "eval_logits/rejected": 0.3619791567325592,
         | 
| 448 | 
            +
                  "eval_logps/chosen": -169.8333282470703,
         | 
| 449 | 
            +
                  "eval_logps/rejected": -148.8333282470703,
         | 
| 450 | 
            +
                  "eval_loss": 2.9026691913604736,
         | 
| 451 | 
            +
                  "eval_nll_loss": 2.2213542461395264,
         | 
| 452 | 
            +
                  "eval_rewards/accuracies": 0.4010416567325592,
         | 
| 453 | 
            +
                  "eval_rewards/chosen": 0.1822916716337204,
         | 
| 454 | 
            +
                  "eval_rewards/margins": 0.02267964743077755,
         | 
| 455 | 
            +
                  "eval_rewards/rejected": 0.15966796875,
         | 
| 456 | 
            +
                  "eval_runtime": 109.0244,
         | 
| 457 | 
            +
                  "eval_samples_per_second": 3.522,
         | 
| 458 | 
            +
                  "eval_steps_per_second": 0.055,
         | 
| 459 | 
            +
                  "step": 27
         | 
| 460 | 
            +
                },
         | 
| 461 | 
            +
                {
         | 
| 462 | 
            +
                  "epoch": 1.037122969837587,
         | 
| 463 | 
            +
                  "grad_norm": 33.881961822509766,
         | 
| 464 | 
            +
                  "learning_rate": 8.4375e-08,
         | 
| 465 | 
            +
                  "logits/chosen": 0.34295654296875,
         | 
| 466 | 
            +
                  "logits/rejected": 0.30322265625,
         | 
| 467 | 
            +
                  "logps/chosen": -169.875,
         | 
| 468 | 
            +
                  "logps/rejected": -156.375,
         | 
| 469 | 
            +
                  "loss": 2.9593,
         | 
| 470 | 
            +
                  "nll_loss": 2.28125,
         | 
| 471 | 
            +
                  "rewards/accuracies": 0.453125,
         | 
| 472 | 
            +
                  "rewards/chosen": 0.19097900390625,
         | 
| 473 | 
            +
                  "rewards/margins": 0.030971527099609375,
         | 
| 474 | 
            +
                  "rewards/rejected": 0.160064697265625,
         | 
| 475 | 
            +
                  "step": 28
         | 
| 476 | 
            +
                },
         | 
| 477 | 
            +
                {
         | 
| 478 | 
            +
                  "epoch": 1.074245939675174,
         | 
| 479 | 
            +
                  "grad_norm": 35.8636474609375,
         | 
| 480 | 
            +
                  "learning_rate": 8.359375e-08,
         | 
| 481 | 
            +
                  "logits/chosen": 0.406494140625,
         | 
| 482 | 
            +
                  "logits/rejected": 0.4139404296875,
         | 
| 483 | 
            +
                  "logps/chosen": -173.4375,
         | 
| 484 | 
            +
                  "logps/rejected": -149.90625,
         | 
| 485 | 
            +
                  "loss": 2.9845,
         | 
| 486 | 
            +
                  "nll_loss": 2.3017578125,
         | 
| 487 | 
            +
                  "rewards/accuracies": 0.4296875,
         | 
| 488 | 
            +
                  "rewards/chosen": 0.1990966796875,
         | 
| 489 | 
            +
                  "rewards/margins": 0.017164230346679688,
         | 
| 490 | 
            +
                  "rewards/rejected": 0.1820068359375,
         | 
| 491 | 
            +
                  "step": 29
         | 
| 492 | 
            +
                },
         | 
| 493 | 
            +
                {
         | 
| 494 | 
            +
                  "epoch": 1.111368909512761,
         | 
| 495 | 
            +
                  "grad_norm": 36.001094818115234,
         | 
| 496 | 
            +
                  "learning_rate": 8.28125e-08,
         | 
| 497 | 
            +
                  "logits/chosen": 0.43310546875,
         | 
| 498 | 
            +
                  "logits/rejected": 0.40234375,
         | 
| 499 | 
            +
                  "logps/chosen": -169.9375,
         | 
| 500 | 
            +
                  "logps/rejected": -149.40625,
         | 
| 501 | 
            +
                  "loss": 2.8939,
         | 
| 502 | 
            +
                  "nll_loss": 2.21533203125,
         | 
| 503 | 
            +
                  "rewards/accuracies": 0.421875,
         | 
| 504 | 
            +
                  "rewards/chosen": 0.20184326171875,
         | 
| 505 | 
            +
                  "rewards/margins": 0.026065826416015625,
         | 
| 506 | 
            +
                  "rewards/rejected": 0.17584228515625,
         | 
| 507 | 
            +
                  "step": 30
         | 
| 508 | 
            +
                },
         | 
| 509 | 
            +
                {
         | 
| 510 | 
            +
                  "epoch": 1.148491879350348,
         | 
| 511 | 
            +
                  "grad_norm": 35.54602813720703,
         | 
| 512 | 
            +
                  "learning_rate": 8.203125e-08,
         | 
| 513 | 
            +
                  "logits/chosen": 0.39208984375,
         | 
| 514 | 
            +
                  "logits/rejected": 0.39398193359375,
         | 
| 515 | 
            +
                  "logps/chosen": -173.4375,
         | 
| 516 | 
            +
                  "logps/rejected": -151.4375,
         | 
| 517 | 
            +
                  "loss": 2.9575,
         | 
| 518 | 
            +
                  "nll_loss": 2.28125,
         | 
| 519 | 
            +
                  "rewards/accuracies": 0.3984375,
         | 
| 520 | 
            +
                  "rewards/chosen": 0.228515625,
         | 
| 521 | 
            +
                  "rewards/margins": 0.028167724609375,
         | 
| 522 | 
            +
                  "rewards/rejected": 0.20025634765625,
         | 
| 523 | 
            +
                  "step": 31
         | 
| 524 | 
            +
                },
         | 
| 525 | 
            +
                {
         | 
| 526 | 
            +
                  "epoch": 1.185614849187935,
         | 
| 527 | 
            +
                  "grad_norm": 34.40830993652344,
         | 
| 528 | 
            +
                  "learning_rate": 8.124999999999999e-08,
         | 
| 529 | 
            +
                  "logits/chosen": 0.41754150390625,
         | 
| 530 | 
            +
                  "logits/rejected": 0.380126953125,
         | 
| 531 | 
            +
                  "logps/chosen": -165.4375,
         | 
| 532 | 
            +
                  "logps/rejected": -148.84375,
         | 
| 533 | 
            +
                  "loss": 2.9465,
         | 
| 534 | 
            +
                  "nll_loss": 2.2705078125,
         | 
| 535 | 
            +
                  "rewards/accuracies": 0.5,
         | 
| 536 | 
            +
                  "rewards/chosen": 0.208984375,
         | 
| 537 | 
            +
                  "rewards/margins": 0.03348350524902344,
         | 
| 538 | 
            +
                  "rewards/rejected": 0.17547607421875,
         | 
| 539 | 
            +
                  "step": 32
         | 
| 540 | 
            +
                },
         | 
| 541 | 
            +
                {
         | 
| 542 | 
            +
                  "epoch": 1.222737819025522,
         | 
| 543 | 
            +
                  "grad_norm": 36.301544189453125,
         | 
| 544 | 
            +
                  "learning_rate": 8.046875e-08,
         | 
| 545 | 
            +
                  "logits/chosen": 0.4114990234375,
         | 
| 546 | 
            +
                  "logits/rejected": 0.3790283203125,
         | 
| 547 | 
            +
                  "logps/chosen": -173.6875,
         | 
| 548 | 
            +
                  "logps/rejected": -149.3125,
         | 
| 549 | 
            +
                  "loss": 2.9736,
         | 
| 550 | 
            +
                  "nll_loss": 2.291015625,
         | 
| 551 | 
            +
                  "rewards/accuracies": 0.4296875,
         | 
| 552 | 
            +
                  "rewards/chosen": 0.23309326171875,
         | 
| 553 | 
            +
                  "rewards/margins": 0.022678375244140625,
         | 
| 554 | 
            +
                  "rewards/rejected": 0.210205078125,
         | 
| 555 | 
            +
                  "step": 33
         | 
| 556 | 
            +
                },
         | 
| 557 | 
            +
                {
         | 
| 558 | 
            +
                  "epoch": 1.259860788863109,
         | 
| 559 | 
            +
                  "grad_norm": 32.567413330078125,
         | 
| 560 | 
            +
                  "learning_rate": 7.968749999999999e-08,
         | 
| 561 | 
            +
                  "logits/chosen": 0.395172119140625,
         | 
| 562 | 
            +
                  "logits/rejected": 0.4110107421875,
         | 
| 563 | 
            +
                  "logps/chosen": -171.75,
         | 
| 564 | 
            +
                  "logps/rejected": -154.0,
         | 
| 565 | 
            +
                  "loss": 2.9779,
         | 
| 566 | 
            +
                  "nll_loss": 2.2890625,
         | 
| 567 | 
            +
                  "rewards/accuracies": 0.390625,
         | 
| 568 | 
            +
                  "rewards/chosen": 0.23516845703125,
         | 
| 569 | 
            +
                  "rewards/margins": 0.01137542724609375,
         | 
| 570 | 
            +
                  "rewards/rejected": 0.223876953125,
         | 
| 571 | 
            +
                  "step": 34
         | 
| 572 | 
            +
                },
         | 
| 573 | 
            +
                {
         | 
| 574 | 
            +
                  "epoch": 1.296983758700696,
         | 
| 575 | 
            +
                  "grad_norm": 33.108497619628906,
         | 
| 576 | 
            +
                  "learning_rate": 7.890625e-08,
         | 
| 577 | 
            +
                  "logits/chosen": 0.37713623046875,
         | 
| 578 | 
            +
                  "logits/rejected": 0.37548828125,
         | 
| 579 | 
            +
                  "logps/chosen": -171.125,
         | 
| 580 | 
            +
                  "logps/rejected": -158.125,
         | 
| 581 | 
            +
                  "loss": 2.9559,
         | 
| 582 | 
            +
                  "nll_loss": 2.2744140625,
         | 
| 583 | 
            +
                  "rewards/accuracies": 0.4140625,
         | 
| 584 | 
            +
                  "rewards/chosen": 0.25018310546875,
         | 
| 585 | 
            +
                  "rewards/margins": 0.023487091064453125,
         | 
| 586 | 
            +
                  "rewards/rejected": 0.22705078125,
         | 
| 587 | 
            +
                  "step": 35
         | 
| 588 | 
            +
                },
         | 
| 589 | 
            +
                {
         | 
| 590 | 
            +
                  "epoch": 1.334106728538283,
         | 
| 591 | 
            +
                  "grad_norm": 33.0572624206543,
         | 
| 592 | 
            +
                  "learning_rate": 7.812499999999999e-08,
         | 
| 593 | 
            +
                  "logits/chosen": 0.430419921875,
         | 
| 594 | 
            +
                  "logits/rejected": 0.409912109375,
         | 
| 595 | 
            +
                  "logps/chosen": -170.0625,
         | 
| 596 | 
            +
                  "logps/rejected": -156.5,
         | 
| 597 | 
            +
                  "loss": 2.9622,
         | 
| 598 | 
            +
                  "nll_loss": 2.279296875,
         | 
| 599 | 
            +
                  "rewards/accuracies": 0.359375,
         | 
| 600 | 
            +
                  "rewards/chosen": 0.24749755859375,
         | 
| 601 | 
            +
                  "rewards/margins": 0.016834259033203125,
         | 
| 602 | 
            +
                  "rewards/rejected": 0.23046875,
         | 
| 603 | 
            +
                  "step": 36
         | 
| 604 | 
            +
                },
         | 
| 605 | 
            +
                {
         | 
| 606 | 
            +
                  "epoch": 1.37122969837587,
         | 
| 607 | 
            +
                  "grad_norm": 34.27482604980469,
         | 
| 608 | 
            +
                  "learning_rate": 7.734375e-08,
         | 
| 609 | 
            +
                  "logits/chosen": 0.3834228515625,
         | 
| 610 | 
            +
                  "logits/rejected": 0.3140869140625,
         | 
| 611 | 
            +
                  "logps/chosen": -174.0625,
         | 
| 612 | 
            +
                  "logps/rejected": -158.4375,
         | 
| 613 | 
            +
                  "loss": 2.9689,
         | 
| 614 | 
            +
                  "nll_loss": 2.296875,
         | 
| 615 | 
            +
                  "rewards/accuracies": 0.5078125,
         | 
| 616 | 
            +
                  "rewards/chosen": 0.25750732421875,
         | 
| 617 | 
            +
                  "rewards/margins": 0.03867340087890625,
         | 
| 618 | 
            +
                  "rewards/rejected": 0.21893310546875,
         | 
| 619 | 
            +
                  "step": 37
         | 
| 620 | 
            +
                },
         | 
| 621 | 
            +
                {
         | 
| 622 | 
            +
                  "epoch": 1.408352668213457,
         | 
| 623 | 
            +
                  "grad_norm": 33.35799789428711,
         | 
| 624 | 
            +
                  "learning_rate": 7.65625e-08,
         | 
| 625 | 
            +
                  "logits/chosen": 0.350555419921875,
         | 
| 626 | 
            +
                  "logits/rejected": 0.335540771484375,
         | 
| 627 | 
            +
                  "logps/chosen": -174.3125,
         | 
| 628 | 
            +
                  "logps/rejected": -162.6875,
         | 
| 629 | 
            +
                  "loss": 2.9839,
         | 
| 630 | 
            +
                  "nll_loss": 2.30078125,
         | 
| 631 | 
            +
                  "rewards/accuracies": 0.421875,
         | 
| 632 | 
            +
                  "rewards/chosen": 0.2733154296875,
         | 
| 633 | 
            +
                  "rewards/margins": 0.0215606689453125,
         | 
| 634 | 
            +
                  "rewards/rejected": 0.251953125,
         | 
| 635 | 
            +
                  "step": 38
         | 
| 636 | 
            +
                },
         | 
| 637 | 
            +
                {
         | 
| 638 | 
            +
                  "epoch": 1.445475638051044,
         | 
| 639 | 
            +
                  "grad_norm": 34.38155746459961,
         | 
| 640 | 
            +
                  "learning_rate": 7.578125e-08,
         | 
| 641 | 
            +
                  "logits/chosen": 0.4075927734375,
         | 
| 642 | 
            +
                  "logits/rejected": 0.3931884765625,
         | 
| 643 | 
            +
                  "logps/chosen": -176.25,
         | 
| 644 | 
            +
                  "logps/rejected": -158.875,
         | 
| 645 | 
            +
                  "loss": 2.9568,
         | 
| 646 | 
            +
                  "nll_loss": 2.2841796875,
         | 
| 647 | 
            +
                  "rewards/accuracies": 0.453125,
         | 
| 648 | 
            +
                  "rewards/chosen": 0.279541015625,
         | 
| 649 | 
            +
                  "rewards/margins": 0.04210662841796875,
         | 
| 650 | 
            +
                  "rewards/rejected": 0.23712158203125,
         | 
| 651 | 
            +
                  "step": 39
         | 
| 652 | 
            +
                },
         | 
| 653 | 
            +
                {
         | 
| 654 | 
            +
                  "epoch": 1.482598607888631,
         | 
| 655 | 
            +
                  "grad_norm": 36.7269401550293,
         | 
| 656 | 
            +
                  "learning_rate": 7.5e-08,
         | 
| 657 | 
            +
                  "logits/chosen": 0.39630126953125,
         | 
| 658 | 
            +
                  "logits/rejected": 0.34423828125,
         | 
| 659 | 
            +
                  "logps/chosen": -171.1875,
         | 
| 660 | 
            +
                  "logps/rejected": -147.5625,
         | 
| 661 | 
            +
                  "loss": 2.9215,
         | 
| 662 | 
            +
                  "nll_loss": 2.2470703125,
         | 
| 663 | 
            +
                  "rewards/accuracies": 0.5390625,
         | 
| 664 | 
            +
                  "rewards/chosen": 0.271240234375,
         | 
| 665 | 
            +
                  "rewards/margins": 0.03932952880859375,
         | 
| 666 | 
            +
                  "rewards/rejected": 0.23175048828125,
         | 
| 667 | 
            +
                  "step": 40
         | 
| 668 | 
            +
                },
         | 
| 669 | 
            +
                {
         | 
| 670 | 
            +
                  "epoch": 1.519721577726218,
         | 
| 671 | 
            +
                  "grad_norm": 36.291969299316406,
         | 
| 672 | 
            +
                  "learning_rate": 7.421874999999999e-08,
         | 
| 673 | 
            +
                  "logits/chosen": 0.399261474609375,
         | 
| 674 | 
            +
                  "logits/rejected": 0.35772705078125,
         | 
| 675 | 
            +
                  "logps/chosen": -167.75,
         | 
| 676 | 
            +
                  "logps/rejected": -142.875,
         | 
| 677 | 
            +
                  "loss": 2.9056,
         | 
| 678 | 
            +
                  "nll_loss": 2.2353515625,
         | 
| 679 | 
            +
                  "rewards/accuracies": 0.4140625,
         | 
| 680 | 
            +
                  "rewards/chosen": 0.287353515625,
         | 
| 681 | 
            +
                  "rewards/margins": 0.04146575927734375,
         | 
| 682 | 
            +
                  "rewards/rejected": 0.2457275390625,
         | 
| 683 | 
            +
                  "step": 41
         | 
| 684 | 
            +
                },
         | 
| 685 | 
            +
                {
         | 
| 686 | 
            +
                  "epoch": 1.556844547563805,
         | 
| 687 | 
            +
                  "grad_norm": 33.512359619140625,
         | 
| 688 | 
            +
                  "learning_rate": 7.34375e-08,
         | 
| 689 | 
            +
                  "logits/chosen": 0.4334716796875,
         | 
| 690 | 
            +
                  "logits/rejected": 0.4254150390625,
         | 
| 691 | 
            +
                  "logps/chosen": -170.75,
         | 
| 692 | 
            +
                  "logps/rejected": -156.75,
         | 
| 693 | 
            +
                  "loss": 2.8999,
         | 
| 694 | 
            +
                  "nll_loss": 2.220703125,
         | 
| 695 | 
            +
                  "rewards/accuracies": 0.4453125,
         | 
| 696 | 
            +
                  "rewards/chosen": 0.2911376953125,
         | 
| 697 | 
            +
                  "rewards/margins": 0.02759552001953125,
         | 
| 698 | 
            +
                  "rewards/rejected": 0.263427734375,
         | 
| 699 | 
            +
                  "step": 42
         | 
| 700 | 
            +
                },
         | 
| 701 | 
            +
                {
         | 
| 702 | 
            +
                  "epoch": 1.593967517401392,
         | 
| 703 | 
            +
                  "grad_norm": 33.475074768066406,
         | 
| 704 | 
            +
                  "learning_rate": 7.265624999999999e-08,
         | 
| 705 | 
            +
                  "logits/chosen": 0.4449462890625,
         | 
| 706 | 
            +
                  "logits/rejected": 0.39874267578125,
         | 
| 707 | 
            +
                  "logps/chosen": -167.1875,
         | 
| 708 | 
            +
                  "logps/rejected": -146.78125,
         | 
| 709 | 
            +
                  "loss": 2.8644,
         | 
| 710 | 
            +
                  "nll_loss": 2.18994140625,
         | 
| 711 | 
            +
                  "rewards/accuracies": 0.4609375,
         | 
| 712 | 
            +
                  "rewards/chosen": 0.291259765625,
         | 
| 713 | 
            +
                  "rewards/margins": 0.03582000732421875,
         | 
| 714 | 
            +
                  "rewards/rejected": 0.25537109375,
         | 
| 715 | 
            +
                  "step": 43
         | 
| 716 | 
            +
                },
         | 
| 717 | 
            +
                {
         | 
| 718 | 
            +
                  "epoch": 1.631090487238979,
         | 
| 719 | 
            +
                  "grad_norm": 35.19614791870117,
         | 
| 720 | 
            +
                  "learning_rate": 7.1875e-08,
         | 
| 721 | 
            +
                  "logits/chosen": 0.385009765625,
         | 
| 722 | 
            +
                  "logits/rejected": 0.39849853515625,
         | 
| 723 | 
            +
                  "logps/chosen": -169.3125,
         | 
| 724 | 
            +
                  "logps/rejected": -144.96875,
         | 
| 725 | 
            +
                  "loss": 2.8976,
         | 
| 726 | 
            +
                  "nll_loss": 2.22900390625,
         | 
| 727 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 728 | 
            +
                  "rewards/chosen": 0.3013916015625,
         | 
| 729 | 
            +
                  "rewards/margins": 0.04638671875,
         | 
| 730 | 
            +
                  "rewards/rejected": 0.2550048828125,
         | 
| 731 | 
            +
                  "step": 44
         | 
| 732 | 
            +
                },
         | 
| 733 | 
            +
                {
         | 
| 734 | 
            +
                  "epoch": 1.668213457076566,
         | 
| 735 | 
            +
                  "grad_norm": 34.17641067504883,
         | 
| 736 | 
            +
                  "learning_rate": 7.109375e-08,
         | 
| 737 | 
            +
                  "logits/chosen": 0.388427734375,
         | 
| 738 | 
            +
                  "logits/rejected": 0.35906982421875,
         | 
| 739 | 
            +
                  "logps/chosen": -177.625,
         | 
| 740 | 
            +
                  "logps/rejected": -156.375,
         | 
| 741 | 
            +
                  "loss": 2.9559,
         | 
| 742 | 
            +
                  "nll_loss": 2.2822265625,
         | 
| 743 | 
            +
                  "rewards/accuracies": 0.484375,
         | 
| 744 | 
            +
                  "rewards/chosen": 0.3175048828125,
         | 
| 745 | 
            +
                  "rewards/margins": 0.04502105712890625,
         | 
| 746 | 
            +
                  "rewards/rejected": 0.2720947265625,
         | 
| 747 | 
            +
                  "step": 45
         | 
| 748 | 
            +
                },
         | 
| 749 | 
            +
                {
         | 
| 750 | 
            +
                  "epoch": 1.705336426914153,
         | 
| 751 | 
            +
                  "grad_norm": 32.45627975463867,
         | 
| 752 | 
            +
                  "learning_rate": 7.03125e-08,
         | 
| 753 | 
            +
                  "logits/chosen": 0.378936767578125,
         | 
| 754 | 
            +
                  "logits/rejected": 0.37091064453125,
         | 
| 755 | 
            +
                  "logps/chosen": -166.4375,
         | 
| 756 | 
            +
                  "logps/rejected": -153.34375,
         | 
| 757 | 
            +
                  "loss": 2.9161,
         | 
| 758 | 
            +
                  "nll_loss": 2.2353515625,
         | 
| 759 | 
            +
                  "rewards/accuracies": 0.40625,
         | 
| 760 | 
            +
                  "rewards/chosen": 0.3055419921875,
         | 
| 761 | 
            +
                  "rewards/margins": 0.026824951171875,
         | 
| 762 | 
            +
                  "rewards/rejected": 0.27874755859375,
         | 
| 763 | 
            +
                  "step": 46
         | 
| 764 | 
            +
                },
         | 
| 765 | 
            +
                {
         | 
| 766 | 
            +
                  "epoch": 1.74245939675174,
         | 
| 767 | 
            +
                  "grad_norm": 32.74002456665039,
         | 
| 768 | 
            +
                  "learning_rate": 6.953125e-08,
         | 
| 769 | 
            +
                  "logits/chosen": 0.39892578125,
         | 
| 770 | 
            +
                  "logits/rejected": 0.36236572265625,
         | 
| 771 | 
            +
                  "logps/chosen": -169.375,
         | 
| 772 | 
            +
                  "logps/rejected": -153.375,
         | 
| 773 | 
            +
                  "loss": 2.8928,
         | 
| 774 | 
            +
                  "nll_loss": 2.21044921875,
         | 
| 775 | 
            +
                  "rewards/accuracies": 0.4609375,
         | 
| 776 | 
            +
                  "rewards/chosen": 0.297607421875,
         | 
| 777 | 
            +
                  "rewards/margins": 0.02545928955078125,
         | 
| 778 | 
            +
                  "rewards/rejected": 0.2724609375,
         | 
| 779 | 
            +
                  "step": 47
         | 
| 780 | 
            +
                },
         | 
| 781 | 
            +
                {
         | 
| 782 | 
            +
                  "epoch": 1.7795823665893271,
         | 
| 783 | 
            +
                  "grad_norm": 34.69235610961914,
         | 
| 784 | 
            +
                  "learning_rate": 6.875e-08,
         | 
| 785 | 
            +
                  "logits/chosen": 0.3896484375,
         | 
| 786 | 
            +
                  "logits/rejected": 0.32672119140625,
         | 
| 787 | 
            +
                  "logps/chosen": -167.625,
         | 
| 788 | 
            +
                  "logps/rejected": -154.90625,
         | 
| 789 | 
            +
                  "loss": 2.9146,
         | 
| 790 | 
            +
                  "nll_loss": 2.234375,
         | 
| 791 | 
            +
                  "rewards/accuracies": 0.40625,
         | 
| 792 | 
            +
                  "rewards/chosen": 0.31982421875,
         | 
| 793 | 
            +
                  "rewards/margins": 0.027408599853515625,
         | 
| 794 | 
            +
                  "rewards/rejected": 0.29248046875,
         | 
| 795 | 
            +
                  "step": 48
         | 
| 796 | 
            +
                },
         | 
| 797 | 
            +
                {
         | 
| 798 | 
            +
                  "epoch": 1.8167053364269141,
         | 
| 799 | 
            +
                  "grad_norm": 34.722328186035156,
         | 
| 800 | 
            +
                  "learning_rate": 6.796875e-08,
         | 
| 801 | 
            +
                  "logits/chosen": 0.39080810546875,
         | 
| 802 | 
            +
                  "logits/rejected": 0.3468017578125,
         | 
| 803 | 
            +
                  "logps/chosen": -170.5,
         | 
| 804 | 
            +
                  "logps/rejected": -151.96875,
         | 
| 805 | 
            +
                  "loss": 2.9396,
         | 
| 806 | 
            +
                  "nll_loss": 2.25341796875,
         | 
| 807 | 
            +
                  "rewards/accuracies": 0.4453125,
         | 
| 808 | 
            +
                  "rewards/chosen": 0.3145751953125,
         | 
| 809 | 
            +
                  "rewards/margins": 0.01688385009765625,
         | 
| 810 | 
            +
                  "rewards/rejected": 0.2972412109375,
         | 
| 811 | 
            +
                  "step": 49
         | 
| 812 | 
            +
                },
         | 
| 813 | 
            +
                {
         | 
| 814 | 
            +
                  "epoch": 1.8538283062645011,
         | 
| 815 | 
            +
                  "grad_norm": 35.193389892578125,
         | 
| 816 | 
            +
                  "learning_rate": 6.718749999999999e-08,
         | 
| 817 | 
            +
                  "logits/chosen": 0.3734130859375,
         | 
| 818 | 
            +
                  "logits/rejected": 0.354248046875,
         | 
| 819 | 
            +
                  "logps/chosen": -169.4375,
         | 
| 820 | 
            +
                  "logps/rejected": -148.875,
         | 
| 821 | 
            +
                  "loss": 2.9095,
         | 
| 822 | 
            +
                  "nll_loss": 2.2333984375,
         | 
| 823 | 
            +
                  "rewards/accuracies": 0.4296875,
         | 
| 824 | 
            +
                  "rewards/chosen": 0.341552734375,
         | 
| 825 | 
            +
                  "rewards/margins": 0.03308868408203125,
         | 
| 826 | 
            +
                  "rewards/rejected": 0.3084716796875,
         | 
| 827 | 
            +
                  "step": 50
         | 
| 828 | 
            +
                },
         | 
| 829 | 
            +
                {
         | 
| 830 | 
            +
                  "epoch": 1.8909512761020881,
         | 
| 831 | 
            +
                  "grad_norm": 33.2057991027832,
         | 
| 832 | 
            +
                  "learning_rate": 6.640625e-08,
         | 
| 833 | 
            +
                  "logits/chosen": 0.37799072265625,
         | 
| 834 | 
            +
                  "logits/rejected": 0.3985595703125,
         | 
| 835 | 
            +
                  "logps/chosen": -168.3125,
         | 
| 836 | 
            +
                  "logps/rejected": -147.34375,
         | 
| 837 | 
            +
                  "loss": 2.9147,
         | 
| 838 | 
            +
                  "nll_loss": 2.24365234375,
         | 
| 839 | 
            +
                  "rewards/accuracies": 0.4609375,
         | 
| 840 | 
            +
                  "rewards/chosen": 0.4085693359375,
         | 
| 841 | 
            +
                  "rewards/margins": 0.0473785400390625,
         | 
| 842 | 
            +
                  "rewards/rejected": 0.3614501953125,
         | 
| 843 | 
            +
                  "step": 51
         | 
| 844 | 
            +
                },
         | 
| 845 | 
            +
                {
         | 
| 846 | 
            +
                  "epoch": 1.9280742459396751,
         | 
| 847 | 
            +
                  "grad_norm": 32.10712432861328,
         | 
| 848 | 
            +
                  "learning_rate": 6.5625e-08,
         | 
| 849 | 
            +
                  "logits/chosen": 0.31439208984375,
         | 
| 850 | 
            +
                  "logits/rejected": 0.35784912109375,
         | 
| 851 | 
            +
                  "logps/chosen": -166.6875,
         | 
| 852 | 
            +
                  "logps/rejected": -148.40625,
         | 
| 853 | 
            +
                  "loss": 2.8973,
         | 
| 854 | 
            +
                  "nll_loss": 2.22412109375,
         | 
| 855 | 
            +
                  "rewards/accuracies": 0.5,
         | 
| 856 | 
            +
                  "rewards/chosen": 0.4617919921875,
         | 
| 857 | 
            +
                  "rewards/margins": 0.04436492919921875,
         | 
| 858 | 
            +
                  "rewards/rejected": 0.417724609375,
         | 
| 859 | 
            +
                  "step": 52
         | 
| 860 | 
            +
                },
         | 
| 861 | 
            +
                {
         | 
| 862 | 
            +
                  "epoch": 1.9651972157772621,
         | 
| 863 | 
            +
                  "grad_norm": 32.033958435058594,
         | 
| 864 | 
            +
                  "learning_rate": 6.484375e-08,
         | 
| 865 | 
            +
                  "logits/chosen": 0.34063720703125,
         | 
| 866 | 
            +
                  "logits/rejected": 0.35675048828125,
         | 
| 867 | 
            +
                  "logps/chosen": -167.9375,
         | 
| 868 | 
            +
                  "logps/rejected": -147.875,
         | 
| 869 | 
            +
                  "loss": 2.9434,
         | 
| 870 | 
            +
                  "nll_loss": 2.2705078125,
         | 
| 871 | 
            +
                  "rewards/accuracies": 0.4609375,
         | 
| 872 | 
            +
                  "rewards/chosen": 0.519775390625,
         | 
| 873 | 
            +
                  "rewards/margins": 0.0435333251953125,
         | 
| 874 | 
            +
                  "rewards/rejected": 0.47607421875,
         | 
| 875 | 
            +
                  "step": 53
         | 
| 876 | 
            +
                },
         | 
| 877 | 
            +
                {
         | 
| 878 | 
            +
                  "epoch": 2.0,
         | 
| 879 | 
            +
                  "grad_norm": 34.35704040527344,
         | 
| 880 | 
            +
                  "learning_rate": 6.40625e-08,
         | 
| 881 | 
            +
                  "logits/chosen": 0.3671875,
         | 
| 882 | 
            +
                  "logits/rejected": 0.3578124940395355,
         | 
| 883 | 
            +
                  "logps/chosen": -168.73333740234375,
         | 
| 884 | 
            +
                  "logps/rejected": -142.5,
         | 
| 885 | 
            +
                  "loss": 2.8677,
         | 
| 886 | 
            +
                  "nll_loss": 2.211458444595337,
         | 
| 887 | 
            +
                  "rewards/accuracies": 0.5,
         | 
| 888 | 
            +
                  "rewards/chosen": 0.5489583611488342,
         | 
| 889 | 
            +
                  "rewards/margins": 0.07861328125,
         | 
| 890 | 
            +
                  "rewards/rejected": 0.470703125,
         | 
| 891 | 
            +
                  "step": 54
         | 
| 892 | 
            +
                },
         | 
| 893 | 
            +
                {
         | 
| 894 | 
            +
                  "epoch": 2.0,
         | 
| 895 | 
            +
                  "eval_logits/chosen": 0.3727213442325592,
         | 
| 896 | 
            +
                  "eval_logits/rejected": 0.3382161557674408,
         | 
| 897 | 
            +
                  "eval_logps/chosen": -166.0,
         | 
| 898 | 
            +
                  "eval_logps/rejected": -145.1666717529297,
         | 
| 899 | 
            +
                  "eval_loss": 2.8258464336395264,
         | 
| 900 | 
            +
                  "eval_nll_loss": 2.1666667461395264,
         | 
| 901 | 
            +
                  "eval_rewards/accuracies": 0.5338541865348816,
         | 
| 902 | 
            +
                  "eval_rewards/chosen": 0.5930989384651184,
         | 
| 903 | 
            +
                  "eval_rewards/margins": 0.0773213729262352,
         | 
| 904 | 
            +
                  "eval_rewards/rejected": 0.5166015625,
         | 
| 905 | 
            +
                  "eval_runtime": 103.3619,
         | 
| 906 | 
            +
                  "eval_samples_per_second": 3.715,
         | 
| 907 | 
            +
                  "eval_steps_per_second": 0.058,
         | 
| 908 | 
            +
                  "step": 54
         | 
| 909 | 
            +
                },
         | 
| 910 | 
            +
                {
         | 
| 911 | 
            +
                  "epoch": 2.0371229698375872,
         | 
| 912 | 
            +
                  "grad_norm": 32.25424575805664,
         | 
| 913 | 
            +
                  "learning_rate": 6.328125e-08,
         | 
| 914 | 
            +
                  "logits/chosen": 0.37457275390625,
         | 
| 915 | 
            +
                  "logits/rejected": 0.35791015625,
         | 
| 916 | 
            +
                  "logps/chosen": -168.6875,
         | 
| 917 | 
            +
                  "logps/rejected": -154.3125,
         | 
| 918 | 
            +
                  "loss": 2.8842,
         | 
| 919 | 
            +
                  "nll_loss": 2.220703125,
         | 
| 920 | 
            +
                  "rewards/accuracies": 0.515625,
         | 
| 921 | 
            +
                  "rewards/chosen": 0.600830078125,
         | 
| 922 | 
            +
                  "rewards/margins": 0.0645904541015625,
         | 
| 923 | 
            +
                  "rewards/rejected": 0.5364990234375,
         | 
| 924 | 
            +
                  "step": 55
         | 
| 925 | 
            +
                },
         | 
| 926 | 
            +
                {
         | 
| 927 | 
            +
                  "epoch": 2.074245939675174,
         | 
| 928 | 
            +
                  "grad_norm": 30.806289672851562,
         | 
| 929 | 
            +
                  "learning_rate": 6.25e-08,
         | 
| 930 | 
            +
                  "logits/chosen": 0.33087158203125,
         | 
| 931 | 
            +
                  "logits/rejected": 0.30120849609375,
         | 
| 932 | 
            +
                  "logps/chosen": -164.5,
         | 
| 933 | 
            +
                  "logps/rejected": -147.65625,
         | 
| 934 | 
            +
                  "loss": 2.8889,
         | 
| 935 | 
            +
                  "nll_loss": 2.21923828125,
         | 
| 936 | 
            +
                  "rewards/accuracies": 0.453125,
         | 
| 937 | 
            +
                  "rewards/chosen": 0.616455078125,
         | 
| 938 | 
            +
                  "rewards/margins": 0.05657958984375,
         | 
| 939 | 
            +
                  "rewards/rejected": 0.5601806640625,
         | 
| 940 | 
            +
                  "step": 56
         | 
| 941 | 
            +
                },
         | 
| 942 | 
            +
                {
         | 
| 943 | 
            +
                  "epoch": 2.111368909512761,
         | 
| 944 | 
            +
                  "grad_norm": 33.29100799560547,
         | 
| 945 | 
            +
                  "learning_rate": 6.171874999999999e-08,
         | 
| 946 | 
            +
                  "logits/chosen": 0.330352783203125,
         | 
| 947 | 
            +
                  "logits/rejected": 0.3253173828125,
         | 
| 948 | 
            +
                  "logps/chosen": -168.125,
         | 
| 949 | 
            +
                  "logps/rejected": -142.21875,
         | 
| 950 | 
            +
                  "loss": 2.8463,
         | 
| 951 | 
            +
                  "nll_loss": 2.19287109375,
         | 
| 952 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 953 | 
            +
                  "rewards/chosen": 0.65087890625,
         | 
| 954 | 
            +
                  "rewards/margins": 0.0902557373046875,
         | 
| 955 | 
            +
                  "rewards/rejected": 0.5606689453125,
         | 
| 956 | 
            +
                  "step": 57
         | 
| 957 | 
            +
                },
         | 
| 958 | 
            +
                {
         | 
| 959 | 
            +
                  "epoch": 2.148491879350348,
         | 
| 960 | 
            +
                  "grad_norm": 30.142637252807617,
         | 
| 961 | 
            +
                  "learning_rate": 6.09375e-08,
         | 
| 962 | 
            +
                  "logits/chosen": 0.3507080078125,
         | 
| 963 | 
            +
                  "logits/rejected": 0.34368896484375,
         | 
| 964 | 
            +
                  "logps/chosen": -163.625,
         | 
| 965 | 
            +
                  "logps/rejected": -147.8125,
         | 
| 966 | 
            +
                  "loss": 2.8784,
         | 
| 967 | 
            +
                  "nll_loss": 2.20654296875,
         | 
| 968 | 
            +
                  "rewards/accuracies": 0.4765625,
         | 
| 969 | 
            +
                  "rewards/chosen": 0.662841796875,
         | 
| 970 | 
            +
                  "rewards/margins": 0.0572052001953125,
         | 
| 971 | 
            +
                  "rewards/rejected": 0.60546875,
         | 
| 972 | 
            +
                  "step": 58
         | 
| 973 | 
            +
                },
         | 
| 974 | 
            +
                {
         | 
| 975 | 
            +
                  "epoch": 2.1856148491879352,
         | 
| 976 | 
            +
                  "grad_norm": 31.264293670654297,
         | 
| 977 | 
            +
                  "learning_rate": 6.015624999999999e-08,
         | 
| 978 | 
            +
                  "logits/chosen": 0.3809814453125,
         | 
| 979 | 
            +
                  "logits/rejected": 0.39666748046875,
         | 
| 980 | 
            +
                  "logps/chosen": -167.9375,
         | 
| 981 | 
            +
                  "logps/rejected": -149.28125,
         | 
| 982 | 
            +
                  "loss": 2.8646,
         | 
| 983 | 
            +
                  "nll_loss": 2.2001953125,
         | 
| 984 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 985 | 
            +
                  "rewards/chosen": 0.68896484375,
         | 
| 986 | 
            +
                  "rewards/margins": 0.0715789794921875,
         | 
| 987 | 
            +
                  "rewards/rejected": 0.6170654296875,
         | 
| 988 | 
            +
                  "step": 59
         | 
| 989 | 
            +
                },
         | 
| 990 | 
            +
                {
         | 
| 991 | 
            +
                  "epoch": 2.222737819025522,
         | 
| 992 | 
            +
                  "grad_norm": 28.420000076293945,
         | 
| 993 | 
            +
                  "learning_rate": 5.9375e-08,
         | 
| 994 | 
            +
                  "logits/chosen": 0.3916015625,
         | 
| 995 | 
            +
                  "logits/rejected": 0.34088134765625,
         | 
| 996 | 
            +
                  "logps/chosen": -161.5,
         | 
| 997 | 
            +
                  "logps/rejected": -152.5625,
         | 
| 998 | 
            +
                  "loss": 2.8021,
         | 
| 999 | 
            +
                  "nll_loss": 2.13037109375,
         | 
| 1000 | 
            +
                  "rewards/accuracies": 0.453125,
         | 
| 1001 | 
            +
                  "rewards/chosen": 0.707275390625,
         | 
| 1002 | 
            +
                  "rewards/margins": 0.0574188232421875,
         | 
| 1003 | 
            +
                  "rewards/rejected": 0.64990234375,
         | 
| 1004 | 
            +
                  "step": 60
         | 
| 1005 | 
            +
                },
         | 
| 1006 | 
            +
                {
         | 
| 1007 | 
            +
                  "epoch": 2.259860788863109,
         | 
| 1008 | 
            +
                  "grad_norm": 31.354408264160156,
         | 
| 1009 | 
            +
                  "learning_rate": 5.8593749999999995e-08,
         | 
| 1010 | 
            +
                  "logits/chosen": 0.373992919921875,
         | 
| 1011 | 
            +
                  "logits/rejected": 0.327880859375,
         | 
| 1012 | 
            +
                  "logps/chosen": -166.3125,
         | 
| 1013 | 
            +
                  "logps/rejected": -153.5625,
         | 
| 1014 | 
            +
                  "loss": 2.9203,
         | 
| 1015 | 
            +
                  "nll_loss": 2.2626953125,
         | 
| 1016 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1017 | 
            +
                  "rewards/chosen": 0.742431640625,
         | 
| 1018 | 
            +
                  "rewards/margins": 0.082183837890625,
         | 
| 1019 | 
            +
                  "rewards/rejected": 0.660400390625,
         | 
| 1020 | 
            +
                  "step": 61
         | 
| 1021 | 
            +
                },
         | 
| 1022 | 
            +
                {
         | 
| 1023 | 
            +
                  "epoch": 2.296983758700696,
         | 
| 1024 | 
            +
                  "grad_norm": 30.681615829467773,
         | 
| 1025 | 
            +
                  "learning_rate": 5.7812499999999996e-08,
         | 
| 1026 | 
            +
                  "logits/chosen": 0.35882568359375,
         | 
| 1027 | 
            +
                  "logits/rejected": 0.33074951171875,
         | 
| 1028 | 
            +
                  "logps/chosen": -162.6875,
         | 
| 1029 | 
            +
                  "logps/rejected": -145.03125,
         | 
| 1030 | 
            +
                  "loss": 2.8244,
         | 
| 1031 | 
            +
                  "nll_loss": 2.16943359375,
         | 
| 1032 | 
            +
                  "rewards/accuracies": 0.5,
         | 
| 1033 | 
            +
                  "rewards/chosen": 0.709228515625,
         | 
| 1034 | 
            +
                  "rewards/margins": 0.0884552001953125,
         | 
| 1035 | 
            +
                  "rewards/rejected": 0.620849609375,
         | 
| 1036 | 
            +
                  "step": 62
         | 
| 1037 | 
            +
                },
         | 
| 1038 | 
            +
                {
         | 
| 1039 | 
            +
                  "epoch": 2.3341067285382833,
         | 
| 1040 | 
            +
                  "grad_norm": 28.197145462036133,
         | 
| 1041 | 
            +
                  "learning_rate": 5.7031249999999997e-08,
         | 
| 1042 | 
            +
                  "logits/chosen": 0.3367919921875,
         | 
| 1043 | 
            +
                  "logits/rejected": 0.3353271484375,
         | 
| 1044 | 
            +
                  "logps/chosen": -166.125,
         | 
| 1045 | 
            +
                  "logps/rejected": -157.625,
         | 
| 1046 | 
            +
                  "loss": 2.8934,
         | 
| 1047 | 
            +
                  "nll_loss": 2.21533203125,
         | 
| 1048 | 
            +
                  "rewards/accuracies": 0.46875,
         | 
| 1049 | 
            +
                  "rewards/chosen": 0.7568359375,
         | 
| 1050 | 
            +
                  "rewards/margins": 0.0417938232421875,
         | 
| 1051 | 
            +
                  "rewards/rejected": 0.714599609375,
         | 
| 1052 | 
            +
                  "step": 63
         | 
| 1053 | 
            +
                },
         | 
| 1054 | 
            +
                {
         | 
| 1055 | 
            +
                  "epoch": 2.37122969837587,
         | 
| 1056 | 
            +
                  "grad_norm": 33.402793884277344,
         | 
| 1057 | 
            +
                  "learning_rate": 5.625e-08,
         | 
| 1058 | 
            +
                  "logits/chosen": 0.35845947265625,
         | 
| 1059 | 
            +
                  "logits/rejected": 0.3208465576171875,
         | 
| 1060 | 
            +
                  "logps/chosen": -168.9375,
         | 
| 1061 | 
            +
                  "logps/rejected": -147.6875,
         | 
| 1062 | 
            +
                  "loss": 2.8792,
         | 
| 1063 | 
            +
                  "nll_loss": 2.22900390625,
         | 
| 1064 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 1065 | 
            +
                  "rewards/chosen": 0.7763671875,
         | 
| 1066 | 
            +
                  "rewards/margins": 0.102294921875,
         | 
| 1067 | 
            +
                  "rewards/rejected": 0.673828125,
         | 
| 1068 | 
            +
                  "step": 64
         | 
| 1069 | 
            +
                },
         | 
| 1070 | 
            +
                {
         | 
| 1071 | 
            +
                  "epoch": 2.408352668213457,
         | 
| 1072 | 
            +
                  "grad_norm": 31.952545166015625,
         | 
| 1073 | 
            +
                  "learning_rate": 5.546875e-08,
         | 
| 1074 | 
            +
                  "logits/chosen": 0.32257080078125,
         | 
| 1075 | 
            +
                  "logits/rejected": 0.34716796875,
         | 
| 1076 | 
            +
                  "logps/chosen": -174.25,
         | 
| 1077 | 
            +
                  "logps/rejected": -149.625,
         | 
| 1078 | 
            +
                  "loss": 2.8956,
         | 
| 1079 | 
            +
                  "nll_loss": 2.25,
         | 
| 1080 | 
            +
                  "rewards/accuracies": 0.5625,
         | 
| 1081 | 
            +
                  "rewards/chosen": 0.796875,
         | 
| 1082 | 
            +
                  "rewards/margins": 0.10577392578125,
         | 
| 1083 | 
            +
                  "rewards/rejected": 0.691162109375,
         | 
| 1084 | 
            +
                  "step": 65
         | 
| 1085 | 
            +
                },
         | 
| 1086 | 
            +
                {
         | 
| 1087 | 
            +
                  "epoch": 2.445475638051044,
         | 
| 1088 | 
            +
                  "grad_norm": 28.59982681274414,
         | 
| 1089 | 
            +
                  "learning_rate": 5.46875e-08,
         | 
| 1090 | 
            +
                  "logits/chosen": 0.3751220703125,
         | 
| 1091 | 
            +
                  "logits/rejected": 0.35809326171875,
         | 
| 1092 | 
            +
                  "logps/chosen": -161.25,
         | 
| 1093 | 
            +
                  "logps/rejected": -143.8125,
         | 
| 1094 | 
            +
                  "loss": 2.8065,
         | 
| 1095 | 
            +
                  "nll_loss": 2.14111328125,
         | 
| 1096 | 
            +
                  "rewards/accuracies": 0.4765625,
         | 
| 1097 | 
            +
                  "rewards/chosen": 0.77685546875,
         | 
| 1098 | 
            +
                  "rewards/margins": 0.0706024169921875,
         | 
| 1099 | 
            +
                  "rewards/rejected": 0.705810546875,
         | 
| 1100 | 
            +
                  "step": 66
         | 
| 1101 | 
            +
                },
         | 
| 1102 | 
            +
                {
         | 
| 1103 | 
            +
                  "epoch": 2.4825986078886313,
         | 
| 1104 | 
            +
                  "grad_norm": 32.72235107421875,
         | 
| 1105 | 
            +
                  "learning_rate": 5.390625e-08,
         | 
| 1106 | 
            +
                  "logits/chosen": 0.37261962890625,
         | 
| 1107 | 
            +
                  "logits/rejected": 0.33990478515625,
         | 
| 1108 | 
            +
                  "logps/chosen": -162.9375,
         | 
| 1109 | 
            +
                  "logps/rejected": -138.4375,
         | 
| 1110 | 
            +
                  "loss": 2.8118,
         | 
| 1111 | 
            +
                  "nll_loss": 2.1708984375,
         | 
| 1112 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 1113 | 
            +
                  "rewards/chosen": 0.792236328125,
         | 
| 1114 | 
            +
                  "rewards/margins": 0.1248931884765625,
         | 
| 1115 | 
            +
                  "rewards/rejected": 0.6671142578125,
         | 
| 1116 | 
            +
                  "step": 67
         | 
| 1117 | 
            +
                },
         | 
| 1118 | 
            +
                {
         | 
| 1119 | 
            +
                  "epoch": 2.519721577726218,
         | 
| 1120 | 
            +
                  "grad_norm": 29.726709365844727,
         | 
| 1121 | 
            +
                  "learning_rate": 5.3124999999999994e-08,
         | 
| 1122 | 
            +
                  "logits/chosen": 0.40264892578125,
         | 
| 1123 | 
            +
                  "logits/rejected": 0.37481689453125,
         | 
| 1124 | 
            +
                  "logps/chosen": -164.6875,
         | 
| 1125 | 
            +
                  "logps/rejected": -145.59375,
         | 
| 1126 | 
            +
                  "loss": 2.8351,
         | 
| 1127 | 
            +
                  "nll_loss": 2.173828125,
         | 
| 1128 | 
            +
                  "rewards/accuracies": 0.515625,
         | 
| 1129 | 
            +
                  "rewards/chosen": 0.793701171875,
         | 
| 1130 | 
            +
                  "rewards/margins": 0.0774993896484375,
         | 
| 1131 | 
            +
                  "rewards/rejected": 0.715576171875,
         | 
| 1132 | 
            +
                  "step": 68
         | 
| 1133 | 
            +
                },
         | 
| 1134 | 
            +
                {
         | 
| 1135 | 
            +
                  "epoch": 2.556844547563805,
         | 
| 1136 | 
            +
                  "grad_norm": 30.94222068786621,
         | 
| 1137 | 
            +
                  "learning_rate": 5.2343749999999995e-08,
         | 
| 1138 | 
            +
                  "logits/chosen": 0.3359375,
         | 
| 1139 | 
            +
                  "logits/rejected": 0.34417724609375,
         | 
| 1140 | 
            +
                  "logps/chosen": -172.875,
         | 
| 1141 | 
            +
                  "logps/rejected": -156.71875,
         | 
| 1142 | 
            +
                  "loss": 2.8849,
         | 
| 1143 | 
            +
                  "nll_loss": 2.22607421875,
         | 
| 1144 | 
            +
                  "rewards/accuracies": 0.4453125,
         | 
| 1145 | 
            +
                  "rewards/chosen": 0.8564453125,
         | 
| 1146 | 
            +
                  "rewards/margins": 0.0876007080078125,
         | 
| 1147 | 
            +
                  "rewards/rejected": 0.7685546875,
         | 
| 1148 | 
            +
                  "step": 69
         | 
| 1149 | 
            +
                },
         | 
| 1150 | 
            +
                {
         | 
| 1151 | 
            +
                  "epoch": 2.593967517401392,
         | 
| 1152 | 
            +
                  "grad_norm": 27.713054656982422,
         | 
| 1153 | 
            +
                  "learning_rate": 5.1562499999999996e-08,
         | 
| 1154 | 
            +
                  "logits/chosen": 0.413330078125,
         | 
| 1155 | 
            +
                  "logits/rejected": 0.35443115234375,
         | 
| 1156 | 
            +
                  "logps/chosen": -167.6875,
         | 
| 1157 | 
            +
                  "logps/rejected": -155.5625,
         | 
| 1158 | 
            +
                  "loss": 2.8779,
         | 
| 1159 | 
            +
                  "nll_loss": 2.2021484375,
         | 
| 1160 | 
            +
                  "rewards/accuracies": 0.4296875,
         | 
| 1161 | 
            +
                  "rewards/chosen": 0.825927734375,
         | 
| 1162 | 
            +
                  "rewards/margins": 0.0465087890625,
         | 
| 1163 | 
            +
                  "rewards/rejected": 0.77978515625,
         | 
| 1164 | 
            +
                  "step": 70
         | 
| 1165 | 
            +
                },
         | 
| 1166 | 
            +
                {
         | 
| 1167 | 
            +
                  "epoch": 2.6310904872389793,
         | 
| 1168 | 
            +
                  "grad_norm": 30.74073600769043,
         | 
| 1169 | 
            +
                  "learning_rate": 5.078125e-08,
         | 
| 1170 | 
            +
                  "logits/chosen": 0.3853759765625,
         | 
| 1171 | 
            +
                  "logits/rejected": 0.38409423828125,
         | 
| 1172 | 
            +
                  "logps/chosen": -168.625,
         | 
| 1173 | 
            +
                  "logps/rejected": -143.5625,
         | 
| 1174 | 
            +
                  "loss": 2.8197,
         | 
| 1175 | 
            +
                  "nll_loss": 2.1552734375,
         | 
| 1176 | 
            +
                  "rewards/accuracies": 0.484375,
         | 
| 1177 | 
            +
                  "rewards/chosen": 0.820556640625,
         | 
| 1178 | 
            +
                  "rewards/margins": 0.0794830322265625,
         | 
| 1179 | 
            +
                  "rewards/rejected": 0.74169921875,
         | 
| 1180 | 
            +
                  "step": 71
         | 
| 1181 | 
            +
                },
         | 
| 1182 | 
            +
                {
         | 
| 1183 | 
            +
                  "epoch": 2.668213457076566,
         | 
| 1184 | 
            +
                  "grad_norm": 28.98983383178711,
         | 
| 1185 | 
            +
                  "learning_rate": 5e-08,
         | 
| 1186 | 
            +
                  "logits/chosen": 0.3699951171875,
         | 
| 1187 | 
            +
                  "logits/rejected": 0.36859130859375,
         | 
| 1188 | 
            +
                  "logps/chosen": -168.25,
         | 
| 1189 | 
            +
                  "logps/rejected": -150.84375,
         | 
| 1190 | 
            +
                  "loss": 2.8354,
         | 
| 1191 | 
            +
                  "nll_loss": 2.18115234375,
         | 
| 1192 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1193 | 
            +
                  "rewards/chosen": 0.835693359375,
         | 
| 1194 | 
            +
                  "rewards/margins": 0.093719482421875,
         | 
| 1195 | 
            +
                  "rewards/rejected": 0.742431640625,
         | 
| 1196 | 
            +
                  "step": 72
         | 
| 1197 | 
            +
                },
         | 
| 1198 | 
            +
                {
         | 
| 1199 | 
            +
                  "epoch": 2.705336426914153,
         | 
| 1200 | 
            +
                  "grad_norm": 29.943038940429688,
         | 
| 1201 | 
            +
                  "learning_rate": 4.921875e-08,
         | 
| 1202 | 
            +
                  "logits/chosen": 0.32293701171875,
         | 
| 1203 | 
            +
                  "logits/rejected": 0.337158203125,
         | 
| 1204 | 
            +
                  "logps/chosen": -167.4375,
         | 
| 1205 | 
            +
                  "logps/rejected": -145.90625,
         | 
| 1206 | 
            +
                  "loss": 2.8192,
         | 
| 1207 | 
            +
                  "nll_loss": 2.16748046875,
         | 
| 1208 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 1209 | 
            +
                  "rewards/chosen": 0.83203125,
         | 
| 1210 | 
            +
                  "rewards/margins": 0.094451904296875,
         | 
| 1211 | 
            +
                  "rewards/rejected": 0.73876953125,
         | 
| 1212 | 
            +
                  "step": 73
         | 
| 1213 | 
            +
                },
         | 
| 1214 | 
            +
                {
         | 
| 1215 | 
            +
                  "epoch": 2.74245939675174,
         | 
| 1216 | 
            +
                  "grad_norm": 32.40934753417969,
         | 
| 1217 | 
            +
                  "learning_rate": 4.84375e-08,
         | 
| 1218 | 
            +
                  "logits/chosen": 0.38946533203125,
         | 
| 1219 | 
            +
                  "logits/rejected": 0.38507080078125,
         | 
| 1220 | 
            +
                  "logps/chosen": -165.25,
         | 
| 1221 | 
            +
                  "logps/rejected": -144.0,
         | 
| 1222 | 
            +
                  "loss": 2.8231,
         | 
| 1223 | 
            +
                  "nll_loss": 2.18310546875,
         | 
| 1224 | 
            +
                  "rewards/accuracies": 0.578125,
         | 
| 1225 | 
            +
                  "rewards/chosen": 0.861328125,
         | 
| 1226 | 
            +
                  "rewards/margins": 0.1257476806640625,
         | 
| 1227 | 
            +
                  "rewards/rejected": 0.7353515625,
         | 
| 1228 | 
            +
                  "step": 74
         | 
| 1229 | 
            +
                },
         | 
| 1230 | 
            +
                {
         | 
| 1231 | 
            +
                  "epoch": 2.7795823665893273,
         | 
| 1232 | 
            +
                  "grad_norm": 31.82373809814453,
         | 
| 1233 | 
            +
                  "learning_rate": 4.765625e-08,
         | 
| 1234 | 
            +
                  "logits/chosen": 0.41070556640625,
         | 
| 1235 | 
            +
                  "logits/rejected": 0.36328125,
         | 
| 1236 | 
            +
                  "logps/chosen": -164.1875,
         | 
| 1237 | 
            +
                  "logps/rejected": -143.71875,
         | 
| 1238 | 
            +
                  "loss": 2.8237,
         | 
| 1239 | 
            +
                  "nll_loss": 2.181640625,
         | 
| 1240 | 
            +
                  "rewards/accuracies": 0.546875,
         | 
| 1241 | 
            +
                  "rewards/chosen": 0.864990234375,
         | 
| 1242 | 
            +
                  "rewards/margins": 0.121978759765625,
         | 
| 1243 | 
            +
                  "rewards/rejected": 0.742919921875,
         | 
| 1244 | 
            +
                  "step": 75
         | 
| 1245 | 
            +
                },
         | 
| 1246 | 
            +
                {
         | 
| 1247 | 
            +
                  "epoch": 2.816705336426914,
         | 
| 1248 | 
            +
                  "grad_norm": 30.668813705444336,
         | 
| 1249 | 
            +
                  "learning_rate": 4.6875e-08,
         | 
| 1250 | 
            +
                  "logits/chosen": 0.30828857421875,
         | 
| 1251 | 
            +
                  "logits/rejected": 0.283935546875,
         | 
| 1252 | 
            +
                  "logps/chosen": -165.0,
         | 
| 1253 | 
            +
                  "logps/rejected": -147.0,
         | 
| 1254 | 
            +
                  "loss": 2.8801,
         | 
| 1255 | 
            +
                  "nll_loss": 2.23095703125,
         | 
| 1256 | 
            +
                  "rewards/accuracies": 0.5703125,
         | 
| 1257 | 
            +
                  "rewards/chosen": 0.84814453125,
         | 
| 1258 | 
            +
                  "rewards/margins": 0.110992431640625,
         | 
| 1259 | 
            +
                  "rewards/rejected": 0.737548828125,
         | 
| 1260 | 
            +
                  "step": 76
         | 
| 1261 | 
            +
                },
         | 
| 1262 | 
            +
                {
         | 
| 1263 | 
            +
                  "epoch": 2.853828306264501,
         | 
| 1264 | 
            +
                  "grad_norm": 30.72187614440918,
         | 
| 1265 | 
            +
                  "learning_rate": 4.6093749999999995e-08,
         | 
| 1266 | 
            +
                  "logits/chosen": 0.31927490234375,
         | 
| 1267 | 
            +
                  "logits/rejected": 0.308197021484375,
         | 
| 1268 | 
            +
                  "logps/chosen": -164.75,
         | 
| 1269 | 
            +
                  "logps/rejected": -146.1875,
         | 
| 1270 | 
            +
                  "loss": 2.8469,
         | 
| 1271 | 
            +
                  "nll_loss": 2.203125,
         | 
| 1272 | 
            +
                  "rewards/accuracies": 0.5546875,
         | 
| 1273 | 
            +
                  "rewards/chosen": 0.867919921875,
         | 
| 1274 | 
            +
                  "rewards/margins": 0.1165924072265625,
         | 
| 1275 | 
            +
                  "rewards/rejected": 0.7509765625,
         | 
| 1276 | 
            +
                  "step": 77
         | 
| 1277 | 
            +
                },
         | 
| 1278 | 
            +
                {
         | 
| 1279 | 
            +
                  "epoch": 2.890951276102088,
         | 
| 1280 | 
            +
                  "grad_norm": 29.66461944580078,
         | 
| 1281 | 
            +
                  "learning_rate": 4.5312499999999996e-08,
         | 
| 1282 | 
            +
                  "logits/chosen": 0.3563232421875,
         | 
| 1283 | 
            +
                  "logits/rejected": 0.3353271484375,
         | 
| 1284 | 
            +
                  "logps/chosen": -162.4375,
         | 
| 1285 | 
            +
                  "logps/rejected": -141.90625,
         | 
| 1286 | 
            +
                  "loss": 2.8171,
         | 
| 1287 | 
            +
                  "nll_loss": 2.1650390625,
         | 
| 1288 | 
            +
                  "rewards/accuracies": 0.5703125,
         | 
| 1289 | 
            +
                  "rewards/chosen": 0.865966796875,
         | 
| 1290 | 
            +
                  "rewards/margins": 0.0980224609375,
         | 
| 1291 | 
            +
                  "rewards/rejected": 0.76806640625,
         | 
| 1292 | 
            +
                  "step": 78
         | 
| 1293 | 
            +
                },
         | 
| 1294 | 
            +
                {
         | 
| 1295 | 
            +
                  "epoch": 2.9280742459396754,
         | 
| 1296 | 
            +
                  "grad_norm": 28.587329864501953,
         | 
| 1297 | 
            +
                  "learning_rate": 4.453125e-08,
         | 
| 1298 | 
            +
                  "logits/chosen": 0.34588623046875,
         | 
| 1299 | 
            +
                  "logits/rejected": 0.31683349609375,
         | 
| 1300 | 
            +
                  "logps/chosen": -159.9375,
         | 
| 1301 | 
            +
                  "logps/rejected": -141.90625,
         | 
| 1302 | 
            +
                  "loss": 2.8468,
         | 
| 1303 | 
            +
                  "nll_loss": 2.18505859375,
         | 
| 1304 | 
            +
                  "rewards/accuracies": 0.5,
         | 
| 1305 | 
            +
                  "rewards/chosen": 0.8525390625,
         | 
| 1306 | 
            +
                  "rewards/margins": 0.0854949951171875,
         | 
| 1307 | 
            +
                  "rewards/rejected": 0.76708984375,
         | 
| 1308 | 
            +
                  "step": 79
         | 
| 1309 | 
            +
                },
         | 
| 1310 | 
            +
                {
         | 
| 1311 | 
            +
                  "epoch": 2.965197215777262,
         | 
| 1312 | 
            +
                  "grad_norm": 29.01342010498047,
         | 
| 1313 | 
            +
                  "learning_rate": 4.375e-08,
         | 
| 1314 | 
            +
                  "logits/chosen": 0.4154052734375,
         | 
| 1315 | 
            +
                  "logits/rejected": 0.372314453125,
         | 
| 1316 | 
            +
                  "logps/chosen": -161.375,
         | 
| 1317 | 
            +
                  "logps/rejected": -145.96875,
         | 
| 1318 | 
            +
                  "loss": 2.7547,
         | 
| 1319 | 
            +
                  "nll_loss": 2.10107421875,
         | 
| 1320 | 
            +
                  "rewards/accuracies": 0.5546875,
         | 
| 1321 | 
            +
                  "rewards/chosen": 0.854248046875,
         | 
| 1322 | 
            +
                  "rewards/margins": 0.0937042236328125,
         | 
| 1323 | 
            +
                  "rewards/rejected": 0.7607421875,
         | 
| 1324 | 
            +
                  "step": 80
         | 
| 1325 | 
            +
                },
         | 
| 1326 | 
            +
                {
         | 
| 1327 | 
            +
                  "epoch": 3.0,
         | 
| 1328 | 
            +
                  "grad_norm": 30.070417404174805,
         | 
| 1329 | 
            +
                  "learning_rate": 4.296875e-08,
         | 
| 1330 | 
            +
                  "logits/chosen": 0.38977864384651184,
         | 
| 1331 | 
            +
                  "logits/rejected": 0.3753906190395355,
         | 
| 1332 | 
            +
                  "logps/chosen": -162.86666870117188,
         | 
| 1333 | 
            +
                  "logps/rejected": -145.36666870117188,
         | 
| 1334 | 
            +
                  "loss": 2.8077,
         | 
| 1335 | 
            +
                  "nll_loss": 2.152083396911621,
         | 
| 1336 | 
            +
                  "rewards/accuracies": 0.5583333373069763,
         | 
| 1337 | 
            +
                  "rewards/chosen": 0.8833333253860474,
         | 
| 1338 | 
            +
                  "rewards/margins": 0.10224609076976776,
         | 
| 1339 | 
            +
                  "rewards/rejected": 0.7809895873069763,
         | 
| 1340 | 
            +
                  "step": 81
         | 
| 1341 | 
            +
                },
         | 
| 1342 | 
            +
                {
         | 
| 1343 | 
            +
                  "epoch": 3.0,
         | 
| 1344 | 
            +
                  "eval_logits/chosen": 0.3587239682674408,
         | 
| 1345 | 
            +
                  "eval_logits/rejected": 0.3251953125,
         | 
| 1346 | 
            +
                  "eval_logps/chosen": -163.1666717529297,
         | 
| 1347 | 
            +
                  "eval_logps/rejected": -142.8333282470703,
         | 
| 1348 | 
            +
                  "eval_loss": 2.7760417461395264,
         | 
| 1349 | 
            +
                  "eval_nll_loss": 2.1302082538604736,
         | 
| 1350 | 
            +
                  "eval_rewards/accuracies": 0.5651041865348816,
         | 
| 1351 | 
            +
                  "eval_rewards/chosen": 0.8802083134651184,
         | 
| 1352 | 
            +
                  "eval_rewards/margins": 0.1203206405043602,
         | 
| 1353 | 
            +
                  "eval_rewards/rejected": 0.7591145634651184,
         | 
| 1354 | 
            +
                  "eval_runtime": 102.88,
         | 
| 1355 | 
            +
                  "eval_samples_per_second": 3.733,
         | 
| 1356 | 
            +
                  "eval_steps_per_second": 0.058,
         | 
| 1357 | 
            +
                  "step": 81
         | 
| 1358 | 
            +
                },
         | 
| 1359 | 
            +
                {
         | 
| 1360 | 
            +
                  "epoch": 3.0371229698375872,
         | 
| 1361 | 
            +
                  "grad_norm": 27.77758026123047,
         | 
| 1362 | 
            +
                  "learning_rate": 4.21875e-08,
         | 
| 1363 | 
            +
                  "logits/chosen": 0.3466796875,
         | 
| 1364 | 
            +
                  "logits/rejected": 0.3443603515625,
         | 
| 1365 | 
            +
                  "logps/chosen": -167.625,
         | 
| 1366 | 
            +
                  "logps/rejected": -153.53125,
         | 
| 1367 | 
            +
                  "loss": 2.8614,
         | 
| 1368 | 
            +
                  "nll_loss": 2.1962890625,
         | 
| 1369 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1370 | 
            +
                  "rewards/chosen": 0.88720703125,
         | 
| 1371 | 
            +
                  "rewards/margins": 0.0737762451171875,
         | 
| 1372 | 
            +
                  "rewards/rejected": 0.813720703125,
         | 
| 1373 | 
            +
                  "step": 82
         | 
| 1374 | 
            +
                },
         | 
| 1375 | 
            +
                {
         | 
| 1376 | 
            +
                  "epoch": 3.074245939675174,
         | 
| 1377 | 
            +
                  "grad_norm": 30.16431427001953,
         | 
| 1378 | 
            +
                  "learning_rate": 4.140625e-08,
         | 
| 1379 | 
            +
                  "logits/chosen": 0.33489990234375,
         | 
| 1380 | 
            +
                  "logits/rejected": 0.3492431640625,
         | 
| 1381 | 
            +
                  "logps/chosen": -169.6875,
         | 
| 1382 | 
            +
                  "logps/rejected": -151.375,
         | 
| 1383 | 
            +
                  "loss": 2.8557,
         | 
| 1384 | 
            +
                  "nll_loss": 2.205078125,
         | 
| 1385 | 
            +
                  "rewards/accuracies": 0.5703125,
         | 
| 1386 | 
            +
                  "rewards/chosen": 0.91748046875,
         | 
| 1387 | 
            +
                  "rewards/margins": 0.1014862060546875,
         | 
| 1388 | 
            +
                  "rewards/rejected": 0.815673828125,
         | 
| 1389 | 
            +
                  "step": 83
         | 
| 1390 | 
            +
                },
         | 
| 1391 | 
            +
                {
         | 
| 1392 | 
            +
                  "epoch": 3.111368909512761,
         | 
| 1393 | 
            +
                  "grad_norm": 28.804847717285156,
         | 
| 1394 | 
            +
                  "learning_rate": 4.0624999999999995e-08,
         | 
| 1395 | 
            +
                  "logits/chosen": 0.350799560546875,
         | 
| 1396 | 
            +
                  "logits/rejected": 0.3480224609375,
         | 
| 1397 | 
            +
                  "logps/chosen": -168.75,
         | 
| 1398 | 
            +
                  "logps/rejected": -152.9375,
         | 
| 1399 | 
            +
                  "loss": 2.8726,
         | 
| 1400 | 
            +
                  "nll_loss": 2.216796875,
         | 
| 1401 | 
            +
                  "rewards/accuracies": 0.484375,
         | 
| 1402 | 
            +
                  "rewards/chosen": 0.9228515625,
         | 
| 1403 | 
            +
                  "rewards/margins": 0.0991668701171875,
         | 
| 1404 | 
            +
                  "rewards/rejected": 0.82373046875,
         | 
| 1405 | 
            +
                  "step": 84
         | 
| 1406 | 
            +
                },
         | 
| 1407 | 
            +
                {
         | 
| 1408 | 
            +
                  "epoch": 3.148491879350348,
         | 
| 1409 | 
            +
                  "grad_norm": 27.3331298828125,
         | 
| 1410 | 
            +
                  "learning_rate": 3.9843749999999996e-08,
         | 
| 1411 | 
            +
                  "logits/chosen": 0.4110107421875,
         | 
| 1412 | 
            +
                  "logits/rejected": 0.35845947265625,
         | 
| 1413 | 
            +
                  "logps/chosen": -160.6875,
         | 
| 1414 | 
            +
                  "logps/rejected": -147.5625,
         | 
| 1415 | 
            +
                  "loss": 2.7726,
         | 
| 1416 | 
            +
                  "nll_loss": 2.107421875,
         | 
| 1417 | 
            +
                  "rewards/accuracies": 0.515625,
         | 
| 1418 | 
            +
                  "rewards/chosen": 0.869384765625,
         | 
| 1419 | 
            +
                  "rewards/margins": 0.07293701171875,
         | 
| 1420 | 
            +
                  "rewards/rejected": 0.796630859375,
         | 
| 1421 | 
            +
                  "step": 85
         | 
| 1422 | 
            +
                },
         | 
| 1423 | 
            +
                {
         | 
| 1424 | 
            +
                  "epoch": 3.1856148491879352,
         | 
| 1425 | 
            +
                  "grad_norm": 29.69388198852539,
         | 
| 1426 | 
            +
                  "learning_rate": 3.9062499999999997e-08,
         | 
| 1427 | 
            +
                  "logits/chosen": 0.39044189453125,
         | 
| 1428 | 
            +
                  "logits/rejected": 0.318359375,
         | 
| 1429 | 
            +
                  "logps/chosen": -166.1875,
         | 
| 1430 | 
            +
                  "logps/rejected": -146.90625,
         | 
| 1431 | 
            +
                  "loss": 2.8218,
         | 
| 1432 | 
            +
                  "nll_loss": 2.166015625,
         | 
| 1433 | 
            +
                  "rewards/accuracies": 0.546875,
         | 
| 1434 | 
            +
                  "rewards/chosen": 0.915283203125,
         | 
| 1435 | 
            +
                  "rewards/margins": 0.0997161865234375,
         | 
| 1436 | 
            +
                  "rewards/rejected": 0.815185546875,
         | 
| 1437 | 
            +
                  "step": 86
         | 
| 1438 | 
            +
                },
         | 
| 1439 | 
            +
                {
         | 
| 1440 | 
            +
                  "epoch": 3.222737819025522,
         | 
| 1441 | 
            +
                  "grad_norm": 28.804176330566406,
         | 
| 1442 | 
            +
                  "learning_rate": 3.828125e-08,
         | 
| 1443 | 
            +
                  "logits/chosen": 0.36474609375,
         | 
| 1444 | 
            +
                  "logits/rejected": 0.36553955078125,
         | 
| 1445 | 
            +
                  "logps/chosen": -163.3125,
         | 
| 1446 | 
            +
                  "logps/rejected": -148.8125,
         | 
| 1447 | 
            +
                  "loss": 2.8217,
         | 
| 1448 | 
            +
                  "nll_loss": 2.16162109375,
         | 
| 1449 | 
            +
                  "rewards/accuracies": 0.515625,
         | 
| 1450 | 
            +
                  "rewards/chosen": 0.906982421875,
         | 
| 1451 | 
            +
                  "rewards/margins": 0.08441162109375,
         | 
| 1452 | 
            +
                  "rewards/rejected": 0.822509765625,
         | 
| 1453 | 
            +
                  "step": 87
         | 
| 1454 | 
            +
                },
         | 
| 1455 | 
            +
                {
         | 
| 1456 | 
            +
                  "epoch": 3.259860788863109,
         | 
| 1457 | 
            +
                  "grad_norm": 27.526470184326172,
         | 
| 1458 | 
            +
                  "learning_rate": 3.75e-08,
         | 
| 1459 | 
            +
                  "logits/chosen": 0.3748779296875,
         | 
| 1460 | 
            +
                  "logits/rejected": 0.36016845703125,
         | 
| 1461 | 
            +
                  "logps/chosen": -162.0,
         | 
| 1462 | 
            +
                  "logps/rejected": -154.125,
         | 
| 1463 | 
            +
                  "loss": 2.8472,
         | 
| 1464 | 
            +
                  "nll_loss": 2.18017578125,
         | 
| 1465 | 
            +
                  "rewards/accuracies": 0.515625,
         | 
| 1466 | 
            +
                  "rewards/chosen": 0.91943359375,
         | 
| 1467 | 
            +
                  "rewards/margins": 0.069366455078125,
         | 
| 1468 | 
            +
                  "rewards/rejected": 0.849853515625,
         | 
| 1469 | 
            +
                  "step": 88
         | 
| 1470 | 
            +
                },
         | 
| 1471 | 
            +
                {
         | 
| 1472 | 
            +
                  "epoch": 3.296983758700696,
         | 
| 1473 | 
            +
                  "grad_norm": 31.725608825683594,
         | 
| 1474 | 
            +
                  "learning_rate": 3.671875e-08,
         | 
| 1475 | 
            +
                  "logits/chosen": 0.325714111328125,
         | 
| 1476 | 
            +
                  "logits/rejected": 0.30804443359375,
         | 
| 1477 | 
            +
                  "logps/chosen": -166.0625,
         | 
| 1478 | 
            +
                  "logps/rejected": -142.1875,
         | 
| 1479 | 
            +
                  "loss": 2.7952,
         | 
| 1480 | 
            +
                  "nll_loss": 2.1650390625,
         | 
| 1481 | 
            +
                  "rewards/accuracies": 0.6484375,
         | 
| 1482 | 
            +
                  "rewards/chosen": 0.95263671875,
         | 
| 1483 | 
            +
                  "rewards/margins": 0.145782470703125,
         | 
| 1484 | 
            +
                  "rewards/rejected": 0.806884765625,
         | 
| 1485 | 
            +
                  "step": 89
         | 
| 1486 | 
            +
                },
         | 
| 1487 | 
            +
                {
         | 
| 1488 | 
            +
                  "epoch": 3.3341067285382833,
         | 
| 1489 | 
            +
                  "grad_norm": 24.72932243347168,
         | 
| 1490 | 
            +
                  "learning_rate": 3.59375e-08,
         | 
| 1491 | 
            +
                  "logits/chosen": 0.344940185546875,
         | 
| 1492 | 
            +
                  "logits/rejected": 0.322998046875,
         | 
| 1493 | 
            +
                  "logps/chosen": -153.3125,
         | 
| 1494 | 
            +
                  "logps/rejected": -149.625,
         | 
| 1495 | 
            +
                  "loss": 2.7468,
         | 
| 1496 | 
            +
                  "nll_loss": 2.07080078125,
         | 
| 1497 | 
            +
                  "rewards/accuracies": 0.4609375,
         | 
| 1498 | 
            +
                  "rewards/chosen": 0.89794921875,
         | 
| 1499 | 
            +
                  "rewards/margins": 0.045196533203125,
         | 
| 1500 | 
            +
                  "rewards/rejected": 0.852783203125,
         | 
| 1501 | 
            +
                  "step": 90
         | 
| 1502 | 
            +
                },
         | 
| 1503 | 
            +
                {
         | 
| 1504 | 
            +
                  "epoch": 3.37122969837587,
         | 
| 1505 | 
            +
                  "grad_norm": 32.73944854736328,
         | 
| 1506 | 
            +
                  "learning_rate": 3.515625e-08,
         | 
| 1507 | 
            +
                  "logits/chosen": 0.354888916015625,
         | 
| 1508 | 
            +
                  "logits/rejected": 0.333740234375,
         | 
| 1509 | 
            +
                  "logps/chosen": -162.0625,
         | 
| 1510 | 
            +
                  "logps/rejected": -136.5625,
         | 
| 1511 | 
            +
                  "loss": 2.7894,
         | 
| 1512 | 
            +
                  "nll_loss": 2.162109375,
         | 
| 1513 | 
            +
                  "rewards/accuracies": 0.6171875,
         | 
| 1514 | 
            +
                  "rewards/chosen": 0.947998046875,
         | 
| 1515 | 
            +
                  "rewards/margins": 0.153228759765625,
         | 
| 1516 | 
            +
                  "rewards/rejected": 0.794921875,
         | 
| 1517 | 
            +
                  "step": 91
         | 
| 1518 | 
            +
                },
         | 
| 1519 | 
            +
                {
         | 
| 1520 | 
            +
                  "epoch": 3.408352668213457,
         | 
| 1521 | 
            +
                  "grad_norm": 28.821645736694336,
         | 
| 1522 | 
            +
                  "learning_rate": 3.4375e-08,
         | 
| 1523 | 
            +
                  "logits/chosen": 0.386474609375,
         | 
| 1524 | 
            +
                  "logits/rejected": 0.38519287109375,
         | 
| 1525 | 
            +
                  "logps/chosen": -160.5,
         | 
| 1526 | 
            +
                  "logps/rejected": -141.28125,
         | 
| 1527 | 
            +
                  "loss": 2.778,
         | 
| 1528 | 
            +
                  "nll_loss": 2.13037109375,
         | 
| 1529 | 
            +
                  "rewards/accuracies": 0.5703125,
         | 
| 1530 | 
            +
                  "rewards/chosen": 0.95947265625,
         | 
| 1531 | 
            +
                  "rewards/margins": 0.1248779296875,
         | 
| 1532 | 
            +
                  "rewards/rejected": 0.8349609375,
         | 
| 1533 | 
            +
                  "step": 92
         | 
| 1534 | 
            +
                },
         | 
| 1535 | 
            +
                {
         | 
| 1536 | 
            +
                  "epoch": 3.445475638051044,
         | 
| 1537 | 
            +
                  "grad_norm": 28.84639549255371,
         | 
| 1538 | 
            +
                  "learning_rate": 3.3593749999999996e-08,
         | 
| 1539 | 
            +
                  "logits/chosen": 0.35491943359375,
         | 
| 1540 | 
            +
                  "logits/rejected": 0.34991455078125,
         | 
| 1541 | 
            +
                  "logps/chosen": -162.3125,
         | 
| 1542 | 
            +
                  "logps/rejected": -148.1875,
         | 
| 1543 | 
            +
                  "loss": 2.7994,
         | 
| 1544 | 
            +
                  "nll_loss": 2.14794921875,
         | 
| 1545 | 
            +
                  "rewards/accuracies": 0.5390625,
         | 
| 1546 | 
            +
                  "rewards/chosen": 0.9541015625,
         | 
| 1547 | 
            +
                  "rewards/margins": 0.0999755859375,
         | 
| 1548 | 
            +
                  "rewards/rejected": 0.853759765625,
         | 
| 1549 | 
            +
                  "step": 93
         | 
| 1550 | 
            +
                },
         | 
| 1551 | 
            +
                {
         | 
| 1552 | 
            +
                  "epoch": 3.4825986078886313,
         | 
| 1553 | 
            +
                  "grad_norm": 29.14773178100586,
         | 
| 1554 | 
            +
                  "learning_rate": 3.28125e-08,
         | 
| 1555 | 
            +
                  "logits/chosen": 0.34576416015625,
         | 
| 1556 | 
            +
                  "logits/rejected": 0.294586181640625,
         | 
| 1557 | 
            +
                  "logps/chosen": -163.375,
         | 
| 1558 | 
            +
                  "logps/rejected": -143.78125,
         | 
| 1559 | 
            +
                  "loss": 2.8074,
         | 
| 1560 | 
            +
                  "nll_loss": 2.15966796875,
         | 
| 1561 | 
            +
                  "rewards/accuracies": 0.5546875,
         | 
| 1562 | 
            +
                  "rewards/chosen": 0.953857421875,
         | 
| 1563 | 
            +
                  "rewards/margins": 0.11199951171875,
         | 
| 1564 | 
            +
                  "rewards/rejected": 0.841796875,
         | 
| 1565 | 
            +
                  "step": 94
         | 
| 1566 | 
            +
                },
         | 
| 1567 | 
            +
                {
         | 
| 1568 | 
            +
                  "epoch": 3.519721577726218,
         | 
| 1569 | 
            +
                  "grad_norm": 28.385051727294922,
         | 
| 1570 | 
            +
                  "learning_rate": 3.203125e-08,
         | 
| 1571 | 
            +
                  "logits/chosen": 0.361328125,
         | 
| 1572 | 
            +
                  "logits/rejected": 0.368896484375,
         | 
| 1573 | 
            +
                  "logps/chosen": -163.875,
         | 
| 1574 | 
            +
                  "logps/rejected": -144.5625,
         | 
| 1575 | 
            +
                  "loss": 2.8059,
         | 
| 1576 | 
            +
                  "nll_loss": 2.14208984375,
         | 
| 1577 | 
            +
                  "rewards/accuracies": 0.484375,
         | 
| 1578 | 
            +
                  "rewards/chosen": 0.9453125,
         | 
| 1579 | 
            +
                  "rewards/margins": 0.0822296142578125,
         | 
| 1580 | 
            +
                  "rewards/rejected": 0.86279296875,
         | 
| 1581 | 
            +
                  "step": 95
         | 
| 1582 | 
            +
                },
         | 
| 1583 | 
            +
                {
         | 
| 1584 | 
            +
                  "epoch": 3.556844547563805,
         | 
| 1585 | 
            +
                  "grad_norm": 30.213552474975586,
         | 
| 1586 | 
            +
                  "learning_rate": 3.125e-08,
         | 
| 1587 | 
            +
                  "logits/chosen": 0.39837646484375,
         | 
| 1588 | 
            +
                  "logits/rejected": 0.37939453125,
         | 
| 1589 | 
            +
                  "logps/chosen": -162.9375,
         | 
| 1590 | 
            +
                  "logps/rejected": -140.46875,
         | 
| 1591 | 
            +
                  "loss": 2.7784,
         | 
| 1592 | 
            +
                  "nll_loss": 2.14501953125,
         | 
| 1593 | 
            +
                  "rewards/accuracies": 0.546875,
         | 
| 1594 | 
            +
                  "rewards/chosen": 0.977783203125,
         | 
| 1595 | 
            +
                  "rewards/margins": 0.1444854736328125,
         | 
| 1596 | 
            +
                  "rewards/rejected": 0.833984375,
         | 
| 1597 | 
            +
                  "step": 96
         | 
| 1598 | 
            +
                },
         | 
| 1599 | 
            +
                {
         | 
| 1600 | 
            +
                  "epoch": 3.593967517401392,
         | 
| 1601 | 
            +
                  "grad_norm": 32.763328552246094,
         | 
| 1602 | 
            +
                  "learning_rate": 3.046875e-08,
         | 
| 1603 | 
            +
                  "logits/chosen": 0.3245849609375,
         | 
| 1604 | 
            +
                  "logits/rejected": 0.333984375,
         | 
| 1605 | 
            +
                  "logps/chosen": -168.5625,
         | 
| 1606 | 
            +
                  "logps/rejected": -146.40625,
         | 
| 1607 | 
            +
                  "loss": 2.8275,
         | 
| 1608 | 
            +
                  "nll_loss": 2.201171875,
         | 
| 1609 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1610 | 
            +
                  "rewards/chosen": 1.023193359375,
         | 
| 1611 | 
            +
                  "rewards/margins": 0.15716552734375,
         | 
| 1612 | 
            +
                  "rewards/rejected": 0.86669921875,
         | 
| 1613 | 
            +
                  "step": 97
         | 
| 1614 | 
            +
                },
         | 
| 1615 | 
            +
                {
         | 
| 1616 | 
            +
                  "epoch": 3.6310904872389793,
         | 
| 1617 | 
            +
                  "grad_norm": 28.763147354125977,
         | 
| 1618 | 
            +
                  "learning_rate": 2.96875e-08,
         | 
| 1619 | 
            +
                  "logits/chosen": 0.4039306640625,
         | 
| 1620 | 
            +
                  "logits/rejected": 0.373779296875,
         | 
| 1621 | 
            +
                  "logps/chosen": -162.625,
         | 
| 1622 | 
            +
                  "logps/rejected": -142.9375,
         | 
| 1623 | 
            +
                  "loss": 2.8257,
         | 
| 1624 | 
            +
                  "nll_loss": 2.17041015625,
         | 
| 1625 | 
            +
                  "rewards/accuracies": 0.5078125,
         | 
| 1626 | 
            +
                  "rewards/chosen": 0.997314453125,
         | 
| 1627 | 
            +
                  "rewards/margins": 0.10540771484375,
         | 
| 1628 | 
            +
                  "rewards/rejected": 0.892333984375,
         | 
| 1629 | 
            +
                  "step": 98
         | 
| 1630 | 
            +
                },
         | 
| 1631 | 
            +
                {
         | 
| 1632 | 
            +
                  "epoch": 3.668213457076566,
         | 
| 1633 | 
            +
                  "grad_norm": 30.689043045043945,
         | 
| 1634 | 
            +
                  "learning_rate": 2.8906249999999998e-08,
         | 
| 1635 | 
            +
                  "logits/chosen": 0.359619140625,
         | 
| 1636 | 
            +
                  "logits/rejected": 0.330169677734375,
         | 
| 1637 | 
            +
                  "logps/chosen": -165.625,
         | 
| 1638 | 
            +
                  "logps/rejected": -142.09375,
         | 
| 1639 | 
            +
                  "loss": 2.8357,
         | 
| 1640 | 
            +
                  "nll_loss": 2.1826171875,
         | 
| 1641 | 
            +
                  "rewards/accuracies": 0.546875,
         | 
| 1642 | 
            +
                  "rewards/chosen": 1.013427734375,
         | 
| 1643 | 
            +
                  "rewards/margins": 0.1118927001953125,
         | 
| 1644 | 
            +
                  "rewards/rejected": 0.901611328125,
         | 
| 1645 | 
            +
                  "step": 99
         | 
| 1646 | 
            +
                },
         | 
| 1647 | 
            +
                {
         | 
| 1648 | 
            +
                  "epoch": 3.705336426914153,
         | 
| 1649 | 
            +
                  "grad_norm": 26.55453872680664,
         | 
| 1650 | 
            +
                  "learning_rate": 2.8125e-08,
         | 
| 1651 | 
            +
                  "logits/chosen": 0.319427490234375,
         | 
| 1652 | 
            +
                  "logits/rejected": 0.313446044921875,
         | 
| 1653 | 
            +
                  "logps/chosen": -159.625,
         | 
| 1654 | 
            +
                  "logps/rejected": -146.21875,
         | 
| 1655 | 
            +
                  "loss": 2.8075,
         | 
| 1656 | 
            +
                  "nll_loss": 2.14453125,
         | 
| 1657 | 
            +
                  "rewards/accuracies": 0.4921875,
         | 
| 1658 | 
            +
                  "rewards/chosen": 0.961669921875,
         | 
| 1659 | 
            +
                  "rewards/margins": 0.082550048828125,
         | 
| 1660 | 
            +
                  "rewards/rejected": 0.87890625,
         | 
| 1661 | 
            +
                  "step": 100
         | 
| 1662 | 
            +
                },
         | 
| 1663 | 
            +
                {
         | 
| 1664 | 
            +
                  "epoch": 3.74245939675174,
         | 
| 1665 | 
            +
                  "grad_norm": 29.098655700683594,
         | 
| 1666 | 
            +
                  "learning_rate": 2.734375e-08,
         | 
| 1667 | 
            +
                  "logits/chosen": 0.3113555908203125,
         | 
| 1668 | 
            +
                  "logits/rejected": 0.312286376953125,
         | 
| 1669 | 
            +
                  "logps/chosen": -169.25,
         | 
| 1670 | 
            +
                  "logps/rejected": -155.03125,
         | 
| 1671 | 
            +
                  "loss": 2.8762,
         | 
| 1672 | 
            +
                  "nll_loss": 2.220703125,
         | 
| 1673 | 
            +
                  "rewards/accuracies": 0.4921875,
         | 
| 1674 | 
            +
                  "rewards/chosen": 1.02880859375,
         | 
| 1675 | 
            +
                  "rewards/margins": 0.09100341796875,
         | 
| 1676 | 
            +
                  "rewards/rejected": 0.9384765625,
         | 
| 1677 | 
            +
                  "step": 101
         | 
| 1678 | 
            +
                },
         | 
| 1679 | 
            +
                {
         | 
| 1680 | 
            +
                  "epoch": 3.7795823665893273,
         | 
| 1681 | 
            +
                  "grad_norm": 30.016429901123047,
         | 
| 1682 | 
            +
                  "learning_rate": 2.6562499999999997e-08,
         | 
| 1683 | 
            +
                  "logits/chosen": 0.3350830078125,
         | 
| 1684 | 
            +
                  "logits/rejected": 0.32012939453125,
         | 
| 1685 | 
            +
                  "logps/chosen": -163.75,
         | 
| 1686 | 
            +
                  "logps/rejected": -143.78125,
         | 
| 1687 | 
            +
                  "loss": 2.8272,
         | 
| 1688 | 
            +
                  "nll_loss": 2.1796875,
         | 
| 1689 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1690 | 
            +
                  "rewards/chosen": 1.017578125,
         | 
| 1691 | 
            +
                  "rewards/margins": 0.116119384765625,
         | 
| 1692 | 
            +
                  "rewards/rejected": 0.90087890625,
         | 
| 1693 | 
            +
                  "step": 102
         | 
| 1694 | 
            +
                },
         | 
| 1695 | 
            +
                {
         | 
| 1696 | 
            +
                  "epoch": 3.816705336426914,
         | 
| 1697 | 
            +
                  "grad_norm": 28.877973556518555,
         | 
| 1698 | 
            +
                  "learning_rate": 2.5781249999999998e-08,
         | 
| 1699 | 
            +
                  "logits/chosen": 0.34783935546875,
         | 
| 1700 | 
            +
                  "logits/rejected": 0.335540771484375,
         | 
| 1701 | 
            +
                  "logps/chosen": -161.375,
         | 
| 1702 | 
            +
                  "logps/rejected": -144.59375,
         | 
| 1703 | 
            +
                  "loss": 2.8558,
         | 
| 1704 | 
            +
                  "nll_loss": 2.2099609375,
         | 
| 1705 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1706 | 
            +
                  "rewards/chosen": 1.007080078125,
         | 
| 1707 | 
            +
                  "rewards/margins": 0.1160125732421875,
         | 
| 1708 | 
            +
                  "rewards/rejected": 0.890625,
         | 
| 1709 | 
            +
                  "step": 103
         | 
| 1710 | 
            +
                },
         | 
| 1711 | 
            +
                {
         | 
| 1712 | 
            +
                  "epoch": 3.853828306264501,
         | 
| 1713 | 
            +
                  "grad_norm": 28.23018455505371,
         | 
| 1714 | 
            +
                  "learning_rate": 2.5e-08,
         | 
| 1715 | 
            +
                  "logits/chosen": 0.37432861328125,
         | 
| 1716 | 
            +
                  "logits/rejected": 0.29962158203125,
         | 
| 1717 | 
            +
                  "logps/chosen": -164.375,
         | 
| 1718 | 
            +
                  "logps/rejected": -148.0,
         | 
| 1719 | 
            +
                  "loss": 2.7842,
         | 
| 1720 | 
            +
                  "nll_loss": 2.13134765625,
         | 
| 1721 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1722 | 
            +
                  "rewards/chosen": 1.01220703125,
         | 
| 1723 | 
            +
                  "rewards/margins": 0.1003265380859375,
         | 
| 1724 | 
            +
                  "rewards/rejected": 0.911376953125,
         | 
| 1725 | 
            +
                  "step": 104
         | 
| 1726 | 
            +
                },
         | 
| 1727 | 
            +
                {
         | 
| 1728 | 
            +
                  "epoch": 3.890951276102088,
         | 
| 1729 | 
            +
                  "grad_norm": 30.10898780822754,
         | 
| 1730 | 
            +
                  "learning_rate": 2.421875e-08,
         | 
| 1731 | 
            +
                  "logits/chosen": 0.3602294921875,
         | 
| 1732 | 
            +
                  "logits/rejected": 0.346923828125,
         | 
| 1733 | 
            +
                  "logps/chosen": -163.9375,
         | 
| 1734 | 
            +
                  "logps/rejected": -143.0625,
         | 
| 1735 | 
            +
                  "loss": 2.8019,
         | 
| 1736 | 
            +
                  "nll_loss": 2.1611328125,
         | 
| 1737 | 
            +
                  "rewards/accuracies": 0.6015625,
         | 
| 1738 | 
            +
                  "rewards/chosen": 0.990966796875,
         | 
| 1739 | 
            +
                  "rewards/margins": 0.13226318359375,
         | 
| 1740 | 
            +
                  "rewards/rejected": 0.858154296875,
         | 
| 1741 | 
            +
                  "step": 105
         | 
| 1742 | 
            +
                },
         | 
| 1743 | 
            +
                {
         | 
| 1744 | 
            +
                  "epoch": 3.9280742459396754,
         | 
| 1745 | 
            +
                  "grad_norm": 27.816171646118164,
         | 
| 1746 | 
            +
                  "learning_rate": 2.34375e-08,
         | 
| 1747 | 
            +
                  "logits/chosen": 0.35302734375,
         | 
| 1748 | 
            +
                  "logits/rejected": 0.327880859375,
         | 
| 1749 | 
            +
                  "logps/chosen": -163.625,
         | 
| 1750 | 
            +
                  "logps/rejected": -144.46875,
         | 
| 1751 | 
            +
                  "loss": 2.7886,
         | 
| 1752 | 
            +
                  "nll_loss": 2.1376953125,
         | 
| 1753 | 
            +
                  "rewards/accuracies": 0.484375,
         | 
| 1754 | 
            +
                  "rewards/chosen": 0.99365234375,
         | 
| 1755 | 
            +
                  "rewards/margins": 0.1105499267578125,
         | 
| 1756 | 
            +
                  "rewards/rejected": 0.883056640625,
         | 
| 1757 | 
            +
                  "step": 106
         | 
| 1758 | 
            +
                },
         | 
| 1759 | 
            +
                {
         | 
| 1760 | 
            +
                  "epoch": 3.965197215777262,
         | 
| 1761 | 
            +
                  "grad_norm": 30.782146453857422,
         | 
| 1762 | 
            +
                  "learning_rate": 2.2656249999999998e-08,
         | 
| 1763 | 
            +
                  "logits/chosen": 0.367279052734375,
         | 
| 1764 | 
            +
                  "logits/rejected": 0.34185791015625,
         | 
| 1765 | 
            +
                  "logps/chosen": -163.5,
         | 
| 1766 | 
            +
                  "logps/rejected": -141.5,
         | 
| 1767 | 
            +
                  "loss": 2.7767,
         | 
| 1768 | 
            +
                  "nll_loss": 2.146484375,
         | 
| 1769 | 
            +
                  "rewards/accuracies": 0.625,
         | 
| 1770 | 
            +
                  "rewards/chosen": 1.034912109375,
         | 
| 1771 | 
            +
                  "rewards/margins": 0.15887451171875,
         | 
| 1772 | 
            +
                  "rewards/rejected": 0.875732421875,
         | 
| 1773 | 
            +
                  "step": 107
         | 
| 1774 | 
            +
                },
         | 
| 1775 | 
            +
                {
         | 
| 1776 | 
            +
                  "epoch": 4.0,
         | 
| 1777 | 
            +
                  "grad_norm": 32.44054412841797,
         | 
| 1778 | 
            +
                  "learning_rate": 2.1875e-08,
         | 
| 1779 | 
            +
                  "logits/chosen": 0.37871092557907104,
         | 
| 1780 | 
            +
                  "logits/rejected": 0.34069010615348816,
         | 
| 1781 | 
            +
                  "logps/chosen": -164.93333435058594,
         | 
| 1782 | 
            +
                  "logps/rejected": -138.6666717529297,
         | 
| 1783 | 
            +
                  "loss": 2.8432,
         | 
| 1784 | 
            +
                  "nll_loss": 2.211458444595337,
         | 
| 1785 | 
            +
                  "rewards/accuracies": 0.5833333134651184,
         | 
| 1786 | 
            +
                  "rewards/chosen": 1.03125,
         | 
| 1787 | 
            +
                  "rewards/margins": 0.14685872197151184,
         | 
| 1788 | 
            +
                  "rewards/rejected": 0.8841145634651184,
         | 
| 1789 | 
            +
                  "step": 108
         | 
| 1790 | 
            +
                },
         | 
| 1791 | 
            +
                {
         | 
| 1792 | 
            +
                  "epoch": 4.0,
         | 
| 1793 | 
            +
                  "eval_logits/chosen": 0.3561197817325592,
         | 
| 1794 | 
            +
                  "eval_logits/rejected": 0.3212890625,
         | 
| 1795 | 
            +
                  "eval_logps/chosen": -161.8333282470703,
         | 
| 1796 | 
            +
                  "eval_logps/rejected": -141.8333282470703,
         | 
| 1797 | 
            +
                  "eval_loss": 2.7526042461395264,
         | 
| 1798 | 
            +
                  "eval_nll_loss": 2.11328125,
         | 
| 1799 | 
            +
                  "eval_rewards/accuracies": 0.5677083134651184,
         | 
| 1800 | 
            +
                  "eval_rewards/chosen": 1.01171875,
         | 
| 1801 | 
            +
                  "eval_rewards/margins": 0.1364542692899704,
         | 
| 1802 | 
            +
                  "eval_rewards/rejected": 0.8756510615348816,
         | 
| 1803 | 
            +
                  "eval_runtime": 102.8297,
         | 
| 1804 | 
            +
                  "eval_samples_per_second": 3.734,
         | 
| 1805 | 
            +
                  "eval_steps_per_second": 0.058,
         | 
| 1806 | 
            +
                  "step": 108
         | 
| 1807 | 
            +
                },
         | 
| 1808 | 
            +
                {
         | 
| 1809 | 
            +
                  "epoch": 4.037122969837587,
         | 
| 1810 | 
            +
                  "grad_norm": 31.294692993164062,
         | 
| 1811 | 
            +
                  "learning_rate": 2.109375e-08,
         | 
| 1812 | 
            +
                  "logits/chosen": 0.33905029296875,
         | 
| 1813 | 
            +
                  "logits/rejected": 0.32745361328125,
         | 
| 1814 | 
            +
                  "logps/chosen": -165.125,
         | 
| 1815 | 
            +
                  "logps/rejected": -144.09375,
         | 
| 1816 | 
            +
                  "loss": 2.8858,
         | 
| 1817 | 
            +
                  "nll_loss": 2.2529296875,
         | 
| 1818 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1819 | 
            +
                  "rewards/chosen": 1.063232421875,
         | 
| 1820 | 
            +
                  "rewards/margins": 0.144775390625,
         | 
| 1821 | 
            +
                  "rewards/rejected": 0.91845703125,
         | 
| 1822 | 
            +
                  "step": 109
         | 
| 1823 | 
            +
                },
         | 
| 1824 | 
            +
                {
         | 
| 1825 | 
            +
                  "epoch": 4.0742459396751745,
         | 
| 1826 | 
            +
                  "grad_norm": 29.496854782104492,
         | 
| 1827 | 
            +
                  "learning_rate": 2.0312499999999997e-08,
         | 
| 1828 | 
            +
                  "logits/chosen": 0.4388427734375,
         | 
| 1829 | 
            +
                  "logits/rejected": 0.37957763671875,
         | 
| 1830 | 
            +
                  "logps/chosen": -161.5,
         | 
| 1831 | 
            +
                  "logps/rejected": -143.40625,
         | 
| 1832 | 
            +
                  "loss": 2.8021,
         | 
| 1833 | 
            +
                  "nll_loss": 2.14990234375,
         | 
| 1834 | 
            +
                  "rewards/accuracies": 0.4921875,
         | 
| 1835 | 
            +
                  "rewards/chosen": 0.9970703125,
         | 
| 1836 | 
            +
                  "rewards/margins": 0.10546875,
         | 
| 1837 | 
            +
                  "rewards/rejected": 0.892333984375,
         | 
| 1838 | 
            +
                  "step": 110
         | 
| 1839 | 
            +
                },
         | 
| 1840 | 
            +
                {
         | 
| 1841 | 
            +
                  "epoch": 4.111368909512761,
         | 
| 1842 | 
            +
                  "grad_norm": 29.509689331054688,
         | 
| 1843 | 
            +
                  "learning_rate": 1.9531249999999998e-08,
         | 
| 1844 | 
            +
                  "logits/chosen": 0.35552978515625,
         | 
| 1845 | 
            +
                  "logits/rejected": 0.3720703125,
         | 
| 1846 | 
            +
                  "logps/chosen": -168.25,
         | 
| 1847 | 
            +
                  "logps/rejected": -143.53125,
         | 
| 1848 | 
            +
                  "loss": 2.8298,
         | 
| 1849 | 
            +
                  "nll_loss": 2.18017578125,
         | 
| 1850 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 1851 | 
            +
                  "rewards/chosen": 1.0341796875,
         | 
| 1852 | 
            +
                  "rewards/margins": 0.121368408203125,
         | 
| 1853 | 
            +
                  "rewards/rejected": 0.91357421875,
         | 
| 1854 | 
            +
                  "step": 111
         | 
| 1855 | 
            +
                },
         | 
| 1856 | 
            +
                {
         | 
| 1857 | 
            +
                  "epoch": 4.148491879350348,
         | 
| 1858 | 
            +
                  "grad_norm": 27.970518112182617,
         | 
| 1859 | 
            +
                  "learning_rate": 1.875e-08,
         | 
| 1860 | 
            +
                  "logits/chosen": 0.35711669921875,
         | 
| 1861 | 
            +
                  "logits/rejected": 0.347930908203125,
         | 
| 1862 | 
            +
                  "logps/chosen": -160.875,
         | 
| 1863 | 
            +
                  "logps/rejected": -148.6875,
         | 
| 1864 | 
            +
                  "loss": 2.8164,
         | 
| 1865 | 
            +
                  "nll_loss": 2.16943359375,
         | 
| 1866 | 
            +
                  "rewards/accuracies": 0.5390625,
         | 
| 1867 | 
            +
                  "rewards/chosen": 1.0263671875,
         | 
| 1868 | 
            +
                  "rewards/margins": 0.12030029296875,
         | 
| 1869 | 
            +
                  "rewards/rejected": 0.90478515625,
         | 
| 1870 | 
            +
                  "step": 112
         | 
| 1871 | 
            +
                },
         | 
| 1872 | 
            +
                {
         | 
| 1873 | 
            +
                  "epoch": 4.185614849187935,
         | 
| 1874 | 
            +
                  "grad_norm": 27.921180725097656,
         | 
| 1875 | 
            +
                  "learning_rate": 1.796875e-08,
         | 
| 1876 | 
            +
                  "logits/chosen": 0.3526611328125,
         | 
| 1877 | 
            +
                  "logits/rejected": 0.3419189453125,
         | 
| 1878 | 
            +
                  "logps/chosen": -165.8125,
         | 
| 1879 | 
            +
                  "logps/rejected": -148.375,
         | 
| 1880 | 
            +
                  "loss": 2.8152,
         | 
| 1881 | 
            +
                  "nll_loss": 2.154296875,
         | 
| 1882 | 
            +
                  "rewards/accuracies": 0.4921875,
         | 
| 1883 | 
            +
                  "rewards/chosen": 1.027587890625,
         | 
| 1884 | 
            +
                  "rewards/margins": 0.085540771484375,
         | 
| 1885 | 
            +
                  "rewards/rejected": 0.94287109375,
         | 
| 1886 | 
            +
                  "step": 113
         | 
| 1887 | 
            +
                },
         | 
| 1888 | 
            +
                {
         | 
| 1889 | 
            +
                  "epoch": 4.222737819025522,
         | 
| 1890 | 
            +
                  "grad_norm": 28.095144271850586,
         | 
| 1891 | 
            +
                  "learning_rate": 1.71875e-08,
         | 
| 1892 | 
            +
                  "logits/chosen": 0.345458984375,
         | 
| 1893 | 
            +
                  "logits/rejected": 0.31927490234375,
         | 
| 1894 | 
            +
                  "logps/chosen": -158.90625,
         | 
| 1895 | 
            +
                  "logps/rejected": -148.96875,
         | 
| 1896 | 
            +
                  "loss": 2.7949,
         | 
| 1897 | 
            +
                  "nll_loss": 2.140625,
         | 
| 1898 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 1899 | 
            +
                  "rewards/chosen": 1.04345703125,
         | 
| 1900 | 
            +
                  "rewards/margins": 0.0972442626953125,
         | 
| 1901 | 
            +
                  "rewards/rejected": 0.9462890625,
         | 
| 1902 | 
            +
                  "step": 114
         | 
| 1903 | 
            +
                },
         | 
| 1904 | 
            +
                {
         | 
| 1905 | 
            +
                  "epoch": 4.259860788863109,
         | 
| 1906 | 
            +
                  "grad_norm": 28.238088607788086,
         | 
| 1907 | 
            +
                  "learning_rate": 1.640625e-08,
         | 
| 1908 | 
            +
                  "logits/chosen": 0.34893798828125,
         | 
| 1909 | 
            +
                  "logits/rejected": 0.307281494140625,
         | 
| 1910 | 
            +
                  "logps/chosen": -157.4375,
         | 
| 1911 | 
            +
                  "logps/rejected": -144.75,
         | 
| 1912 | 
            +
                  "loss": 2.8239,
         | 
| 1913 | 
            +
                  "nll_loss": 2.16357421875,
         | 
| 1914 | 
            +
                  "rewards/accuracies": 0.5,
         | 
| 1915 | 
            +
                  "rewards/chosen": 1.010009765625,
         | 
| 1916 | 
            +
                  "rewards/margins": 0.09295654296875,
         | 
| 1917 | 
            +
                  "rewards/rejected": 0.91650390625,
         | 
| 1918 | 
            +
                  "step": 115
         | 
| 1919 | 
            +
                },
         | 
| 1920 | 
            +
                {
         | 
| 1921 | 
            +
                  "epoch": 4.296983758700696,
         | 
| 1922 | 
            +
                  "grad_norm": 27.830520629882812,
         | 
| 1923 | 
            +
                  "learning_rate": 1.5625e-08,
         | 
| 1924 | 
            +
                  "logits/chosen": 0.36151123046875,
         | 
| 1925 | 
            +
                  "logits/rejected": 0.3563232421875,
         | 
| 1926 | 
            +
                  "logps/chosen": -165.1875,
         | 
| 1927 | 
            +
                  "logps/rejected": -145.09375,
         | 
| 1928 | 
            +
                  "loss": 2.8053,
         | 
| 1929 | 
            +
                  "nll_loss": 2.1572265625,
         | 
| 1930 | 
            +
                  "rewards/accuracies": 0.5546875,
         | 
| 1931 | 
            +
                  "rewards/chosen": 1.0478515625,
         | 
| 1932 | 
            +
                  "rewards/margins": 0.11956787109375,
         | 
| 1933 | 
            +
                  "rewards/rejected": 0.927490234375,
         | 
| 1934 | 
            +
                  "step": 116
         | 
| 1935 | 
            +
                },
         | 
| 1936 | 
            +
                {
         | 
| 1937 | 
            +
                  "epoch": 4.334106728538283,
         | 
| 1938 | 
            +
                  "grad_norm": 28.707717895507812,
         | 
| 1939 | 
            +
                  "learning_rate": 1.484375e-08,
         | 
| 1940 | 
            +
                  "logits/chosen": 0.39031982421875,
         | 
| 1941 | 
            +
                  "logits/rejected": 0.36114501953125,
         | 
| 1942 | 
            +
                  "logps/chosen": -164.1875,
         | 
| 1943 | 
            +
                  "logps/rejected": -145.84375,
         | 
| 1944 | 
            +
                  "loss": 2.8093,
         | 
| 1945 | 
            +
                  "nll_loss": 2.15478515625,
         | 
| 1946 | 
            +
                  "rewards/accuracies": 0.53125,
         | 
| 1947 | 
            +
                  "rewards/chosen": 1.041259765625,
         | 
| 1948 | 
            +
                  "rewards/margins": 0.098602294921875,
         | 
| 1949 | 
            +
                  "rewards/rejected": 0.943603515625,
         | 
| 1950 | 
            +
                  "step": 117
         | 
| 1951 | 
            +
                },
         | 
| 1952 | 
            +
                {
         | 
| 1953 | 
            +
                  "epoch": 4.3712296983758705,
         | 
| 1954 | 
            +
                  "grad_norm": 28.201648712158203,
         | 
| 1955 | 
            +
                  "learning_rate": 1.40625e-08,
         | 
| 1956 | 
            +
                  "logits/chosen": 0.3319091796875,
         | 
| 1957 | 
            +
                  "logits/rejected": 0.301177978515625,
         | 
| 1958 | 
            +
                  "logps/chosen": -166.875,
         | 
| 1959 | 
            +
                  "logps/rejected": -148.9375,
         | 
| 1960 | 
            +
                  "loss": 2.7664,
         | 
| 1961 | 
            +
                  "nll_loss": 2.1240234375,
         | 
| 1962 | 
            +
                  "rewards/accuracies": 0.5390625,
         | 
| 1963 | 
            +
                  "rewards/chosen": 1.051513671875,
         | 
| 1964 | 
            +
                  "rewards/margins": 0.129791259765625,
         | 
| 1965 | 
            +
                  "rewards/rejected": 0.920654296875,
         | 
| 1966 | 
            +
                  "step": 118
         | 
| 1967 | 
            +
                },
         | 
| 1968 | 
            +
                {
         | 
| 1969 | 
            +
                  "epoch": 4.408352668213457,
         | 
| 1970 | 
            +
                  "grad_norm": 25.48500633239746,
         | 
| 1971 | 
            +
                  "learning_rate": 1.3281249999999999e-08,
         | 
| 1972 | 
            +
                  "logits/chosen": 0.35797119140625,
         | 
| 1973 | 
            +
                  "logits/rejected": 0.34332275390625,
         | 
| 1974 | 
            +
                  "logps/chosen": -160.9375,
         | 
| 1975 | 
            +
                  "logps/rejected": -151.0625,
         | 
| 1976 | 
            +
                  "loss": 2.7906,
         | 
| 1977 | 
            +
                  "nll_loss": 2.115234375,
         | 
| 1978 | 
            +
                  "rewards/accuracies": 0.4296875,
         | 
| 1979 | 
            +
                  "rewards/chosen": 1.037353515625,
         | 
| 1980 | 
            +
                  "rewards/margins": 0.0632781982421875,
         | 
| 1981 | 
            +
                  "rewards/rejected": 0.97509765625,
         | 
| 1982 | 
            +
                  "step": 119
         | 
| 1983 | 
            +
                },
         | 
| 1984 | 
            +
                {
         | 
| 1985 | 
            +
                  "epoch": 4.445475638051044,
         | 
| 1986 | 
            +
                  "grad_norm": 27.510597229003906,
         | 
| 1987 | 
            +
                  "learning_rate": 1.25e-08,
         | 
| 1988 | 
            +
                  "logits/chosen": 0.3927001953125,
         | 
| 1989 | 
            +
                  "logits/rejected": 0.381103515625,
         | 
| 1990 | 
            +
                  "logps/chosen": -160.4375,
         | 
| 1991 | 
            +
                  "logps/rejected": -149.46875,
         | 
| 1992 | 
            +
                  "loss": 2.777,
         | 
| 1993 | 
            +
                  "nll_loss": 2.12109375,
         | 
| 1994 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 1995 | 
            +
                  "rewards/chosen": 1.0439453125,
         | 
| 1996 | 
            +
                  "rewards/margins": 0.103424072265625,
         | 
| 1997 | 
            +
                  "rewards/rejected": 0.941162109375,
         | 
| 1998 | 
            +
                  "step": 120
         | 
| 1999 | 
            +
                },
         | 
| 2000 | 
            +
                {
         | 
| 2001 | 
            +
                  "epoch": 4.482598607888631,
         | 
| 2002 | 
            +
                  "grad_norm": 26.467517852783203,
         | 
| 2003 | 
            +
                  "learning_rate": 1.171875e-08,
         | 
| 2004 | 
            +
                  "logits/chosen": 0.3460693359375,
         | 
| 2005 | 
            +
                  "logits/rejected": 0.333404541015625,
         | 
| 2006 | 
            +
                  "logps/chosen": -157.0,
         | 
| 2007 | 
            +
                  "logps/rejected": -148.125,
         | 
| 2008 | 
            +
                  "loss": 2.7761,
         | 
| 2009 | 
            +
                  "nll_loss": 2.1083984375,
         | 
| 2010 | 
            +
                  "rewards/accuracies": 0.5546875,
         | 
| 2011 | 
            +
                  "rewards/chosen": 1.01708984375,
         | 
| 2012 | 
            +
                  "rewards/margins": 0.069854736328125,
         | 
| 2013 | 
            +
                  "rewards/rejected": 0.9462890625,
         | 
| 2014 | 
            +
                  "step": 121
         | 
| 2015 | 
            +
                },
         | 
| 2016 | 
            +
                {
         | 
| 2017 | 
            +
                  "epoch": 4.519721577726218,
         | 
| 2018 | 
            +
                  "grad_norm": 30.551589965820312,
         | 
| 2019 | 
            +
                  "learning_rate": 1.09375e-08,
         | 
| 2020 | 
            +
                  "logits/chosen": 0.3670654296875,
         | 
| 2021 | 
            +
                  "logits/rejected": 0.32598876953125,
         | 
| 2022 | 
            +
                  "logps/chosen": -160.25,
         | 
| 2023 | 
            +
                  "logps/rejected": -135.75,
         | 
| 2024 | 
            +
                  "loss": 2.7577,
         | 
| 2025 | 
            +
                  "nll_loss": 2.126953125,
         | 
| 2026 | 
            +
                  "rewards/accuracies": 0.59375,
         | 
| 2027 | 
            +
                  "rewards/chosen": 1.037841796875,
         | 
| 2028 | 
            +
                  "rewards/margins": 0.14959716796875,
         | 
| 2029 | 
            +
                  "rewards/rejected": 0.888916015625,
         | 
| 2030 | 
            +
                  "step": 122
         | 
| 2031 | 
            +
                },
         | 
| 2032 | 
            +
                {
         | 
| 2033 | 
            +
                  "epoch": 4.556844547563805,
         | 
| 2034 | 
            +
                  "grad_norm": 30.325624465942383,
         | 
| 2035 | 
            +
                  "learning_rate": 1.0156249999999999e-08,
         | 
| 2036 | 
            +
                  "logits/chosen": 0.35888671875,
         | 
| 2037 | 
            +
                  "logits/rejected": 0.361663818359375,
         | 
| 2038 | 
            +
                  "logps/chosen": -167.6875,
         | 
| 2039 | 
            +
                  "logps/rejected": -140.03125,
         | 
| 2040 | 
            +
                  "loss": 2.8104,
         | 
| 2041 | 
            +
                  "nll_loss": 2.1806640625,
         | 
| 2042 | 
            +
                  "rewards/accuracies": 0.6171875,
         | 
| 2043 | 
            +
                  "rewards/chosen": 1.078125,
         | 
| 2044 | 
            +
                  "rewards/margins": 0.1522216796875,
         | 
| 2045 | 
            +
                  "rewards/rejected": 0.9267578125,
         | 
| 2046 | 
            +
                  "step": 123
         | 
| 2047 | 
            +
                },
         | 
| 2048 | 
            +
                {
         | 
| 2049 | 
            +
                  "epoch": 4.593967517401392,
         | 
| 2050 | 
            +
                  "grad_norm": 30.124492645263672,
         | 
| 2051 | 
            +
                  "learning_rate": 9.375e-09,
         | 
| 2052 | 
            +
                  "logits/chosen": 0.302703857421875,
         | 
| 2053 | 
            +
                  "logits/rejected": 0.34002685546875,
         | 
| 2054 | 
            +
                  "logps/chosen": -163.625,
         | 
| 2055 | 
            +
                  "logps/rejected": -140.8125,
         | 
| 2056 | 
            +
                  "loss": 2.8342,
         | 
| 2057 | 
            +
                  "nll_loss": 2.197265625,
         | 
| 2058 | 
            +
                  "rewards/accuracies": 0.5625,
         | 
| 2059 | 
            +
                  "rewards/chosen": 1.07177734375,
         | 
| 2060 | 
            +
                  "rewards/margins": 0.1431884765625,
         | 
| 2061 | 
            +
                  "rewards/rejected": 0.927734375,
         | 
| 2062 | 
            +
                  "step": 124
         | 
| 2063 | 
            +
                },
         | 
| 2064 | 
            +
                {
         | 
| 2065 | 
            +
                  "epoch": 4.631090487238979,
         | 
| 2066 | 
            +
                  "grad_norm": 27.595609664916992,
         | 
| 2067 | 
            +
                  "learning_rate": 8.59375e-09,
         | 
| 2068 | 
            +
                  "logits/chosen": 0.38677978515625,
         | 
| 2069 | 
            +
                  "logits/rejected": 0.33587646484375,
         | 
| 2070 | 
            +
                  "logps/chosen": -162.3125,
         | 
| 2071 | 
            +
                  "logps/rejected": -142.875,
         | 
| 2072 | 
            +
                  "loss": 2.7643,
         | 
| 2073 | 
            +
                  "nll_loss": 2.11083984375,
         | 
| 2074 | 
            +
                  "rewards/accuracies": 0.546875,
         | 
| 2075 | 
            +
                  "rewards/chosen": 1.028564453125,
         | 
| 2076 | 
            +
                  "rewards/margins": 0.1085205078125,
         | 
| 2077 | 
            +
                  "rewards/rejected": 0.91943359375,
         | 
| 2078 | 
            +
                  "step": 125
         | 
| 2079 | 
            +
                },
         | 
| 2080 | 
            +
                {
         | 
| 2081 | 
            +
                  "epoch": 4.6682134570765665,
         | 
| 2082 | 
            +
                  "grad_norm": 30.859743118286133,
         | 
| 2083 | 
            +
                  "learning_rate": 7.8125e-09,
         | 
| 2084 | 
            +
                  "logits/chosen": 0.295379638671875,
         | 
| 2085 | 
            +
                  "logits/rejected": 0.2750244140625,
         | 
| 2086 | 
            +
                  "logps/chosen": -160.6875,
         | 
| 2087 | 
            +
                  "logps/rejected": -133.21875,
         | 
| 2088 | 
            +
                  "loss": 2.8286,
         | 
| 2089 | 
            +
                  "nll_loss": 2.2001953125,
         | 
| 2090 | 
            +
                  "rewards/accuracies": 0.5859375,
         | 
| 2091 | 
            +
                  "rewards/chosen": 1.045654296875,
         | 
| 2092 | 
            +
                  "rewards/margins": 0.16162109375,
         | 
| 2093 | 
            +
                  "rewards/rejected": 0.88330078125,
         | 
| 2094 | 
            +
                  "step": 126
         | 
| 2095 | 
            +
                },
         | 
| 2096 | 
            +
                {
         | 
| 2097 | 
            +
                  "epoch": 4.705336426914153,
         | 
| 2098 | 
            +
                  "grad_norm": 30.610149383544922,
         | 
| 2099 | 
            +
                  "learning_rate": 7.03125e-09,
         | 
| 2100 | 
            +
                  "logits/chosen": 0.35791015625,
         | 
| 2101 | 
            +
                  "logits/rejected": 0.337982177734375,
         | 
| 2102 | 
            +
                  "logps/chosen": -163.125,
         | 
| 2103 | 
            +
                  "logps/rejected": -135.25,
         | 
| 2104 | 
            +
                  "loss": 2.7411,
         | 
| 2105 | 
            +
                  "nll_loss": 2.11767578125,
         | 
| 2106 | 
            +
                  "rewards/accuracies": 0.6015625,
         | 
| 2107 | 
            +
                  "rewards/chosen": 1.070556640625,
         | 
| 2108 | 
            +
                  "rewards/margins": 0.1749114990234375,
         | 
| 2109 | 
            +
                  "rewards/rejected": 0.8955078125,
         | 
| 2110 | 
            +
                  "step": 127
         | 
| 2111 | 
            +
                },
         | 
| 2112 | 
            +
                {
         | 
| 2113 | 
            +
                  "epoch": 4.74245939675174,
         | 
| 2114 | 
            +
                  "grad_norm": 26.896799087524414,
         | 
| 2115 | 
            +
                  "learning_rate": 6.25e-09,
         | 
| 2116 | 
            +
                  "logits/chosen": 0.3948974609375,
         | 
| 2117 | 
            +
                  "logits/rejected": 0.37274169921875,
         | 
| 2118 | 
            +
                  "logps/chosen": -163.875,
         | 
| 2119 | 
            +
                  "logps/rejected": -151.1875,
         | 
| 2120 | 
            +
                  "loss": 2.8187,
         | 
| 2121 | 
            +
                  "nll_loss": 2.15869140625,
         | 
| 2122 | 
            +
                  "rewards/accuracies": 0.515625,
         | 
| 2123 | 
            +
                  "rewards/chosen": 1.0595703125,
         | 
| 2124 | 
            +
                  "rewards/margins": 0.098236083984375,
         | 
| 2125 | 
            +
                  "rewards/rejected": 0.961669921875,
         | 
| 2126 | 
            +
                  "step": 128
         | 
| 2127 | 
            +
                },
         | 
| 2128 | 
            +
                {
         | 
| 2129 | 
            +
                  "epoch": 4.779582366589327,
         | 
| 2130 | 
            +
                  "grad_norm": 28.43315887451172,
         | 
| 2131 | 
            +
                  "learning_rate": 5.46875e-09,
         | 
| 2132 | 
            +
                  "logits/chosen": 0.34173583984375,
         | 
| 2133 | 
            +
                  "logits/rejected": 0.30682373046875,
         | 
| 2134 | 
            +
                  "logps/chosen": -158.3125,
         | 
| 2135 | 
            +
                  "logps/rejected": -144.125,
         | 
| 2136 | 
            +
                  "loss": 2.7525,
         | 
| 2137 | 
            +
                  "nll_loss": 2.10693359375,
         | 
| 2138 | 
            +
                  "rewards/accuracies": 0.5546875,
         | 
| 2139 | 
            +
                  "rewards/chosen": 1.040283203125,
         | 
| 2140 | 
            +
                  "rewards/margins": 0.1310577392578125,
         | 
| 2141 | 
            +
                  "rewards/rejected": 0.908935546875,
         | 
| 2142 | 
            +
                  "step": 129
         | 
| 2143 | 
            +
                },
         | 
| 2144 | 
            +
                {
         | 
| 2145 | 
            +
                  "epoch": 4.816705336426914,
         | 
| 2146 | 
            +
                  "grad_norm": 29.862634658813477,
         | 
| 2147 | 
            +
                  "learning_rate": 4.6875e-09,
         | 
| 2148 | 
            +
                  "logits/chosen": 0.390380859375,
         | 
| 2149 | 
            +
                  "logits/rejected": 0.3612060546875,
         | 
| 2150 | 
            +
                  "logps/chosen": -164.0,
         | 
| 2151 | 
            +
                  "logps/rejected": -146.03125,
         | 
| 2152 | 
            +
                  "loss": 2.7642,
         | 
| 2153 | 
            +
                  "nll_loss": 2.13427734375,
         | 
| 2154 | 
            +
                  "rewards/accuracies": 0.5546875,
         | 
| 2155 | 
            +
                  "rewards/chosen": 1.08056640625,
         | 
| 2156 | 
            +
                  "rewards/margins": 0.1512451171875,
         | 
| 2157 | 
            +
                  "rewards/rejected": 0.93017578125,
         | 
| 2158 | 
            +
                  "step": 130
         | 
| 2159 | 
            +
                },
         | 
| 2160 | 
            +
                {
         | 
| 2161 | 
            +
                  "epoch": 4.853828306264501,
         | 
| 2162 | 
            +
                  "grad_norm": 32.517127990722656,
         | 
| 2163 | 
            +
                  "learning_rate": 3.90625e-09,
         | 
| 2164 | 
            +
                  "logits/chosen": 0.3182373046875,
         | 
| 2165 | 
            +
                  "logits/rejected": 0.3302001953125,
         | 
| 2166 | 
            +
                  "logps/chosen": -170.875,
         | 
| 2167 | 
            +
                  "logps/rejected": -147.53125,
         | 
| 2168 | 
            +
                  "loss": 2.8578,
         | 
| 2169 | 
            +
                  "nll_loss": 2.21142578125,
         | 
| 2170 | 
            +
                  "rewards/accuracies": 0.578125,
         | 
| 2171 | 
            +
                  "rewards/chosen": 1.061279296875,
         | 
| 2172 | 
            +
                  "rewards/margins": 0.1163330078125,
         | 
| 2173 | 
            +
                  "rewards/rejected": 0.94384765625,
         | 
| 2174 | 
            +
                  "step": 131
         | 
| 2175 | 
            +
                },
         | 
| 2176 | 
            +
                {
         | 
| 2177 | 
            +
                  "epoch": 4.890951276102088,
         | 
| 2178 | 
            +
                  "grad_norm": 27.79583168029785,
         | 
| 2179 | 
            +
                  "learning_rate": 3.125e-09,
         | 
| 2180 | 
            +
                  "logits/chosen": 0.36505126953125,
         | 
| 2181 | 
            +
                  "logits/rejected": 0.35943603515625,
         | 
| 2182 | 
            +
                  "logps/chosen": -158.75,
         | 
| 2183 | 
            +
                  "logps/rejected": -144.125,
         | 
| 2184 | 
            +
                  "loss": 2.7755,
         | 
| 2185 | 
            +
                  "nll_loss": 2.11279296875,
         | 
| 2186 | 
            +
                  "rewards/accuracies": 0.5078125,
         | 
| 2187 | 
            +
                  "rewards/chosen": 1.034423828125,
         | 
| 2188 | 
            +
                  "rewards/margins": 0.0912933349609375,
         | 
| 2189 | 
            +
                  "rewards/rejected": 0.943359375,
         | 
| 2190 | 
            +
                  "step": 132
         | 
| 2191 | 
            +
                },
         | 
| 2192 | 
            +
                {
         | 
| 2193 | 
            +
                  "epoch": 4.928074245939675,
         | 
| 2194 | 
            +
                  "grad_norm": 29.39356803894043,
         | 
| 2195 | 
            +
                  "learning_rate": 2.34375e-09,
         | 
| 2196 | 
            +
                  "logits/chosen": 0.33624267578125,
         | 
| 2197 | 
            +
                  "logits/rejected": 0.29620361328125,
         | 
| 2198 | 
            +
                  "logps/chosen": -161.6875,
         | 
| 2199 | 
            +
                  "logps/rejected": -150.09375,
         | 
| 2200 | 
            +
                  "loss": 2.8303,
         | 
| 2201 | 
            +
                  "nll_loss": 2.173828125,
         | 
| 2202 | 
            +
                  "rewards/accuracies": 0.5234375,
         | 
| 2203 | 
            +
                  "rewards/chosen": 1.076904296875,
         | 
| 2204 | 
            +
                  "rewards/margins": 0.098663330078125,
         | 
| 2205 | 
            +
                  "rewards/rejected": 0.978515625,
         | 
| 2206 | 
            +
                  "step": 133
         | 
| 2207 | 
            +
                },
         | 
| 2208 | 
            +
                {
         | 
| 2209 | 
            +
                  "epoch": 4.965197215777263,
         | 
| 2210 | 
            +
                  "grad_norm": 27.902801513671875,
         | 
| 2211 | 
            +
                  "learning_rate": 1.5625e-09,
         | 
| 2212 | 
            +
                  "logits/chosen": 0.34344482421875,
         | 
| 2213 | 
            +
                  "logits/rejected": 0.33367919921875,
         | 
| 2214 | 
            +
                  "logps/chosen": -163.125,
         | 
| 2215 | 
            +
                  "logps/rejected": -146.59375,
         | 
| 2216 | 
            +
                  "loss": 2.8206,
         | 
| 2217 | 
            +
                  "nll_loss": 2.16650390625,
         | 
| 2218 | 
            +
                  "rewards/accuracies": 0.5703125,
         | 
| 2219 | 
            +
                  "rewards/chosen": 1.05224609375,
         | 
| 2220 | 
            +
                  "rewards/margins": 0.0961456298828125,
         | 
| 2221 | 
            +
                  "rewards/rejected": 0.95556640625,
         | 
| 2222 | 
            +
                  "step": 134
         | 
| 2223 | 
            +
                },
         | 
| 2224 | 
            +
                {
         | 
| 2225 | 
            +
                  "epoch": 5.0,
         | 
| 2226 | 
            +
                  "grad_norm": 30.327899932861328,
         | 
| 2227 | 
            +
                  "learning_rate": 7.8125e-10,
         | 
| 2228 | 
            +
                  "logits/chosen": 0.3444661498069763,
         | 
| 2229 | 
            +
                  "logits/rejected": 0.314453125,
         | 
| 2230 | 
            +
                  "logps/chosen": -171.0,
         | 
| 2231 | 
            +
                  "logps/rejected": -152.13333129882812,
         | 
| 2232 | 
            +
                  "loss": 2.8311,
         | 
| 2233 | 
            +
                  "nll_loss": 2.1864583492279053,
         | 
| 2234 | 
            +
                  "rewards/accuracies": 0.5249999761581421,
         | 
| 2235 | 
            +
                  "rewards/chosen": 1.09375,
         | 
| 2236 | 
            +
                  "rewards/margins": 0.12301432341337204,
         | 
| 2237 | 
            +
                  "rewards/rejected": 0.9703124761581421,
         | 
| 2238 | 
            +
                  "step": 135
         | 
| 2239 | 
            +
                },
         | 
| 2240 | 
            +
                {
         | 
| 2241 | 
            +
                  "epoch": 5.0,
         | 
| 2242 | 
            +
                  "eval_logits/chosen": 0.35546875,
         | 
| 2243 | 
            +
                  "eval_logits/rejected": 0.3216145932674408,
         | 
| 2244 | 
            +
                  "eval_logps/chosen": -161.5,
         | 
| 2245 | 
            +
                  "eval_logps/rejected": -141.3333282470703,
         | 
| 2246 | 
            +
                  "eval_loss": 2.751953125,
         | 
| 2247 | 
            +
                  "eval_nll_loss": 2.1106770038604736,
         | 
| 2248 | 
            +
                  "eval_rewards/accuracies": 0.5807291865348816,
         | 
| 2249 | 
            +
                  "eval_rewards/chosen": 1.0455728769302368,
         | 
| 2250 | 
            +
                  "eval_rewards/margins": 0.1366984099149704,
         | 
| 2251 | 
            +
                  "eval_rewards/rejected": 0.908203125,
         | 
| 2252 | 
            +
                  "eval_runtime": 102.921,
         | 
| 2253 | 
            +
                  "eval_samples_per_second": 3.731,
         | 
| 2254 | 
            +
                  "eval_steps_per_second": 0.058,
         | 
| 2255 | 
            +
                  "step": 135
         | 
| 2256 | 
            +
                }
         | 
| 2257 | 
            +
              ],
         | 
| 2258 | 
            +
              "logging_steps": 1,
         | 
| 2259 | 
            +
              "max_steps": 135,
         | 
| 2260 | 
            +
              "num_input_tokens_seen": 0,
         | 
| 2261 | 
            +
              "num_train_epochs": 5,
         | 
| 2262 | 
            +
              "save_steps": 500,
         | 
| 2263 | 
            +
              "stateful_callbacks": {
         | 
| 2264 | 
            +
                "TrainerControl": {
         | 
| 2265 | 
            +
                  "args": {
         | 
| 2266 | 
            +
                    "should_epoch_stop": false,
         | 
| 2267 | 
            +
                    "should_evaluate": false,
         | 
| 2268 | 
            +
                    "should_log": false,
         | 
| 2269 | 
            +
                    "should_save": true,
         | 
| 2270 | 
            +
                    "should_training_stop": true
         | 
| 2271 | 
            +
                  },
         | 
| 2272 | 
            +
                  "attributes": {}
         | 
| 2273 | 
            +
                }
         | 
| 2274 | 
            +
              },
         | 
| 2275 | 
            +
              "total_flos": 0.0,
         | 
| 2276 | 
            +
              "train_batch_size": 1,
         | 
| 2277 | 
            +
              "trial_name": null,
         | 
| 2278 | 
            +
              "trial_params": null
         | 
| 2279 | 
            +
            }
         | 
    	
        training_args.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:e7d337dc52bcee8c54a321fd740931cfc7e30649a7711d66b13408c4d97155dd
         | 
| 3 | 
            +
            size 8401
         | 
    	
        vocab.json
    ADDED
    
    | The diff for this file is too large to render. 
		See raw diff | 
|  | 
    	
        zero_to_fp32.py
    ADDED
    
    | @@ -0,0 +1,760 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # Copyright (c) Microsoft Corporation.
         | 
| 4 | 
            +
            # SPDX-License-Identifier: Apache-2.0
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            # DeepSpeed Team
         | 
| 7 | 
            +
             | 
| 8 | 
            +
            # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
         | 
| 9 | 
            +
            # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
         | 
| 10 | 
            +
            # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
         | 
| 11 | 
            +
            # application.
         | 
| 12 | 
            +
            #
         | 
| 13 | 
            +
            # example:
         | 
| 14 | 
            +
            #   python zero_to_fp32.py . output_dir/
         | 
| 15 | 
            +
            #   or
         | 
| 16 | 
            +
            #   python zero_to_fp32.py . output_dir/ --safe_serialization
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            import argparse
         | 
| 19 | 
            +
            import torch
         | 
| 20 | 
            +
            import glob
         | 
| 21 | 
            +
            import math
         | 
| 22 | 
            +
            import os
         | 
| 23 | 
            +
            import re
         | 
| 24 | 
            +
            import gc
         | 
| 25 | 
            +
            import json
         | 
| 26 | 
            +
            import numpy as np
         | 
| 27 | 
            +
            from tqdm import tqdm
         | 
| 28 | 
            +
            from collections import OrderedDict
         | 
| 29 | 
            +
            from dataclasses import dataclass
         | 
| 30 | 
            +
             | 
| 31 | 
            +
            # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
         | 
| 32 | 
            +
            # DeepSpeed data structures it has to be available in the current python environment.
         | 
| 33 | 
            +
            from deepspeed.utils import logger
         | 
| 34 | 
            +
            from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
         | 
| 35 | 
            +
                                                        FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
         | 
| 36 | 
            +
                                                        FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            @dataclass
         | 
| 40 | 
            +
            class zero_model_state:
         | 
| 41 | 
            +
                buffers: dict()
         | 
| 42 | 
            +
                param_shapes: dict()
         | 
| 43 | 
            +
                shared_params: list
         | 
| 44 | 
            +
                ds_version: int
         | 
| 45 | 
            +
                frozen_param_shapes: dict()
         | 
| 46 | 
            +
                frozen_param_fragments: dict()
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            debug = 0
         | 
| 50 | 
            +
             | 
| 51 | 
            +
            # load to cpu
         | 
| 52 | 
            +
            device = torch.device('cpu')
         | 
| 53 | 
            +
             | 
| 54 | 
            +
             | 
| 55 | 
            +
            def atoi(text):
         | 
| 56 | 
            +
                return int(text) if text.isdigit() else text
         | 
| 57 | 
            +
             | 
| 58 | 
            +
             | 
| 59 | 
            +
            def natural_keys(text):
         | 
| 60 | 
            +
                '''
         | 
| 61 | 
            +
                alist.sort(key=natural_keys) sorts in human order
         | 
| 62 | 
            +
                http://nedbatchelder.com/blog/200712/human_sorting.html
         | 
| 63 | 
            +
                (See Toothy's implementation in the comments)
         | 
| 64 | 
            +
                '''
         | 
| 65 | 
            +
                return [atoi(c) for c in re.split(r'(\d+)', text)]
         | 
| 66 | 
            +
             | 
| 67 | 
            +
             | 
| 68 | 
            +
            def get_model_state_file(checkpoint_dir, zero_stage):
         | 
| 69 | 
            +
                if not os.path.isdir(checkpoint_dir):
         | 
| 70 | 
            +
                    raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
         | 
| 71 | 
            +
             | 
| 72 | 
            +
                # there should be only one file
         | 
| 73 | 
            +
                if zero_stage <= 2:
         | 
| 74 | 
            +
                    file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
         | 
| 75 | 
            +
                elif zero_stage == 3:
         | 
| 76 | 
            +
                    file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
         | 
| 77 | 
            +
             | 
| 78 | 
            +
                if not os.path.exists(file):
         | 
| 79 | 
            +
                    raise FileNotFoundError(f"can't find model states file at '{file}'")
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                return file
         | 
| 82 | 
            +
             | 
| 83 | 
            +
             | 
| 84 | 
            +
            def get_checkpoint_files(checkpoint_dir, glob_pattern):
         | 
| 85 | 
            +
                # XXX: need to test that this simple glob rule works for multi-node setup too
         | 
| 86 | 
            +
                ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
         | 
| 87 | 
            +
             | 
| 88 | 
            +
                if len(ckpt_files) == 0:
         | 
| 89 | 
            +
                    raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
         | 
| 90 | 
            +
             | 
| 91 | 
            +
                return ckpt_files
         | 
| 92 | 
            +
             | 
| 93 | 
            +
             | 
| 94 | 
            +
            def get_optim_files(checkpoint_dir):
         | 
| 95 | 
            +
                return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
         | 
| 96 | 
            +
             | 
| 97 | 
            +
             | 
| 98 | 
            +
            def get_model_state_files(checkpoint_dir):
         | 
| 99 | 
            +
                return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
         | 
| 100 | 
            +
             | 
| 101 | 
            +
             | 
| 102 | 
            +
            def parse_model_states(files):
         | 
| 103 | 
            +
                zero_model_states = []
         | 
| 104 | 
            +
                for file in files:
         | 
| 105 | 
            +
                    state_dict = torch.load(file, map_location=device, weights_only=False)
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                    if BUFFER_NAMES not in state_dict:
         | 
| 108 | 
            +
                        raise ValueError(f"{file} is not a model state checkpoint")
         | 
| 109 | 
            +
                    buffer_names = state_dict[BUFFER_NAMES]
         | 
| 110 | 
            +
                    if debug:
         | 
| 111 | 
            +
                        print("Found buffers:", buffer_names)
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    # recover just the buffers while restoring them to fp32 if they were saved in fp16
         | 
| 114 | 
            +
                    buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
         | 
| 115 | 
            +
                    param_shapes = state_dict[PARAM_SHAPES]
         | 
| 116 | 
            +
             | 
| 117 | 
            +
                    # collect parameters that are included in param_shapes
         | 
| 118 | 
            +
                    param_names = []
         | 
| 119 | 
            +
                    for s in param_shapes:
         | 
| 120 | 
            +
                        for name in s.keys():
         | 
| 121 | 
            +
                            param_names.append(name)
         | 
| 122 | 
            +
             | 
| 123 | 
            +
                    # update with frozen parameters
         | 
| 124 | 
            +
                    frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
         | 
| 125 | 
            +
                    if frozen_param_shapes is not None:
         | 
| 126 | 
            +
                        if debug:
         | 
| 127 | 
            +
                            print(f"Found frozen_param_shapes: {frozen_param_shapes}")
         | 
| 128 | 
            +
                        param_names += list(frozen_param_shapes.keys())
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                    # handle shared params
         | 
| 131 | 
            +
                    shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                    ds_version = state_dict.get(DS_VERSION, None)
         | 
| 134 | 
            +
             | 
| 135 | 
            +
                    frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
         | 
| 136 | 
            +
             | 
| 137 | 
            +
                    z_model_state = zero_model_state(buffers=buffers,
         | 
| 138 | 
            +
                                                     param_shapes=param_shapes,
         | 
| 139 | 
            +
                                                     shared_params=shared_params,
         | 
| 140 | 
            +
                                                     ds_version=ds_version,
         | 
| 141 | 
            +
                                                     frozen_param_shapes=frozen_param_shapes,
         | 
| 142 | 
            +
                                                     frozen_param_fragments=frozen_param_fragments)
         | 
| 143 | 
            +
                    zero_model_states.append(z_model_state)
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                return zero_model_states
         | 
| 146 | 
            +
             | 
| 147 | 
            +
             | 
| 148 | 
            +
            def parse_optim_states(files, ds_checkpoint_dir):
         | 
| 149 | 
            +
                total_files = len(files)
         | 
| 150 | 
            +
                state_dicts = []
         | 
| 151 | 
            +
                for f in tqdm(files, desc='Loading checkpoint shards'):
         | 
| 152 | 
            +
                    state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
         | 
| 153 | 
            +
                    # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
         | 
| 154 | 
            +
                    # and also handle the case where it was already removed by another helper script
         | 
| 155 | 
            +
                    state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
         | 
| 156 | 
            +
                    state_dicts.append(state_dict)
         | 
| 157 | 
            +
             | 
| 158 | 
            +
                if ZERO_STAGE not in state_dicts[0][OPTIMIZER_STATE_DICT]:
         | 
| 159 | 
            +
                    raise ValueError(f"{files[0]} is not a zero checkpoint")
         | 
| 160 | 
            +
                zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
         | 
| 161 | 
            +
                world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
         | 
| 164 | 
            +
                # parameters can be different from data parallelism for non-expert parameters. So we can just
         | 
| 165 | 
            +
                # use the max of the partition_count to get the dp world_size.
         | 
| 166 | 
            +
             | 
| 167 | 
            +
                if type(world_size) is list:
         | 
| 168 | 
            +
                    world_size = max(world_size)
         | 
| 169 | 
            +
             | 
| 170 | 
            +
                if world_size != total_files:
         | 
| 171 | 
            +
                    raise ValueError(
         | 
| 172 | 
            +
                        f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
         | 
| 173 | 
            +
                        "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
         | 
| 174 | 
            +
                    )
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                # the groups are named differently in each stage
         | 
| 177 | 
            +
                if zero_stage <= 2:
         | 
| 178 | 
            +
                    fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
         | 
| 179 | 
            +
                elif zero_stage == 3:
         | 
| 180 | 
            +
                    fp32_groups_key = FP32_FLAT_GROUPS
         | 
| 181 | 
            +
                else:
         | 
| 182 | 
            +
                    raise ValueError(f"unknown zero stage {zero_stage}")
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
         | 
| 185 | 
            +
                return zero_stage, world_size, fp32_flat_groups
         | 
| 186 | 
            +
             | 
| 187 | 
            +
             | 
| 188 | 
            +
            def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
         | 
| 189 | 
            +
                """
         | 
| 190 | 
            +
                Returns fp32 state_dict reconstructed from ds checkpoint
         | 
| 191 | 
            +
             | 
| 192 | 
            +
                Args:
         | 
| 193 | 
            +
                    - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
         | 
| 194 | 
            +
             | 
| 195 | 
            +
                """
         | 
| 196 | 
            +
                print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                optim_files = get_optim_files(ds_checkpoint_dir)
         | 
| 199 | 
            +
                zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
         | 
| 200 | 
            +
                print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
         | 
| 201 | 
            +
             | 
| 202 | 
            +
                model_files = get_model_state_files(ds_checkpoint_dir)
         | 
| 203 | 
            +
             | 
| 204 | 
            +
                zero_model_states = parse_model_states(model_files)
         | 
| 205 | 
            +
                print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                if zero_stage <= 2:
         | 
| 208 | 
            +
                    return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
         | 
| 209 | 
            +
                                                                      exclude_frozen_parameters)
         | 
| 210 | 
            +
                elif zero_stage == 3:
         | 
| 211 | 
            +
                    return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
         | 
| 212 | 
            +
                                                                      exclude_frozen_parameters)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
             | 
| 215 | 
            +
            def _zero2_merge_frozen_params(state_dict, zero_model_states):
         | 
| 216 | 
            +
                if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
         | 
| 217 | 
            +
                    return
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                frozen_param_shapes = zero_model_states[0].frozen_param_shapes
         | 
| 220 | 
            +
                frozen_param_fragments = zero_model_states[0].frozen_param_fragments
         | 
| 221 | 
            +
             | 
| 222 | 
            +
                if debug:
         | 
| 223 | 
            +
                    num_elem = sum(s.numel() for s in frozen_param_shapes.values())
         | 
| 224 | 
            +
                    print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                    wanted_params = len(frozen_param_shapes)
         | 
| 227 | 
            +
                    wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
         | 
| 228 | 
            +
                    avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
         | 
| 229 | 
            +
                    print(f'Frozen params: Have {avail_numel} numels to process.')
         | 
| 230 | 
            +
                    print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                total_params = 0
         | 
| 233 | 
            +
                total_numel = 0
         | 
| 234 | 
            +
                for name, shape in frozen_param_shapes.items():
         | 
| 235 | 
            +
                    total_params += 1
         | 
| 236 | 
            +
                    unpartitioned_numel = shape.numel()
         | 
| 237 | 
            +
                    total_numel += unpartitioned_numel
         | 
| 238 | 
            +
             | 
| 239 | 
            +
                    state_dict[name] = frozen_param_fragments[name]
         | 
| 240 | 
            +
             | 
| 241 | 
            +
                    if debug:
         | 
| 242 | 
            +
                        print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
         | 
| 245 | 
            +
             | 
| 246 | 
            +
             | 
| 247 | 
            +
            def _has_callable(obj, fn):
         | 
| 248 | 
            +
                attr = getattr(obj, fn, None)
         | 
| 249 | 
            +
                return callable(attr)
         | 
| 250 | 
            +
             | 
| 251 | 
            +
             | 
| 252 | 
            +
            def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
         | 
| 253 | 
            +
                param_shapes = zero_model_states[0].param_shapes
         | 
| 254 | 
            +
             | 
| 255 | 
            +
                # Reconstruction protocol:
         | 
| 256 | 
            +
                #
         | 
| 257 | 
            +
                # XXX: document this
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                if debug:
         | 
| 260 | 
            +
                    for i in range(world_size):
         | 
| 261 | 
            +
                        for j in range(len(fp32_flat_groups[0])):
         | 
| 262 | 
            +
                            print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
         | 
| 263 | 
            +
             | 
| 264 | 
            +
                # XXX: memory usage doubles here (zero2)
         | 
| 265 | 
            +
                num_param_groups = len(fp32_flat_groups[0])
         | 
| 266 | 
            +
                merged_single_partition_of_fp32_groups = []
         | 
| 267 | 
            +
                for i in range(num_param_groups):
         | 
| 268 | 
            +
                    merged_partitions = [sd[i] for sd in fp32_flat_groups]
         | 
| 269 | 
            +
                    full_single_fp32_vector = torch.cat(merged_partitions, 0)
         | 
| 270 | 
            +
                    merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
         | 
| 271 | 
            +
                avail_numel = sum(
         | 
| 272 | 
            +
                    [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                if debug:
         | 
| 275 | 
            +
                    wanted_params = sum([len(shapes) for shapes in param_shapes])
         | 
| 276 | 
            +
                    wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
         | 
| 277 | 
            +
                    # not asserting if there is a mismatch due to possible padding
         | 
| 278 | 
            +
                    print(f"Have {avail_numel} numels to process.")
         | 
| 279 | 
            +
                    print(f"Need {wanted_numel} numels in {wanted_params} params.")
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                # params
         | 
| 282 | 
            +
                # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
         | 
| 283 | 
            +
                # out-of-core computing solution
         | 
| 284 | 
            +
                total_numel = 0
         | 
| 285 | 
            +
                total_params = 0
         | 
| 286 | 
            +
                for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
         | 
| 287 | 
            +
                    offset = 0
         | 
| 288 | 
            +
                    avail_numel = full_single_fp32_vector.numel()
         | 
| 289 | 
            +
                    for name, shape in shapes.items():
         | 
| 290 | 
            +
             | 
| 291 | 
            +
                        unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
         | 
| 292 | 
            +
                        total_numel += unpartitioned_numel
         | 
| 293 | 
            +
                        total_params += 1
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                        if debug:
         | 
| 296 | 
            +
                            print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
         | 
| 297 | 
            +
                        state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
         | 
| 298 | 
            +
                        offset += unpartitioned_numel
         | 
| 299 | 
            +
             | 
| 300 | 
            +
                    # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
         | 
| 301 | 
            +
                    # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
         | 
| 302 | 
            +
                    # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
         | 
| 303 | 
            +
                    # live optimizer object, so we are checking that the numbers are within the right range
         | 
| 304 | 
            +
                    align_to = 2 * world_size
         | 
| 305 | 
            +
             | 
| 306 | 
            +
                    def zero2_align(x):
         | 
| 307 | 
            +
                        return align_to * math.ceil(x / align_to)
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                    if debug:
         | 
| 310 | 
            +
                        print(f"original offset={offset}, avail_numel={avail_numel}")
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    offset = zero2_align(offset)
         | 
| 313 | 
            +
                    avail_numel = zero2_align(avail_numel)
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    if debug:
         | 
| 316 | 
            +
                        print(f"aligned  offset={offset}, avail_numel={avail_numel}")
         | 
| 317 | 
            +
             | 
| 318 | 
            +
                    # Sanity check
         | 
| 319 | 
            +
                    if offset != avail_numel:
         | 
| 320 | 
            +
                        raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
         | 
| 321 | 
            +
             | 
| 322 | 
            +
                print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
         | 
| 323 | 
            +
             | 
| 324 | 
            +
             | 
| 325 | 
            +
            def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
         | 
| 326 | 
            +
                                                           exclude_frozen_parameters):
         | 
| 327 | 
            +
                state_dict = OrderedDict()
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                # buffers
         | 
| 330 | 
            +
                buffers = zero_model_states[0].buffers
         | 
| 331 | 
            +
                state_dict.update(buffers)
         | 
| 332 | 
            +
                if debug:
         | 
| 333 | 
            +
                    print(f"added {len(buffers)} buffers")
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                if not exclude_frozen_parameters:
         | 
| 336 | 
            +
                    _zero2_merge_frozen_params(state_dict, zero_model_states)
         | 
| 337 | 
            +
             | 
| 338 | 
            +
                _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
         | 
| 339 | 
            +
             | 
| 340 | 
            +
                # recover shared parameters
         | 
| 341 | 
            +
                for pair in zero_model_states[0].shared_params:
         | 
| 342 | 
            +
                    if pair[1] in state_dict:
         | 
| 343 | 
            +
                        state_dict[pair[0]] = state_dict[pair[1]]
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                return state_dict
         | 
| 346 | 
            +
             | 
| 347 | 
            +
             | 
| 348 | 
            +
            def zero3_partitioned_param_info(unpartitioned_numel, world_size):
         | 
| 349 | 
            +
                remainder = unpartitioned_numel % world_size
         | 
| 350 | 
            +
                padding_numel = (world_size - remainder) if remainder else 0
         | 
| 351 | 
            +
                partitioned_numel = math.ceil(unpartitioned_numel / world_size)
         | 
| 352 | 
            +
                return partitioned_numel, padding_numel
         | 
| 353 | 
            +
             | 
| 354 | 
            +
             | 
| 355 | 
            +
            def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
         | 
| 356 | 
            +
                if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
         | 
| 357 | 
            +
                    return
         | 
| 358 | 
            +
             | 
| 359 | 
            +
                if debug:
         | 
| 360 | 
            +
                    for i in range(world_size):
         | 
| 361 | 
            +
                        num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
         | 
| 362 | 
            +
                        print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
         | 
| 363 | 
            +
             | 
| 364 | 
            +
                    frozen_param_shapes = zero_model_states[0].frozen_param_shapes
         | 
| 365 | 
            +
                    wanted_params = len(frozen_param_shapes)
         | 
| 366 | 
            +
                    wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
         | 
| 367 | 
            +
                    avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
         | 
| 368 | 
            +
                    print(f'Frozen params: Have {avail_numel} numels to process.')
         | 
| 369 | 
            +
                    print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                total_params = 0
         | 
| 372 | 
            +
                total_numel = 0
         | 
| 373 | 
            +
                for name, shape in zero_model_states[0].frozen_param_shapes.items():
         | 
| 374 | 
            +
                    total_params += 1
         | 
| 375 | 
            +
                    unpartitioned_numel = shape.numel()
         | 
| 376 | 
            +
                    total_numel += unpartitioned_numel
         | 
| 377 | 
            +
             | 
| 378 | 
            +
                    param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
         | 
| 379 | 
            +
                    state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
         | 
| 380 | 
            +
             | 
| 381 | 
            +
                    partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    if debug:
         | 
| 384 | 
            +
                        print(
         | 
| 385 | 
            +
                            f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
         | 
| 386 | 
            +
                        )
         | 
| 387 | 
            +
             | 
| 388 | 
            +
                print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
         | 
| 389 | 
            +
             | 
| 390 | 
            +
             | 
| 391 | 
            +
            class GatheredTensor:
         | 
| 392 | 
            +
                """
         | 
| 393 | 
            +
                A pseudo tensor that collects partitioned weights.
         | 
| 394 | 
            +
                It is more memory efficient when there are multiple groups.
         | 
| 395 | 
            +
                """
         | 
| 396 | 
            +
             | 
| 397 | 
            +
                def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
         | 
| 398 | 
            +
                    self.flat_groups = flat_groups
         | 
| 399 | 
            +
                    self.flat_groups_offset = flat_groups_offset
         | 
| 400 | 
            +
                    self.offset = offset
         | 
| 401 | 
            +
                    self.partitioned_numel = partitioned_numel
         | 
| 402 | 
            +
                    self.shape = shape
         | 
| 403 | 
            +
                    self.dtype = self.flat_groups[0][0].dtype
         | 
| 404 | 
            +
             | 
| 405 | 
            +
                def contiguous(self):
         | 
| 406 | 
            +
                    """
         | 
| 407 | 
            +
                    Merge partitioned weights from flat_groups into a single tensor.
         | 
| 408 | 
            +
                    """
         | 
| 409 | 
            +
                    end_idx = self.offset + self.partitioned_numel
         | 
| 410 | 
            +
                    world_size = len(self.flat_groups)
         | 
| 411 | 
            +
                    pad_flat_param_chunks = []
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    for rank_i in range(world_size):
         | 
| 414 | 
            +
                        # for each rank, we need to collect weights from related group/groups
         | 
| 415 | 
            +
                        flat_groups_at_rank_i = self.flat_groups[rank_i]
         | 
| 416 | 
            +
                        start_group_id = None
         | 
| 417 | 
            +
                        end_group_id = None
         | 
| 418 | 
            +
                        for group_id in range(len(self.flat_groups_offset)):
         | 
| 419 | 
            +
                            if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
         | 
| 420 | 
            +
                                start_group_id = group_id
         | 
| 421 | 
            +
                            if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
         | 
| 422 | 
            +
                                end_group_id = group_id
         | 
| 423 | 
            +
                                break
         | 
| 424 | 
            +
                        # collect weights from related group/groups
         | 
| 425 | 
            +
                        for group_id in range(start_group_id, end_group_id + 1):
         | 
| 426 | 
            +
                            flat_tensor = flat_groups_at_rank_i[group_id]
         | 
| 427 | 
            +
                            start_offset = self.offset - self.flat_groups_offset[group_id]
         | 
| 428 | 
            +
                            end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
         | 
| 429 | 
            +
                            pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                    # collect weights from all ranks
         | 
| 432 | 
            +
                    pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
         | 
| 433 | 
            +
                    param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
         | 
| 434 | 
            +
                    return param
         | 
| 435 | 
            +
             | 
| 436 | 
            +
             | 
| 437 | 
            +
            def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
         | 
| 438 | 
            +
                param_shapes = zero_model_states[0].param_shapes
         | 
| 439 | 
            +
                avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
         | 
| 440 | 
            +
             | 
| 441 | 
            +
                # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
         | 
| 442 | 
            +
                # param, re-consolidating each param, while dealing with padding if any
         | 
| 443 | 
            +
             | 
| 444 | 
            +
                # merge list of dicts, preserving order
         | 
| 445 | 
            +
                param_shapes = {k: v for d in param_shapes for k, v in d.items()}
         | 
| 446 | 
            +
             | 
| 447 | 
            +
                if debug:
         | 
| 448 | 
            +
                    for i in range(world_size):
         | 
| 449 | 
            +
                        print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                    wanted_params = len(param_shapes)
         | 
| 452 | 
            +
                    wanted_numel = sum(shape.numel() for shape in param_shapes.values())
         | 
| 453 | 
            +
                    # not asserting if there is a mismatch due to possible padding
         | 
| 454 | 
            +
                    avail_numel = fp32_flat_groups[0].numel() * world_size
         | 
| 455 | 
            +
                    print(f"Trainable params: Have {avail_numel} numels to process.")
         | 
| 456 | 
            +
                    print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
         | 
| 457 | 
            +
             | 
| 458 | 
            +
                # params
         | 
| 459 | 
            +
                # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
         | 
| 460 | 
            +
                # out-of-core computing solution
         | 
| 461 | 
            +
                offset = 0
         | 
| 462 | 
            +
                total_numel = 0
         | 
| 463 | 
            +
                total_params = 0
         | 
| 464 | 
            +
                flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
         | 
| 465 | 
            +
                for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
         | 
| 466 | 
            +
                    unpartitioned_numel = shape.numel()
         | 
| 467 | 
            +
                    total_numel += unpartitioned_numel
         | 
| 468 | 
            +
                    total_params += 1
         | 
| 469 | 
            +
                    partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
         | 
| 470 | 
            +
             | 
| 471 | 
            +
                    if debug:
         | 
| 472 | 
            +
                        print(
         | 
| 473 | 
            +
                            f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
         | 
| 474 | 
            +
                        )
         | 
| 475 | 
            +
             | 
| 476 | 
            +
                    # memory efficient tensor
         | 
| 477 | 
            +
                    tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
         | 
| 478 | 
            +
                    state_dict[name] = tensor
         | 
| 479 | 
            +
                    offset += partitioned_numel
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                offset *= world_size
         | 
| 482 | 
            +
             | 
| 483 | 
            +
                # Sanity check
         | 
| 484 | 
            +
                if offset != avail_numel:
         | 
| 485 | 
            +
                    raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
         | 
| 486 | 
            +
             | 
| 487 | 
            +
                print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
         | 
| 488 | 
            +
             | 
| 489 | 
            +
             | 
| 490 | 
            +
            def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
         | 
| 491 | 
            +
                                                           exclude_frozen_parameters):
         | 
| 492 | 
            +
                state_dict = OrderedDict()
         | 
| 493 | 
            +
             | 
| 494 | 
            +
                # buffers
         | 
| 495 | 
            +
                buffers = zero_model_states[0].buffers
         | 
| 496 | 
            +
                state_dict.update(buffers)
         | 
| 497 | 
            +
                if debug:
         | 
| 498 | 
            +
                    print(f"added {len(buffers)} buffers")
         | 
| 499 | 
            +
             | 
| 500 | 
            +
                if not exclude_frozen_parameters:
         | 
| 501 | 
            +
                    _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
         | 
| 502 | 
            +
             | 
| 503 | 
            +
                _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
         | 
| 504 | 
            +
             | 
| 505 | 
            +
                # recover shared parameters
         | 
| 506 | 
            +
                for pair in zero_model_states[0].shared_params:
         | 
| 507 | 
            +
                    if pair[1] in state_dict:
         | 
| 508 | 
            +
                        state_dict[pair[0]] = state_dict[pair[1]]
         | 
| 509 | 
            +
             | 
| 510 | 
            +
                return state_dict
         | 
| 511 | 
            +
             | 
| 512 | 
            +
             | 
| 513 | 
            +
            def to_torch_tensor(state_dict, return_empty_tensor=False):
         | 
| 514 | 
            +
                """
         | 
| 515 | 
            +
                Convert state_dict of GatheredTensor to torch tensor
         | 
| 516 | 
            +
                """
         | 
| 517 | 
            +
                torch_state_dict = {}
         | 
| 518 | 
            +
                converted_tensors = {}
         | 
| 519 | 
            +
                for name, tensor in state_dict.items():
         | 
| 520 | 
            +
                    tensor_id = id(tensor)
         | 
| 521 | 
            +
                    if tensor_id in converted_tensors:  # shared tensors
         | 
| 522 | 
            +
                        shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
         | 
| 523 | 
            +
                        torch_state_dict[name] = shared_tensor
         | 
| 524 | 
            +
                    else:
         | 
| 525 | 
            +
                        converted_tensors[tensor_id] = name
         | 
| 526 | 
            +
                        if return_empty_tensor:
         | 
| 527 | 
            +
                            torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
         | 
| 528 | 
            +
                        else:
         | 
| 529 | 
            +
                            torch_state_dict[name] = tensor.contiguous()
         | 
| 530 | 
            +
                return torch_state_dict
         | 
| 531 | 
            +
             | 
| 532 | 
            +
             | 
| 533 | 
            +
            def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
         | 
| 534 | 
            +
                                                         tag=None,
         | 
| 535 | 
            +
                                                         exclude_frozen_parameters=False,
         | 
| 536 | 
            +
                                                         lazy_mode=False):
         | 
| 537 | 
            +
                """
         | 
| 538 | 
            +
                Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
         | 
| 539 | 
            +
                ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
         | 
| 540 | 
            +
                via a model hub.
         | 
| 541 | 
            +
             | 
| 542 | 
            +
                Args:
         | 
| 543 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder
         | 
| 544 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
         | 
| 545 | 
            +
                    - ``exclude_frozen_parameters``: exclude frozen parameters
         | 
| 546 | 
            +
                    - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
         | 
| 547 | 
            +
                      Convert the pesduo tensor to torch tensor by ``.contiguous()``
         | 
| 548 | 
            +
             | 
| 549 | 
            +
                Returns:
         | 
| 550 | 
            +
                    - pytorch ``state_dict``
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                A typical usage might be ::
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                    from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
         | 
| 555 | 
            +
                    # do the training and checkpoint saving
         | 
| 556 | 
            +
                    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
         | 
| 557 | 
            +
                    model = model.cpu() # move to cpu
         | 
| 558 | 
            +
                    model.load_state_dict(state_dict)
         | 
| 559 | 
            +
                    # submit to model hub or save the model to share with others
         | 
| 560 | 
            +
             | 
| 561 | 
            +
                In this example the ``model`` will no longer be usable in the deepspeed context of the same
         | 
| 562 | 
            +
                application. i.e. you will need to re-initialize the deepspeed engine, since
         | 
| 563 | 
            +
                ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
         | 
| 564 | 
            +
             | 
| 565 | 
            +
                If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
         | 
| 566 | 
            +
             | 
| 567 | 
            +
                Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
         | 
| 568 | 
            +
                You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
         | 
| 569 | 
            +
                the checkpoint. Or you can load state_dict in lazy mode ::
         | 
| 570 | 
            +
             | 
| 571 | 
            +
                    from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
         | 
| 572 | 
            +
                    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
         | 
| 573 | 
            +
                    for name, lazy_tensor in state_dict.item():
         | 
| 574 | 
            +
                        tensor = lazy_tensor.contiguous()  # to cpu
         | 
| 575 | 
            +
                        print(name, tensor)
         | 
| 576 | 
            +
                        # del tensor to release memory if it no longer in use
         | 
| 577 | 
            +
                """
         | 
| 578 | 
            +
                if tag is None:
         | 
| 579 | 
            +
                    latest_path = os.path.join(checkpoint_dir, 'latest')
         | 
| 580 | 
            +
                    if os.path.isfile(latest_path):
         | 
| 581 | 
            +
                        with open(latest_path, 'r') as fd:
         | 
| 582 | 
            +
                            tag = fd.read().strip()
         | 
| 583 | 
            +
                    else:
         | 
| 584 | 
            +
                        raise ValueError(f"Unable to find 'latest' file at {latest_path}")
         | 
| 585 | 
            +
             | 
| 586 | 
            +
                ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
         | 
| 587 | 
            +
             | 
| 588 | 
            +
                if not os.path.isdir(ds_checkpoint_dir):
         | 
| 589 | 
            +
                    raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
         | 
| 590 | 
            +
             | 
| 591 | 
            +
                state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
         | 
| 592 | 
            +
                if lazy_mode:
         | 
| 593 | 
            +
                    return state_dict
         | 
| 594 | 
            +
                else:
         | 
| 595 | 
            +
                    return to_torch_tensor(state_dict)
         | 
| 596 | 
            +
             | 
| 597 | 
            +
             | 
| 598 | 
            +
            def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
         | 
| 599 | 
            +
                                                           output_dir,
         | 
| 600 | 
            +
                                                           max_shard_size="5GB",
         | 
| 601 | 
            +
                                                           safe_serialization=False,
         | 
| 602 | 
            +
                                                           tag=None,
         | 
| 603 | 
            +
                                                           exclude_frozen_parameters=False):
         | 
| 604 | 
            +
                """
         | 
| 605 | 
            +
                Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
         | 
| 606 | 
            +
                loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
         | 
| 607 | 
            +
             | 
| 608 | 
            +
                Args:
         | 
| 609 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
         | 
| 610 | 
            +
                    - ``output_dir``: directory to the pytorch fp32 state_dict output files
         | 
| 611 | 
            +
                    - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
         | 
| 612 | 
            +
                    - ``safe_serialization``:  whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
         | 
| 613 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
         | 
| 614 | 
            +
                    - ``exclude_frozen_parameters``: exclude frozen parameters
         | 
| 615 | 
            +
                """
         | 
| 616 | 
            +
             | 
| 617 | 
            +
                # Dependency pre-check
         | 
| 618 | 
            +
                if safe_serialization:
         | 
| 619 | 
            +
                    try:
         | 
| 620 | 
            +
                        from safetensors.torch import save_file
         | 
| 621 | 
            +
                    except ImportError:
         | 
| 622 | 
            +
                        print('If you want to use `safe_serialization`, please `pip install safetensors`')
         | 
| 623 | 
            +
                        raise
         | 
| 624 | 
            +
                if max_shard_size is not None:
         | 
| 625 | 
            +
                    try:
         | 
| 626 | 
            +
                        from huggingface_hub import split_torch_state_dict_into_shards
         | 
| 627 | 
            +
                    except ImportError:
         | 
| 628 | 
            +
                        print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
         | 
| 629 | 
            +
                        raise
         | 
| 630 | 
            +
             | 
| 631 | 
            +
                # Convert zero checkpoint to state_dict
         | 
| 632 | 
            +
                state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
         | 
| 633 | 
            +
                                                                      tag,
         | 
| 634 | 
            +
                                                                      exclude_frozen_parameters,
         | 
| 635 | 
            +
                                                                      lazy_mode=True)
         | 
| 636 | 
            +
             | 
| 637 | 
            +
                # Shard the model if it is too big.
         | 
| 638 | 
            +
                weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
         | 
| 639 | 
            +
                if max_shard_size is not None:
         | 
| 640 | 
            +
                    filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
         | 
| 641 | 
            +
                    # an memory-efficient approach for sharding
         | 
| 642 | 
            +
                    empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
         | 
| 643 | 
            +
                    state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
         | 
| 644 | 
            +
                                                                          filename_pattern=filename_pattern,
         | 
| 645 | 
            +
                                                                          max_shard_size=max_shard_size)
         | 
| 646 | 
            +
                else:
         | 
| 647 | 
            +
                    from collections import namedtuple
         | 
| 648 | 
            +
                    StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
         | 
| 649 | 
            +
                    state_dict_split = StateDictSplit(is_sharded=False,
         | 
| 650 | 
            +
                                                      filename_to_tensors={weights_name: list(state_dict.keys())})
         | 
| 651 | 
            +
             | 
| 652 | 
            +
                # Save the model by shard
         | 
| 653 | 
            +
                os.makedirs(output_dir, exist_ok=True)
         | 
| 654 | 
            +
                filename_to_tensors = state_dict_split.filename_to_tensors.items()
         | 
| 655 | 
            +
                for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
         | 
| 656 | 
            +
                    shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
         | 
| 657 | 
            +
                    shard_state_dict = to_torch_tensor(shard_state_dict)
         | 
| 658 | 
            +
                    output_path = os.path.join(output_dir, shard_file)
         | 
| 659 | 
            +
                    if safe_serialization:
         | 
| 660 | 
            +
                        save_file(shard_state_dict, output_path, metadata={"format": "pt"})
         | 
| 661 | 
            +
                    else:
         | 
| 662 | 
            +
                        torch.save(shard_state_dict, output_path)
         | 
| 663 | 
            +
                    # release the memory of current shard
         | 
| 664 | 
            +
                    for tensor_name in list(shard_state_dict.keys()):
         | 
| 665 | 
            +
                        del state_dict[tensor_name]
         | 
| 666 | 
            +
                        del shard_state_dict[tensor_name]
         | 
| 667 | 
            +
                    del shard_state_dict
         | 
| 668 | 
            +
                    gc.collect()
         | 
| 669 | 
            +
             | 
| 670 | 
            +
                # Save index if sharded
         | 
| 671 | 
            +
                if state_dict_split.is_sharded:
         | 
| 672 | 
            +
                    index = {
         | 
| 673 | 
            +
                        "metadata": state_dict_split.metadata,
         | 
| 674 | 
            +
                        "weight_map": state_dict_split.tensor_to_filename,
         | 
| 675 | 
            +
                    }
         | 
| 676 | 
            +
                    save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
         | 
| 677 | 
            +
                    save_index_file = os.path.join(output_dir, save_index_file)
         | 
| 678 | 
            +
                    with open(save_index_file, "w", encoding="utf-8") as f:
         | 
| 679 | 
            +
                        content = json.dumps(index, indent=2, sort_keys=True) + "\n"
         | 
| 680 | 
            +
                        f.write(content)
         | 
| 681 | 
            +
             | 
| 682 | 
            +
             | 
| 683 | 
            +
            def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
         | 
| 684 | 
            +
                """
         | 
| 685 | 
            +
                1. Put the provided model to cpu
         | 
| 686 | 
            +
                2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
         | 
| 687 | 
            +
                3. Load it into the provided model
         | 
| 688 | 
            +
             | 
| 689 | 
            +
                Args:
         | 
| 690 | 
            +
                    - ``model``: the model object to update
         | 
| 691 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
         | 
| 692 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                Returns:
         | 
| 695 | 
            +
                    - ``model`: modified model
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                Make sure you have plenty of CPU memory available before you call this function. If you don't
         | 
| 698 | 
            +
                have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
         | 
| 699 | 
            +
                conveniently placed for you in the checkpoint folder.
         | 
| 700 | 
            +
             | 
| 701 | 
            +
                A typical usage might be ::
         | 
| 702 | 
            +
             | 
| 703 | 
            +
                    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
         | 
| 704 | 
            +
                    model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
         | 
| 705 | 
            +
                    # submit to model hub or save the model to share with others
         | 
| 706 | 
            +
             | 
| 707 | 
            +
                Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
         | 
| 708 | 
            +
                of the same application. i.e. you will need to re-initialize the deepspeed engine, since
         | 
| 709 | 
            +
                ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
         | 
| 710 | 
            +
             | 
| 711 | 
            +
                """
         | 
| 712 | 
            +
                logger.info("Extracting fp32 weights")
         | 
| 713 | 
            +
                state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                logger.info("Overwriting model with fp32 weights")
         | 
| 716 | 
            +
                model = model.cpu()
         | 
| 717 | 
            +
                model.load_state_dict(state_dict, strict=False)
         | 
| 718 | 
            +
             | 
| 719 | 
            +
                return model
         | 
| 720 | 
            +
             | 
| 721 | 
            +
             | 
| 722 | 
            +
            if __name__ == "__main__":
         | 
| 723 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 724 | 
            +
                parser.add_argument("checkpoint_dir",
         | 
| 725 | 
            +
                                    type=str,
         | 
| 726 | 
            +
                                    help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
         | 
| 727 | 
            +
                parser.add_argument("output_dir",
         | 
| 728 | 
            +
                                    type=str,
         | 
| 729 | 
            +
                                    help="directory to the pytorch fp32 state_dict output files"
         | 
| 730 | 
            +
                                    "(e.g. path/checkpoint-12-output/)")
         | 
| 731 | 
            +
                parser.add_argument(
         | 
| 732 | 
            +
                    "--max_shard_size",
         | 
| 733 | 
            +
                    type=str,
         | 
| 734 | 
            +
                    default="5GB",
         | 
| 735 | 
            +
                    help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
         | 
| 736 | 
            +
                    "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
         | 
| 737 | 
            +
                    "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
         | 
| 738 | 
            +
                    "without CPU OOM issues.")
         | 
| 739 | 
            +
                parser.add_argument(
         | 
| 740 | 
            +
                    "--safe_serialization",
         | 
| 741 | 
            +
                    default=False,
         | 
| 742 | 
            +
                    action='store_true',
         | 
| 743 | 
            +
                    help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
         | 
| 744 | 
            +
                parser.add_argument("-t",
         | 
| 745 | 
            +
                                    "--tag",
         | 
| 746 | 
            +
                                    type=str,
         | 
| 747 | 
            +
                                    default=None,
         | 
| 748 | 
            +
                                    help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
         | 
| 749 | 
            +
                parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
         | 
| 750 | 
            +
                parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
         | 
| 751 | 
            +
                args = parser.parse_args()
         | 
| 752 | 
            +
             | 
| 753 | 
            +
                debug = args.debug
         | 
| 754 | 
            +
             | 
| 755 | 
            +
                convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
         | 
| 756 | 
            +
                                                           args.output_dir,
         | 
| 757 | 
            +
                                                           max_shard_size=args.max_shard_size,
         | 
| 758 | 
            +
                                                           safe_serialization=args.safe_serialization,
         | 
| 759 | 
            +
                                                           tag=args.tag,
         | 
| 760 | 
            +
                                                           exclude_frozen_parameters=args.exclude_frozen_parameters)
         | 
