|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ PyTorch DeepSeek model.""" | 
					
						
						|  | import math | 
					
						
						|  | import warnings | 
					
						
						|  | from typing import List, Optional, Tuple, Union | 
					
						
						|  |  | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | import torch.utils.checkpoint | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss | 
					
						
						|  |  | 
					
						
						|  | from transformers.activations import ACT2FN | 
					
						
						|  | from transformers.cache_utils import Cache, DynamicCache | 
					
						
						|  | from transformers.modeling_attn_mask_utils import ( | 
					
						
						|  | AttentionMaskConverter, | 
					
						
						|  | _prepare_4d_attention_mask, | 
					
						
						|  | _prepare_4d_causal_attention_mask, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_outputs import ( | 
					
						
						|  | BaseModelOutputWithPast, | 
					
						
						|  | CausalLMOutputWithPast, | 
					
						
						|  | SequenceClassifierOutputWithPast, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.modeling_utils import PreTrainedModel | 
					
						
						|  | from transformers.pytorch_utils import ( | 
					
						
						|  | ALL_LAYERNORM_LAYERS, | 
					
						
						|  | is_torch_greater_or_equal_than_1_13, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils import ( | 
					
						
						|  | add_start_docstrings, | 
					
						
						|  | add_start_docstrings_to_model_forward, | 
					
						
						|  | is_flash_attn_2_available, | 
					
						
						|  | is_flash_attn_greater_or_equal_2_10, | 
					
						
						|  | logging, | 
					
						
						|  | replace_return_docstrings, | 
					
						
						|  | ) | 
					
						
						|  | from transformers.utils.import_utils import is_torch_fx_available | 
					
						
						|  | from .configuration_deepseek import DeepseekV3Config | 
					
						
						|  | import torch.distributed as dist | 
					
						
						|  | import numpy as np | 
					
						
						|  |  | 
					
						
						|  | if is_flash_attn_2_available(): | 
					
						
						|  | from flash_attn import flash_attn_func, flash_attn_varlen_func | 
					
						
						|  | from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if is_torch_fx_available(): | 
					
						
						|  | if not is_torch_greater_or_equal_than_1_13: | 
					
						
						|  | import torch.fx | 
					
						
						|  |  | 
					
						
						|  | _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | _CONFIG_FOR_DOC = "DeepseekV3Config" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _get_unpad_data(attention_mask): | 
					
						
						|  | seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) | 
					
						
						|  | indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten() | 
					
						
						|  | max_seqlen_in_batch = seqlens_in_batch.max().item() | 
					
						
						|  | cu_seqlens = F.pad( | 
					
						
						|  | torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0) | 
					
						
						|  | ) | 
					
						
						|  | return ( | 
					
						
						|  | indices, | 
					
						
						|  | cu_seqlens, | 
					
						
						|  | max_seqlen_in_batch, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def sequence_load_balancing_loss_func( | 
					
						
						|  | probs: torch.Tensor, | 
					
						
						|  | routing_map: torch.Tensor, | 
					
						
						|  | batch_size: int, | 
					
						
						|  | seq_length: int, | 
					
						
						|  | topk: int, | 
					
						
						|  | moe_aux_loss_coeff: float, | 
					
						
						|  | sequence_partition_group=None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calculate the auxiliary loss in sequence-level by computing the loss for each individual sample. | 
					
						
						|  | Refer to the DeepSeek-V2 huggingface repo | 
					
						
						|  | (https://huggingface.co/deepseek-ai/DeepSeek-V2) for details. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | probs (torch.Tensor): Softmax probabilities output by the router for each token. | 
					
						
						|  | Shape in [num_tokens, num_experts]. | 
					
						
						|  | routing_map (torch.Tensor): Mapping of tokens to experts assignment. | 
					
						
						|  | Shape in [num_tokens, num_experts]. | 
					
						
						|  | batch_size (int): Batch size to process. | 
					
						
						|  | seq_length (int): Sequence length to process. | 
					
						
						|  | topk (int): Number of experts to route to for each token. | 
					
						
						|  | moe_aux_loss_coeff (float): Scaling coefficient for the auxiliary loss. | 
					
						
						|  | sequence_partition_group (optional): The parallel group over which the sequence is | 
					
						
						|  | partitioned. If None, no partitioning is applied. | 
					
						
						|  | Defaults to None. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | torch.Tensor: The sequence auxiliary loss for load balancing. | 
					
						
						|  | """ | 
					
						
						|  | num_sub_sequence = 1 | 
					
						
						|  | num_experts = probs.shape[1] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | probs_for_aux_loss = probs.view(seq_length, batch_size, -1) | 
					
						
						|  | routing_map = routing_map.view(seq_length, batch_size, -1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if sequence_partition_group is not None: | 
					
						
						|  | num_sub_sequence = torch.distributed.get_world_size(sequence_partition_group) | 
					
						
						|  | seq_length *= num_sub_sequence | 
					
						
						|  | probs_for_aux_loss = gather_from_sequence_parallel_region( | 
					
						
						|  | probs_for_aux_loss, group=sequence_partition_group | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | cost_coeff = routing_map.sum(dim=0, dtype=torch.float).div_(seq_length * topk / num_experts) | 
					
						
						|  | seq_aux_loss = (cost_coeff * probs_for_aux_loss.mean(dim=0)).sum(dim=1).mean() | 
					
						
						|  | seq_aux_loss *= moe_aux_loss_coeff | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | return seq_aux_loss | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3RMSNorm(nn.Module): | 
					
						
						|  | def __init__(self, hidden_size, eps=1e-6): | 
					
						
						|  | """ | 
					
						
						|  | DeepseekV3RMSNorm is equivalent to T5LayerNorm | 
					
						
						|  | """ | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.weight = nn.Parameter(torch.ones(hidden_size)) | 
					
						
						|  | self.variance_epsilon = eps | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | input_dtype = hidden_states.dtype | 
					
						
						|  | hidden_states = hidden_states.to(torch.float32) | 
					
						
						|  | variance = hidden_states.pow(2).mean(-1, keepdim=True) | 
					
						
						|  | hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) | 
					
						
						|  | return self.weight * hidden_states.to(input_dtype) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3RotaryEmbedding(nn.Module): | 
					
						
						|  | def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  |  | 
					
						
						|  | self.dim = dim | 
					
						
						|  | self.max_position_embeddings = max_position_embeddings | 
					
						
						|  | self.base = base | 
					
						
						|  | inv_freq = 1.0 / ( | 
					
						
						|  | self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._set_cos_sin_cache( | 
					
						
						|  | seq_len=max_position_embeddings, | 
					
						
						|  | device=self.inv_freq.device, | 
					
						
						|  | dtype=torch.get_default_dtype(), | 
					
						
						|  | ) | 
					
						
						|  | self.max_seq_len_cached = None | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange( | 
					
						
						|  | self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq.to(t.device)) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, seq_len=None): | 
					
						
						|  |  | 
					
						
						|  | if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached: | 
					
						
						|  | self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | self.cos_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | self.sin_cached[:seq_len].to(dtype=x.dtype), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding): | 
					
						
						|  | """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | base=10000, | 
					
						
						|  | device=None, | 
					
						
						|  | scaling_factor=1.0, | 
					
						
						|  | ): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | t = torch.arange( | 
					
						
						|  | self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
						
						|  | ) | 
					
						
						|  | t = t / self.scaling_factor | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding): | 
					
						
						|  | """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla""" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | base=10000, | 
					
						
						|  | device=None, | 
					
						
						|  | scaling_factor=1.0, | 
					
						
						|  | ): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  |  | 
					
						
						|  | if seq_len > self.max_position_embeddings: | 
					
						
						|  | base = self.base * ( | 
					
						
						|  | (self.scaling_factor * seq_len / self.max_position_embeddings) | 
					
						
						|  | - (self.scaling_factor - 1) | 
					
						
						|  | ) ** (self.dim / (self.dim - 2)) | 
					
						
						|  | inv_freq = 1.0 / ( | 
					
						
						|  | base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim) | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | t = torch.arange( | 
					
						
						|  | self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, self.inv_freq) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False) | 
					
						
						|  | self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def yarn_find_correction_dim( | 
					
						
						|  | num_rotations, dim, base=10000, max_position_embeddings=2048 | 
					
						
						|  | ): | 
					
						
						|  | return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / ( | 
					
						
						|  | 2 * math.log(base) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def yarn_find_correction_range( | 
					
						
						|  | low_rot, high_rot, dim, base=10000, max_position_embeddings=2048 | 
					
						
						|  | ): | 
					
						
						|  | low = math.floor( | 
					
						
						|  | yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings) | 
					
						
						|  | ) | 
					
						
						|  | high = math.ceil( | 
					
						
						|  | yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings) | 
					
						
						|  | ) | 
					
						
						|  | return max(low, 0), min(high, dim - 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def yarn_get_mscale(scale=1, mscale=1): | 
					
						
						|  | if scale <= 1: | 
					
						
						|  | return 1.0 | 
					
						
						|  | return 0.1 * mscale * math.log(scale) + 1.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def yarn_linear_ramp_mask(min, max, dim): | 
					
						
						|  | if min == max: | 
					
						
						|  | max += 0.001 | 
					
						
						|  |  | 
					
						
						|  | linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min) | 
					
						
						|  | ramp_func = torch.clamp(linear_func, 0, 1) | 
					
						
						|  | return ramp_func | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding): | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | dim, | 
					
						
						|  | max_position_embeddings=2048, | 
					
						
						|  | base=10000, | 
					
						
						|  | device=None, | 
					
						
						|  | scaling_factor=1.0, | 
					
						
						|  | original_max_position_embeddings=4096, | 
					
						
						|  | beta_fast=32, | 
					
						
						|  | beta_slow=1, | 
					
						
						|  | mscale=1, | 
					
						
						|  | mscale_all_dim=0, | 
					
						
						|  | ): | 
					
						
						|  | self.scaling_factor = scaling_factor | 
					
						
						|  | self.original_max_position_embeddings = original_max_position_embeddings | 
					
						
						|  | self.beta_fast = beta_fast | 
					
						
						|  | self.beta_slow = beta_slow | 
					
						
						|  | self.mscale = mscale | 
					
						
						|  | self.mscale_all_dim = mscale_all_dim | 
					
						
						|  | super().__init__(dim, max_position_embeddings, base, device) | 
					
						
						|  |  | 
					
						
						|  | def _set_cos_sin_cache(self, seq_len, device, dtype): | 
					
						
						|  | self.max_seq_len_cached = seq_len | 
					
						
						|  | dim = self.dim | 
					
						
						|  |  | 
					
						
						|  | freq_extra = 1.0 / ( | 
					
						
						|  | self.base | 
					
						
						|  | ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) | 
					
						
						|  | ) | 
					
						
						|  | freq_inter = 1.0 / ( | 
					
						
						|  | self.scaling_factor | 
					
						
						|  | * self.base | 
					
						
						|  | ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | low, high = yarn_find_correction_range( | 
					
						
						|  | self.beta_fast, | 
					
						
						|  | self.beta_slow, | 
					
						
						|  | dim, | 
					
						
						|  | self.base, | 
					
						
						|  | self.original_max_position_embeddings, | 
					
						
						|  | ) | 
					
						
						|  | inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to( | 
					
						
						|  | device=device, dtype=torch.float32 | 
					
						
						|  | ) | 
					
						
						|  | inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask | 
					
						
						|  | self.register_buffer("inv_freq", inv_freq, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | t = torch.arange(seq_len, device=device, dtype=torch.float32) | 
					
						
						|  |  | 
					
						
						|  | freqs = torch.outer(t, inv_freq) | 
					
						
						|  |  | 
					
						
						|  | _mscale = float( | 
					
						
						|  | yarn_get_mscale(self.scaling_factor, self.mscale) | 
					
						
						|  | / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | emb = torch.cat((freqs, freqs), dim=-1) | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False | 
					
						
						|  | ) | 
					
						
						|  | self.register_buffer( | 
					
						
						|  | "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def rotate_half(x): | 
					
						
						|  | """Rotates half the hidden dims of the input.""" | 
					
						
						|  | x1 = x[..., : x.shape[-1] // 2] | 
					
						
						|  | x2 = x[..., x.shape[-1] // 2 :] | 
					
						
						|  | return torch.cat((-x2, x1), dim=-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1): | 
					
						
						|  | """Applies Rotary Position Embedding to the query and key tensors. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | q (`torch.Tensor`): The query tensor. | 
					
						
						|  | k (`torch.Tensor`): The key tensor. | 
					
						
						|  | cos (`torch.Tensor`): The cosine part of the rotary embedding. | 
					
						
						|  | sin (`torch.Tensor`): The sine part of the rotary embedding. | 
					
						
						|  | position_ids (`torch.Tensor`): | 
					
						
						|  | The position indices of the tokens corresponding to the query and key tensors. For example, this can be | 
					
						
						|  | used to pass offsetted position ids when working with a KV-cache. | 
					
						
						|  | unsqueeze_dim (`int`, *optional*, defaults to 1): | 
					
						
						|  | The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and | 
					
						
						|  | sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note | 
					
						
						|  | that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and | 
					
						
						|  | k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes | 
					
						
						|  | cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have | 
					
						
						|  | the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. | 
					
						
						|  | Returns: | 
					
						
						|  | `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. | 
					
						
						|  | """ | 
					
						
						|  | cos = cos[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  | sin = sin[position_ids].unsqueeze(unsqueeze_dim) | 
					
						
						|  |  | 
					
						
						|  | b, h, s, d = q.shape | 
					
						
						|  | q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) | 
					
						
						|  |  | 
					
						
						|  | b, h, s, d = k.shape | 
					
						
						|  | k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d) | 
					
						
						|  |  | 
					
						
						|  | q_embed = (q * cos) + (rotate_half(q) * sin) | 
					
						
						|  | k_embed = (k * cos) + (rotate_half(k) * sin) | 
					
						
						|  | return q_embed, k_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3MLP(nn.Module): | 
					
						
						|  | def __init__(self, config, hidden_size=None, intermediate_size=None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.hidden_size = config.hidden_size if hidden_size is None else hidden_size | 
					
						
						|  | self.intermediate_size = ( | 
					
						
						|  | config.intermediate_size if intermediate_size is None else intermediate_size | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) | 
					
						
						|  | self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) | 
					
						
						|  | self.act_fn = ACT2FN[config.hidden_act] | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x): | 
					
						
						|  | down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) | 
					
						
						|  | return down_proj | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MoEGate(nn.Module): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.top_k = config.num_experts_per_tok | 
					
						
						|  | self.n_routed_experts = config.n_routed_experts | 
					
						
						|  | self.routed_scaling_factor = config.routed_scaling_factor | 
					
						
						|  | self.scoring_func = config.scoring_func | 
					
						
						|  | self.seq_aux = config.seq_aux | 
					
						
						|  | self.topk_method = config.topk_method | 
					
						
						|  | self.n_group = config.n_group | 
					
						
						|  | self.topk_group = config.topk_group | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.norm_topk_prob = config.norm_topk_prob | 
					
						
						|  | self.gating_dim = config.hidden_size | 
					
						
						|  | self.weight = nn.Parameter( | 
					
						
						|  | torch.empty((self.n_routed_experts, self.gating_dim)) | 
					
						
						|  | ) | 
					
						
						|  | if self.topk_method == "noaux_tc": | 
					
						
						|  | self.e_score_correction_bias = nn.Parameter( | 
					
						
						|  | torch.empty((self.n_routed_experts)) | 
					
						
						|  | ) | 
					
						
						|  | self.reset_parameters() | 
					
						
						|  |  | 
					
						
						|  | def reset_parameters(self) -> None: | 
					
						
						|  | import torch.nn.init as init | 
					
						
						|  |  | 
					
						
						|  | init.kaiming_uniform_(self.weight, a=math.sqrt(5)) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | bsz, seq_len, h = hidden_states.shape | 
					
						
						|  |  | 
					
						
						|  | hidden_states = hidden_states.view(-1, h) | 
					
						
						|  | logits = F.linear( | 
					
						
						|  | hidden_states.type(torch.float32), self.weight.type(torch.float32), None | 
					
						
						|  | ) | 
					
						
						|  | if self.scoring_func == "sigmoid": | 
					
						
						|  | scores = logits.sigmoid() | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | f"insupportable scoring function for MoE gating: {self.scoring_func}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.topk_method == "noaux_tc": | 
					
						
						|  |  | 
					
						
						|  | scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0) | 
					
						
						|  | group_scores = ( | 
					
						
						|  | scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1) | 
					
						
						|  | ) | 
					
						
						|  | group_idx = torch.topk( | 
					
						
						|  | group_scores, k=self.topk_group, dim=-1, sorted=False | 
					
						
						|  | )[ | 
					
						
						|  | 1 | 
					
						
						|  | ] | 
					
						
						|  | group_mask = torch.zeros_like(group_scores) | 
					
						
						|  | group_mask.scatter_(1, group_idx, 1) | 
					
						
						|  | score_mask = ( | 
					
						
						|  | group_mask.unsqueeze(-1) | 
					
						
						|  | .expand( | 
					
						
						|  | bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group | 
					
						
						|  | ) | 
					
						
						|  | .reshape(bsz * seq_len, -1) | 
					
						
						|  | ) | 
					
						
						|  | tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), 0.0) | 
					
						
						|  | _, topk_idx = torch.topk( | 
					
						
						|  | tmp_scores, k=self.top_k, dim=-1, sorted=False | 
					
						
						|  | ) | 
					
						
						|  | topk_weight = scores.gather(1, topk_idx) | 
					
						
						|  | else: | 
					
						
						|  | raise NotImplementedError( | 
					
						
						|  | f"insupportable TopK function for MoE gating: {self.topk_method}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.top_k > 1 and self.norm_topk_prob: | 
					
						
						|  | denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20 | 
					
						
						|  | topk_weight = topk_weight / denominator | 
					
						
						|  | topk_weight = topk_weight * self.routed_scaling_factor | 
					
						
						|  |  | 
					
						
						|  | return topk_idx, topk_weight | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3MoE(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | A mixed expert module containing shared experts. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.num_experts_per_tok = config.num_experts_per_tok | 
					
						
						|  |  | 
					
						
						|  | if hasattr(config, "ep_size") and config.ep_size > 1: | 
					
						
						|  | assert config.ep_size == dist.get_world_size() | 
					
						
						|  | self.ep_size = config.ep_size | 
					
						
						|  | self.experts_per_rank = config.n_routed_experts // config.ep_size | 
					
						
						|  | self.ep_rank = dist.get_rank() | 
					
						
						|  | self.experts = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | ( | 
					
						
						|  | DeepseekV3MLP( | 
					
						
						|  | config, intermediate_size=config.moe_intermediate_size | 
					
						
						|  | ) | 
					
						
						|  | if i >= self.ep_rank * self.experts_per_rank | 
					
						
						|  | and i < (self.ep_rank + 1) * self.experts_per_rank | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | for i in range(config.n_routed_experts) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.ep_size = 1 | 
					
						
						|  | self.experts_per_rank = config.n_routed_experts | 
					
						
						|  | self.ep_rank = 0 | 
					
						
						|  | self.experts = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | DeepseekV3MLP( | 
					
						
						|  | config, intermediate_size=config.moe_intermediate_size | 
					
						
						|  | ) | 
					
						
						|  | for i in range(config.n_routed_experts) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | self.gate = MoEGate(config) | 
					
						
						|  | if config.n_shared_experts is not None: | 
					
						
						|  | intermediate_size = config.moe_intermediate_size * config.n_shared_experts | 
					
						
						|  | self.shared_experts = DeepseekV3MLP( | 
					
						
						|  | config=config, intermediate_size=intermediate_size | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, hidden_states): | 
					
						
						|  | identity = hidden_states | 
					
						
						|  | orig_shape = hidden_states.shape | 
					
						
						|  | topk_idx, topk_weight = self.gate(hidden_states) | 
					
						
						|  | hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) | 
					
						
						|  | flat_topk_idx = topk_idx.view(-1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if self.training: | 
					
						
						|  | hidden_states = hidden_states.repeat_interleave( | 
					
						
						|  | self.num_experts_per_tok, dim=0 | 
					
						
						|  | ) | 
					
						
						|  | y = torch.empty_like(hidden_states) | 
					
						
						|  | for i, expert in enumerate(self.experts): | 
					
						
						|  | y[flat_topk_idx == i] = expert(hidden_states[flat_topk_idx == i]) | 
					
						
						|  | y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1) | 
					
						
						|  | y = y.to(hidden_states.dtype).view(*orig_shape) | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape) | 
					
						
						|  | if self.config.n_shared_experts is not None: | 
					
						
						|  | y = y + self.shared_experts(identity) | 
					
						
						|  | return y | 
					
						
						|  |  | 
					
						
						|  | @torch.no_grad() | 
					
						
						|  | def moe_infer(self, x, topk_ids, topk_weight): | 
					
						
						|  | cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts))) | 
					
						
						|  | cnts.scatter_(1, topk_ids, 1) | 
					
						
						|  | tokens_per_expert = cnts.sum(dim=0) | 
					
						
						|  | idxs = topk_ids.view(-1).argsort() | 
					
						
						|  | sorted_tokens = x[idxs // topk_ids.shape[1]] | 
					
						
						|  | sorted_tokens_shape = sorted_tokens.shape | 
					
						
						|  | if self.ep_size > 1: | 
					
						
						|  | tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1) | 
					
						
						|  | tokens_per_expert_group = tokens_per_expert.new_empty( | 
					
						
						|  | tokens_per_expert.shape[0] | 
					
						
						|  | ) | 
					
						
						|  | dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert) | 
					
						
						|  | output_splits = ( | 
					
						
						|  | tokens_per_expert_group.view(self.ep_size, -1) | 
					
						
						|  | .sum(1) | 
					
						
						|  | .cpu() | 
					
						
						|  | .numpy() | 
					
						
						|  | .tolist() | 
					
						
						|  | ) | 
					
						
						|  | gathered_tokens = sorted_tokens.new_empty( | 
					
						
						|  | tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1] | 
					
						
						|  | ) | 
					
						
						|  | input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist() | 
					
						
						|  | dist.all_to_all( | 
					
						
						|  | list(gathered_tokens.split(output_splits)), | 
					
						
						|  | list(sorted_tokens.split(input_split_sizes)), | 
					
						
						|  | ) | 
					
						
						|  | tokens_per_expert_post_gather = tokens_per_expert_group.view( | 
					
						
						|  | self.ep_size, self.experts_per_rank | 
					
						
						|  | ).sum(dim=0) | 
					
						
						|  | gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32) | 
					
						
						|  | s = 0 | 
					
						
						|  | for i, k in enumerate(tokens_per_expert_group.cpu().numpy()): | 
					
						
						|  | gatherd_idxs[s : s + k] = i % self.experts_per_rank | 
					
						
						|  | s += k | 
					
						
						|  | gatherd_idxs = gatherd_idxs.argsort() | 
					
						
						|  | sorted_tokens = gathered_tokens[gatherd_idxs] | 
					
						
						|  | tokens_per_expert = tokens_per_expert_post_gather | 
					
						
						|  | tokens_per_expert = tokens_per_expert.cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  | outputs = [] | 
					
						
						|  | start_idx = 0 | 
					
						
						|  | for i, num_tokens in enumerate(tokens_per_expert): | 
					
						
						|  | end_idx = start_idx + num_tokens | 
					
						
						|  | if num_tokens == 0: | 
					
						
						|  | continue | 
					
						
						|  | expert = self.experts[i + self.ep_rank * self.experts_per_rank] | 
					
						
						|  | tokens_for_this_expert = sorted_tokens[start_idx:end_idx] | 
					
						
						|  | expert_out = expert(tokens_for_this_expert) | 
					
						
						|  | outputs.append(expert_out) | 
					
						
						|  | start_idx = end_idx | 
					
						
						|  |  | 
					
						
						|  | outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0) | 
					
						
						|  | if self.ep_size > 1: | 
					
						
						|  | new_x = torch.empty_like(outs) | 
					
						
						|  | new_x[gatherd_idxs] = outs | 
					
						
						|  | gathered_tokens = new_x.new_empty(*sorted_tokens_shape) | 
					
						
						|  | dist.all_to_all( | 
					
						
						|  | list(gathered_tokens.split(input_split_sizes)), | 
					
						
						|  | list(new_x.split(output_splits)), | 
					
						
						|  | ) | 
					
						
						|  | outs = gathered_tokens | 
					
						
						|  |  | 
					
						
						|  | new_x = torch.empty_like(outs) | 
					
						
						|  | new_x[idxs] = outs | 
					
						
						|  | final_out = ( | 
					
						
						|  | new_x.view(*topk_ids.shape, -1) | 
					
						
						|  | .type(topk_weight.dtype) | 
					
						
						|  | .mul_(topk_weight.unsqueeze(dim=-1)) | 
					
						
						|  | .sum(dim=1) | 
					
						
						|  | .type(new_x.dtype) | 
					
						
						|  | ) | 
					
						
						|  | return final_out | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: | 
					
						
						|  | """ | 
					
						
						|  | This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, | 
					
						
						|  | num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) | 
					
						
						|  | """ | 
					
						
						|  | batch, num_key_value_heads, slen, head_dim = hidden_states.shape | 
					
						
						|  | if n_rep == 1: | 
					
						
						|  | return hidden_states | 
					
						
						|  | hidden_states = hidden_states[:, :, None, :, :].expand( | 
					
						
						|  | batch, num_key_value_heads, n_rep, slen, head_dim | 
					
						
						|  | ) | 
					
						
						|  | return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3Attention(nn.Module): | 
					
						
						|  | """Multi-headed attention from 'Attention Is All You Need' paper""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.config = config | 
					
						
						|  | self.layer_idx = layer_idx | 
					
						
						|  | if layer_idx is None: | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will " | 
					
						
						|  | "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " | 
					
						
						|  | "when creating this class." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.attention_dropout = config.attention_dropout | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  | self.num_heads = config.num_attention_heads | 
					
						
						|  |  | 
					
						
						|  | self.max_position_embeddings = config.max_position_embeddings | 
					
						
						|  | self.rope_theta = config.rope_theta | 
					
						
						|  | self.q_lora_rank = config.q_lora_rank | 
					
						
						|  | self.qk_rope_head_dim = config.qk_rope_head_dim | 
					
						
						|  | self.kv_lora_rank = config.kv_lora_rank | 
					
						
						|  | self.v_head_dim = config.v_head_dim | 
					
						
						|  | self.qk_nope_head_dim = config.qk_nope_head_dim | 
					
						
						|  | self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim | 
					
						
						|  |  | 
					
						
						|  | self.is_causal = True | 
					
						
						|  |  | 
					
						
						|  | if self.q_lora_rank is None: | 
					
						
						|  | self.q_proj = nn.Linear( | 
					
						
						|  | self.hidden_size, self.num_heads * self.q_head_dim, bias=False | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | self.q_a_proj = nn.Linear( | 
					
						
						|  | self.hidden_size, config.q_lora_rank, bias=config.attention_bias | 
					
						
						|  | ) | 
					
						
						|  | self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank) | 
					
						
						|  | self.q_b_proj = nn.Linear( | 
					
						
						|  | config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.kv_a_proj_with_mqa = nn.Linear( | 
					
						
						|  | self.hidden_size, | 
					
						
						|  | config.kv_lora_rank + config.qk_rope_head_dim, | 
					
						
						|  | bias=config.attention_bias, | 
					
						
						|  | ) | 
					
						
						|  | self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank) | 
					
						
						|  | self.kv_b_proj = nn.Linear( | 
					
						
						|  | config.kv_lora_rank, | 
					
						
						|  | self.num_heads | 
					
						
						|  | * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim), | 
					
						
						|  | bias=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.o_proj = nn.Linear( | 
					
						
						|  | self.num_heads * self.v_head_dim, | 
					
						
						|  | self.hidden_size, | 
					
						
						|  | bias=config.attention_bias, | 
					
						
						|  | ) | 
					
						
						|  | self._init_rope() | 
					
						
						|  |  | 
					
						
						|  | self.softmax_scale = self.q_head_dim ** (-0.5) | 
					
						
						|  | if self.config.rope_scaling is not None: | 
					
						
						|  | mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0) | 
					
						
						|  | scaling_factor = self.config.rope_scaling["factor"] | 
					
						
						|  | if mscale_all_dim: | 
					
						
						|  | mscale = yarn_get_mscale(scaling_factor, mscale_all_dim) | 
					
						
						|  | self.softmax_scale = self.softmax_scale * mscale * mscale | 
					
						
						|  |  | 
					
						
						|  | def _init_rope(self): | 
					
						
						|  | if self.config.rope_scaling is None: | 
					
						
						|  | self.rotary_emb = DeepseekV3RotaryEmbedding( | 
					
						
						|  | self.qk_rope_head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | scaling_type = self.config.rope_scaling["type"] | 
					
						
						|  | scaling_factor = self.config.rope_scaling["factor"] | 
					
						
						|  | if scaling_type == "linear": | 
					
						
						|  | self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding( | 
					
						
						|  | self.qk_rope_head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | elif scaling_type == "dynamic": | 
					
						
						|  | self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding( | 
					
						
						|  | self.qk_rope_head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | ) | 
					
						
						|  | elif scaling_type == "yarn": | 
					
						
						|  | kwargs = { | 
					
						
						|  | key: self.config.rope_scaling[key] | 
					
						
						|  | for key in [ | 
					
						
						|  | "original_max_position_embeddings", | 
					
						
						|  | "beta_fast", | 
					
						
						|  | "beta_slow", | 
					
						
						|  | "mscale", | 
					
						
						|  | "mscale_all_dim", | 
					
						
						|  | ] | 
					
						
						|  | if key in self.config.rope_scaling | 
					
						
						|  | } | 
					
						
						|  | self.rotary_emb = DeepseekV3YarnRotaryEmbedding( | 
					
						
						|  | self.qk_rope_head_dim, | 
					
						
						|  | max_position_embeddings=self.max_position_embeddings, | 
					
						
						|  | scaling_factor=scaling_factor, | 
					
						
						|  | base=self.rope_theta, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError(f"Unknown RoPE scaling type {scaling_type}") | 
					
						
						|  |  | 
					
						
						|  | def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int): | 
					
						
						|  | return ( | 
					
						
						|  | tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | .contiguous() | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | if self.q_lora_rank is None: | 
					
						
						|  | q = self.q_proj(hidden_states) | 
					
						
						|  | else: | 
					
						
						|  | q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) | 
					
						
						|  | q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) | 
					
						
						|  | q_nope, q_pe = torch.split( | 
					
						
						|  | q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | compressed_kv = self.kv_a_proj_with_mqa(hidden_states) | 
					
						
						|  | compressed_kv, k_pe = torch.split( | 
					
						
						|  | compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) | 
					
						
						|  | kv = ( | 
					
						
						|  | self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) | 
					
						
						|  | .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | k_nope, value_states = torch.split( | 
					
						
						|  | kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len = value_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | if self.layer_idx is None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} " | 
					
						
						|  | "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " | 
					
						
						|  | "with a layer index." | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len += past_key_value.get_seq_length(self.layer_idx) | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  |  | 
					
						
						|  | q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) | 
					
						
						|  | query_states[:, :, :, : self.qk_nope_head_dim] = q_nope | 
					
						
						|  | query_states[:, :, :, self.qk_nope_head_dim :] = q_pe | 
					
						
						|  |  | 
					
						
						|  | key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) | 
					
						
						|  | key_states[:, :, :, : self.qk_nope_head_dim] = k_nope | 
					
						
						|  | key_states[:, :, :, self.qk_nope_head_dim :] = k_pe | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update( | 
					
						
						|  | key_states, value_states, self.layer_idx, cache_kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_weights = ( | 
					
						
						|  | torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is" | 
					
						
						|  | f" {attn_weights.size()}" | 
					
						
						|  | ) | 
					
						
						|  | assert attention_mask is not None | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | if attention_mask.size() != (bsz, 1, q_len, kv_seq_len): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}" | 
					
						
						|  | ) | 
					
						
						|  | attn_weights = attn_weights + attention_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_weights = nn.functional.softmax( | 
					
						
						|  | attn_weights, dim=-1, dtype=torch.float32 | 
					
						
						|  | ).to(query_states.dtype) | 
					
						
						|  | attn_weights = nn.functional.dropout( | 
					
						
						|  | attn_weights, p=self.attention_dropout, training=self.training | 
					
						
						|  | ) | 
					
						
						|  | attn_output = torch.matmul(attn_weights, value_states) | 
					
						
						|  |  | 
					
						
						|  | if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim): | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is" | 
					
						
						|  | f" {attn_output.size()}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(1, 2).contiguous() | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3FlashAttention2(DeepseekV3Attention): | 
					
						
						|  | """ | 
					
						
						|  | DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays | 
					
						
						|  | untouched. The only required change would be on the forward pass where it needs to correctly call the public API of | 
					
						
						|  | flash attention and deal with padding tokens in case the input contains any of them. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, *args, **kwargs): | 
					
						
						|  | super().__init__(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10() | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.LongTensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Cache] = None, | 
					
						
						|  | output_attentions: bool = False, | 
					
						
						|  | use_cache: bool = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: | 
					
						
						|  |  | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attention_mask = kwargs.pop("padding_mask") | 
					
						
						|  |  | 
					
						
						|  | output_attentions = False | 
					
						
						|  |  | 
					
						
						|  | bsz, q_len, _ = hidden_states.size() | 
					
						
						|  |  | 
					
						
						|  | if self.q_lora_rank is None: | 
					
						
						|  | q = self.q_proj(hidden_states) | 
					
						
						|  | else: | 
					
						
						|  | q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states))) | 
					
						
						|  | q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2) | 
					
						
						|  | q_nope, q_pe = torch.split( | 
					
						
						|  | q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | compressed_kv = self.kv_a_proj_with_mqa(hidden_states) | 
					
						
						|  | compressed_kv, k_pe = torch.split( | 
					
						
						|  | compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2) | 
					
						
						|  | kv = ( | 
					
						
						|  | self.kv_b_proj(self.kv_a_layernorm(compressed_kv)) | 
					
						
						|  | .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim) | 
					
						
						|  | .transpose(1, 2) | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | k_nope, value_states = torch.split( | 
					
						
						|  | kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1 | 
					
						
						|  | ) | 
					
						
						|  | kv_seq_len = value_states.shape[-2] | 
					
						
						|  |  | 
					
						
						|  | kv_seq_len = value_states.shape[-2] | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | kv_seq_len += past_key_value.get_seq_length(self.layer_idx) | 
					
						
						|  |  | 
					
						
						|  | cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) | 
					
						
						|  | q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids) | 
					
						
						|  |  | 
					
						
						|  | query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) | 
					
						
						|  | query_states[:, :, :, : self.qk_nope_head_dim] = q_nope | 
					
						
						|  | query_states[:, :, :, self.qk_nope_head_dim :] = q_pe | 
					
						
						|  |  | 
					
						
						|  | key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim) | 
					
						
						|  | key_states[:, :, :, : self.qk_nope_head_dim] = k_nope | 
					
						
						|  | key_states[:, :, :, self.qk_nope_head_dim :] = k_pe | 
					
						
						|  |  | 
					
						
						|  | if self.q_head_dim != self.v_head_dim: | 
					
						
						|  | value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim]) | 
					
						
						|  |  | 
					
						
						|  | if past_key_value is not None: | 
					
						
						|  | cache_kwargs = {"sin": sin, "cos": cos} | 
					
						
						|  | key_states, value_states = past_key_value.update( | 
					
						
						|  | key_states, value_states, self.layer_idx, cache_kwargs | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.transpose(1, 2) | 
					
						
						|  | key_states = key_states.transpose(1, 2) | 
					
						
						|  | value_states = value_states.transpose(1, 2) | 
					
						
						|  |  | 
					
						
						|  | dropout_rate = self.attention_dropout if self.training else 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | input_dtype = query_states.dtype | 
					
						
						|  | if input_dtype == torch.float32: | 
					
						
						|  |  | 
					
						
						|  | if hasattr(self.config, "_pre_quantization_dtype"): | 
					
						
						|  | target_dtype = self.config._pre_quantization_dtype | 
					
						
						|  | elif torch.is_autocast_enabled(): | 
					
						
						|  | target_dtype = torch.get_autocast_gpu_dtype() | 
					
						
						|  | else: | 
					
						
						|  | target_dtype = ( | 
					
						
						|  | self.q_proj.weight.dtype | 
					
						
						|  | if self.q_lora_rank is None | 
					
						
						|  | else self.q_a_proj.weight.dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | logger.warning_once( | 
					
						
						|  | f"The input hidden states seems to be silently casted in float32, this might be related to" | 
					
						
						|  | f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" | 
					
						
						|  | f" {target_dtype}." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | query_states = query_states.to(target_dtype) | 
					
						
						|  | key_states = key_states.to(target_dtype) | 
					
						
						|  | value_states = value_states.to(target_dtype) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self._flash_attention_forward( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | q_len, | 
					
						
						|  | dropout=dropout_rate, | 
					
						
						|  | softmax_scale=self.softmax_scale, | 
					
						
						|  | ) | 
					
						
						|  | if self.q_head_dim != self.v_head_dim: | 
					
						
						|  | attn_output = attn_output[:, :, :, : self.v_head_dim] | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.reshape( | 
					
						
						|  | bsz, q_len, self.num_heads * self.v_head_dim | 
					
						
						|  | ).contiguous() | 
					
						
						|  | attn_output = self.o_proj(attn_output) | 
					
						
						|  |  | 
					
						
						|  | if not output_attentions: | 
					
						
						|  | attn_weights = None | 
					
						
						|  |  | 
					
						
						|  | return attn_output, attn_weights, past_key_value | 
					
						
						|  |  | 
					
						
						|  | def _flash_attention_forward( | 
					
						
						|  | self, | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | attention_mask, | 
					
						
						|  | query_length, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | softmax_scale=None, | 
					
						
						|  | ): | 
					
						
						|  | """ | 
					
						
						|  | Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token | 
					
						
						|  | first unpad the input, then computes the attention scores and pad the final attention scores. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | query_states (`torch.Tensor`): | 
					
						
						|  | Input query states to be passed to Flash Attention API | 
					
						
						|  | key_states (`torch.Tensor`): | 
					
						
						|  | Input key states to be passed to Flash Attention API | 
					
						
						|  | value_states (`torch.Tensor`): | 
					
						
						|  | Input value states to be passed to Flash Attention API | 
					
						
						|  | attention_mask (`torch.Tensor`): | 
					
						
						|  | The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the | 
					
						
						|  | position of padding tokens and 1 for the position of non-padding tokens. | 
					
						
						|  | dropout (`int`, *optional*): | 
					
						
						|  | Attention dropout | 
					
						
						|  | softmax_scale (`float`, *optional*): | 
					
						
						|  | The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim) | 
					
						
						|  | """ | 
					
						
						|  | if not self._flash_attn_uses_top_left_mask: | 
					
						
						|  | causal = self.is_causal | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | causal = self.is_causal and query_length != 1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attention_mask is not None: | 
					
						
						|  | batch_size = query_states.shape[0] | 
					
						
						|  | ( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | indices_q, | 
					
						
						|  | cu_seq_lens, | 
					
						
						|  | max_seq_lens, | 
					
						
						|  | ) = self._upad_input( | 
					
						
						|  | query_states, key_states, value_states, attention_mask, query_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | cu_seqlens_q, cu_seqlens_k = cu_seq_lens | 
					
						
						|  | max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens | 
					
						
						|  |  | 
					
						
						|  | attn_output_unpad = flash_attn_varlen_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | cu_seqlens_q=cu_seqlens_q, | 
					
						
						|  | cu_seqlens_k=cu_seqlens_k, | 
					
						
						|  | max_seqlen_q=max_seqlen_in_batch_q, | 
					
						
						|  | max_seqlen_k=max_seqlen_in_batch_k, | 
					
						
						|  | dropout_p=dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_output = pad_input( | 
					
						
						|  | attn_output_unpad, indices_q, batch_size, query_length | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output = flash_attn_func( | 
					
						
						|  | query_states, | 
					
						
						|  | key_states, | 
					
						
						|  | value_states, | 
					
						
						|  | dropout, | 
					
						
						|  | softmax_scale=softmax_scale, | 
					
						
						|  | causal=causal, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return attn_output | 
					
						
						|  |  | 
					
						
						|  | def _upad_input( | 
					
						
						|  | self, query_layer, key_layer, value_layer, attention_mask, query_length | 
					
						
						|  | ): | 
					
						
						|  | indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask) | 
					
						
						|  | batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape | 
					
						
						|  |  | 
					
						
						|  | key_layer = index_first_axis( | 
					
						
						|  | key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | 
					
						
						|  | indices_k, | 
					
						
						|  | ) | 
					
						
						|  | value_layer = index_first_axis( | 
					
						
						|  | value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim), | 
					
						
						|  | indices_k, | 
					
						
						|  | ) | 
					
						
						|  | if query_length == kv_seq_len: | 
					
						
						|  | query_layer = index_first_axis( | 
					
						
						|  | query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim), | 
					
						
						|  | indices_k, | 
					
						
						|  | ) | 
					
						
						|  | cu_seqlens_q = cu_seqlens_k | 
					
						
						|  | max_seqlen_in_batch_q = max_seqlen_in_batch_k | 
					
						
						|  | indices_q = indices_k | 
					
						
						|  | elif query_length == 1: | 
					
						
						|  | max_seqlen_in_batch_q = 1 | 
					
						
						|  | cu_seqlens_q = torch.arange( | 
					
						
						|  | batch_size + 1, dtype=torch.int32, device=query_layer.device | 
					
						
						|  | ) | 
					
						
						|  | indices_q = cu_seqlens_q[:-1] | 
					
						
						|  | query_layer = query_layer.squeeze(1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = attention_mask[:, -query_length:] | 
					
						
						|  | query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input( | 
					
						
						|  | query_layer, attention_mask | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return ( | 
					
						
						|  | query_layer, | 
					
						
						|  | key_layer, | 
					
						
						|  | value_layer, | 
					
						
						|  | indices_q, | 
					
						
						|  | (cu_seqlens_q, cu_seqlens_k), | 
					
						
						|  | (max_seqlen_in_batch_q, max_seqlen_in_batch_k), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | ATTENTION_CLASSES = { | 
					
						
						|  | "eager": DeepseekV3Attention, | 
					
						
						|  | "flash_attention_2": DeepseekV3FlashAttention2, | 
					
						
						|  | } | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3DecoderLayer(nn.Module): | 
					
						
						|  | def __init__(self, config: DeepseekV3Config, layer_idx: int): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.hidden_size = config.hidden_size | 
					
						
						|  |  | 
					
						
						|  | self.self_attn = ATTENTION_CLASSES[config._attn_implementation]( | 
					
						
						|  | config=config, layer_idx=layer_idx | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | self.mlp = ( | 
					
						
						|  | DeepseekV3MoE(config) | 
					
						
						|  | if ( | 
					
						
						|  | config.n_routed_experts is not None | 
					
						
						|  | and layer_idx >= config.first_k_dense_replace | 
					
						
						|  | and layer_idx % config.moe_layer_freq == 0 | 
					
						
						|  | ) | 
					
						
						|  | else DeepseekV3MLP(config) | 
					
						
						|  | ) | 
					
						
						|  | self.input_layernorm = DeepseekV3RMSNorm( | 
					
						
						|  | config.hidden_size, eps=config.rms_norm_eps | 
					
						
						|  | ) | 
					
						
						|  | self.post_attention_layernorm = DeepseekV3RMSNorm( | 
					
						
						|  | config.hidden_size, eps=config.rms_norm_eps | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | hidden_states: torch.Tensor, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_value: Optional[Tuple[torch.Tensor]] = None, | 
					
						
						|  | output_attentions: Optional[bool] = False, | 
					
						
						|  | use_cache: Optional[bool] = False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) -> Tuple[ | 
					
						
						|  | torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] | 
					
						
						|  | ]: | 
					
						
						|  | """ | 
					
						
						|  | Args: | 
					
						
						|  | hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)` | 
					
						
						|  | attention_mask (`torch.FloatTensor`, *optional*): | 
					
						
						|  | attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1, | 
					
						
						|  | query_sequence_length, key_sequence_length)` if default attention is used. | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under | 
					
						
						|  | returned tensors for more detail. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding | 
					
						
						|  | (see `past_key_values`). | 
					
						
						|  | past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states | 
					
						
						|  | """ | 
					
						
						|  | if "padding_mask" in kwargs: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`" | 
					
						
						|  | ) | 
					
						
						|  | residual = hidden_states | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.input_layernorm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states, self_attn_weights, present_key_value = self.self_attn( | 
					
						
						|  | hidden_states=hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_value, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | residual = hidden_states | 
					
						
						|  | hidden_states = self.post_attention_layernorm(hidden_states) | 
					
						
						|  | hidden_states = self.mlp(hidden_states) | 
					
						
						|  | hidden_states = residual + hidden_states | 
					
						
						|  |  | 
					
						
						|  | outputs = (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | outputs += (self_attn_weights,) | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | outputs += (present_key_value,) | 
					
						
						|  |  | 
					
						
						|  | return outputs | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | DeepseekV3_START_DOCSTRING = r""" | 
					
						
						|  | This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the | 
					
						
						|  | library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads | 
					
						
						|  | etc.) | 
					
						
						|  |  | 
					
						
						|  | This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. | 
					
						
						|  | Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage | 
					
						
						|  | and behavior. | 
					
						
						|  |  | 
					
						
						|  | Parameters: | 
					
						
						|  | config ([`DeepseekV3Config`]): | 
					
						
						|  | Model configuration class with all the parameters of the model. Initializing with a config file does not | 
					
						
						|  | load the weights associated with the model, only the configuration. Check out the | 
					
						
						|  | [`~PreTrainedModel.from_pretrained`] method to load the model weights. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | DeepseekV3_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class DeepseekV3PreTrainedModel(PreTrainedModel): | 
					
						
						|  | config_class = DeepseekV3Config | 
					
						
						|  | base_model_prefix = "model" | 
					
						
						|  | supports_gradient_checkpointing = True | 
					
						
						|  | _no_split_modules = ["DeepseekV3DecoderLayer"] | 
					
						
						|  | _skip_keys_device_placement = "past_key_values" | 
					
						
						|  | _supports_flash_attn_2 = True | 
					
						
						|  | _supports_cache_class = True | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, module): | 
					
						
						|  | std = self.config.initializer_range | 
					
						
						|  | if isinstance(module, nn.Linear): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.bias is not None: | 
					
						
						|  | module.bias.data.zero_() | 
					
						
						|  | elif isinstance(module, nn.Embedding): | 
					
						
						|  | module.weight.data.normal_(mean=0.0, std=std) | 
					
						
						|  | if module.padding_idx is not None: | 
					
						
						|  | module.weight.data[module.padding_idx].zero_() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | DeepseekV3_INPUTS_DOCSTRING = r""" | 
					
						
						|  | Args: | 
					
						
						|  | input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): | 
					
						
						|  | Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide | 
					
						
						|  | it. | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | [What are input IDs?](../glossary#input-ids) | 
					
						
						|  | attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: | 
					
						
						|  |  | 
					
						
						|  | - 1 for tokens that are **not masked**, | 
					
						
						|  | - 0 for tokens that are **masked**. | 
					
						
						|  |  | 
					
						
						|  | [What are attention masks?](../glossary#attention-mask) | 
					
						
						|  |  | 
					
						
						|  | Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and | 
					
						
						|  | [`PreTrainedTokenizer.__call__`] for details. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` is used, optionally only the last `input_ids` have to be input (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  |  | 
					
						
						|  | If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`] | 
					
						
						|  | and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more | 
					
						
						|  | information on the default strategy. | 
					
						
						|  |  | 
					
						
						|  | - 1 indicates the head is **not masked**, | 
					
						
						|  | - 0 indicates the head is **masked**. | 
					
						
						|  | position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0, | 
					
						
						|  | config.n_positions - 1]`. | 
					
						
						|  |  | 
					
						
						|  | [What are position IDs?](../glossary#position-ids) | 
					
						
						|  | past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*): | 
					
						
						|  | Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention | 
					
						
						|  | blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values` | 
					
						
						|  | returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`. | 
					
						
						|  |  | 
					
						
						|  | Two formats are allowed: | 
					
						
						|  | - a [`~cache_utils.Cache`] instance; | 
					
						
						|  | - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of | 
					
						
						|  | shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy | 
					
						
						|  | cache format. | 
					
						
						|  |  | 
					
						
						|  | The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the | 
					
						
						|  | legacy cache format will be returned. | 
					
						
						|  |  | 
					
						
						|  | If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't | 
					
						
						|  | have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids` | 
					
						
						|  | of shape `(batch_size, sequence_length)`. | 
					
						
						|  | inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*): | 
					
						
						|  | Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This | 
					
						
						|  | is useful if you want more control over how to convert `input_ids` indices into associated vectors than the | 
					
						
						|  | model's internal embedding lookup matrix. | 
					
						
						|  | use_cache (`bool`, *optional*): | 
					
						
						|  | If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see | 
					
						
						|  | `past_key_values`). | 
					
						
						|  | output_attentions (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned | 
					
						
						|  | tensors for more detail. | 
					
						
						|  | output_hidden_states (`bool`, *optional*): | 
					
						
						|  | Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for | 
					
						
						|  | more detail. | 
					
						
						|  | return_dict (`bool`, *optional*): | 
					
						
						|  | Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.", | 
					
						
						|  | DeepseekV3_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class DeepseekV3Model(DeepseekV3PreTrainedModel): | 
					
						
						|  | """ | 
					
						
						|  | Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`] | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | config: DeepseekV3Config | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config: DeepseekV3Config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.padding_idx = config.pad_token_id | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  |  | 
					
						
						|  | self.embed_tokens = nn.Embedding( | 
					
						
						|  | config.vocab_size, config.hidden_size, self.padding_idx | 
					
						
						|  | ) | 
					
						
						|  | self.layers = nn.ModuleList( | 
					
						
						|  | [ | 
					
						
						|  | DeepseekV3DecoderLayer(config, layer_idx) | 
					
						
						|  | for layer_idx in range(config.num_hidden_layers) | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2" | 
					
						
						|  | self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps) | 
					
						
						|  |  | 
					
						
						|  | self.gradient_checkpointing = False | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, BaseModelOutputWithPast]: | 
					
						
						|  | output_attentions = ( | 
					
						
						|  | output_attentions | 
					
						
						|  | if output_attentions is not None | 
					
						
						|  | else self.config.output_attentions | 
					
						
						|  | ) | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states | 
					
						
						|  | if output_hidden_states is not None | 
					
						
						|  | else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | use_cache = use_cache if use_cache is not None else self.config.use_cache | 
					
						
						|  |  | 
					
						
						|  | return_dict = ( | 
					
						
						|  | return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None and inputs_embeds is not None: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "You cannot specify both input_ids and inputs_embeds at the same time" | 
					
						
						|  | ) | 
					
						
						|  | elif input_ids is not None: | 
					
						
						|  | batch_size, seq_length = input_ids.shape[:2] | 
					
						
						|  | elif inputs_embeds is not None: | 
					
						
						|  | batch_size, seq_length = inputs_embeds.shape[:2] | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError("You have to specify either input_ids or inputs_embeds") | 
					
						
						|  |  | 
					
						
						|  | past_key_values_length = 0 | 
					
						
						|  | if use_cache: | 
					
						
						|  | use_legacy_cache = not isinstance(past_key_values, Cache) | 
					
						
						|  | if use_legacy_cache: | 
					
						
						|  | past_key_values = DynamicCache.from_legacy_cache(past_key_values) | 
					
						
						|  | past_key_values_length = past_key_values.get_seq_length() | 
					
						
						|  |  | 
					
						
						|  | if position_ids is None: | 
					
						
						|  | device = input_ids.device if input_ids is not None else inputs_embeds.device | 
					
						
						|  | position_ids = torch.arange( | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | seq_length + past_key_values_length, | 
					
						
						|  | dtype=torch.long, | 
					
						
						|  | device=device, | 
					
						
						|  | ) | 
					
						
						|  | position_ids = position_ids.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is None: | 
					
						
						|  | inputs_embeds = self.embed_tokens(input_ids) | 
					
						
						|  |  | 
					
						
						|  | if self._use_flash_attention_2: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = ( | 
					
						
						|  | attention_mask | 
					
						
						|  | if (attention_mask is not None and 0 in attention_mask) | 
					
						
						|  | else None | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | attention_mask = _prepare_4d_causal_attention_mask( | 
					
						
						|  | attention_mask, | 
					
						
						|  | (batch_size, seq_length), | 
					
						
						|  | inputs_embeds, | 
					
						
						|  | past_key_values_length, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | hidden_states = inputs_embeds | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | all_hidden_states = () if output_hidden_states else None | 
					
						
						|  | all_self_attns = () if output_attentions else None | 
					
						
						|  | next_decoder_cache = None | 
					
						
						|  |  | 
					
						
						|  | for decoder_layer in self.layers: | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | layer_outputs = decoder_layer( | 
					
						
						|  | hidden_states, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_value=past_key_values, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = layer_outputs[0] | 
					
						
						|  |  | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_decoder_cache = layer_outputs[2 if output_attentions else 1] | 
					
						
						|  |  | 
					
						
						|  | if output_attentions: | 
					
						
						|  | all_self_attns += (layer_outputs[1],) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = self.norm(hidden_states) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if output_hidden_states: | 
					
						
						|  | all_hidden_states += (hidden_states,) | 
					
						
						|  |  | 
					
						
						|  | next_cache = None | 
					
						
						|  | if use_cache: | 
					
						
						|  | next_cache = ( | 
					
						
						|  | next_decoder_cache.to_legacy_cache() | 
					
						
						|  | if use_legacy_cache | 
					
						
						|  | else next_decoder_cache | 
					
						
						|  | ) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | return tuple( | 
					
						
						|  | v | 
					
						
						|  | for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] | 
					
						
						|  | if v is not None | 
					
						
						|  | ) | 
					
						
						|  | return BaseModelOutputWithPast( | 
					
						
						|  | last_hidden_state=hidden_states, | 
					
						
						|  | past_key_values=next_cache, | 
					
						
						|  | hidden_states=all_hidden_states, | 
					
						
						|  | attentions=all_self_attns, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel): | 
					
						
						|  | _tied_weights_keys = ["lm_head.weight"] | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.model = DeepseekV3Model(config) | 
					
						
						|  | self.vocab_size = config.vocab_size | 
					
						
						|  | self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | def get_output_embeddings(self): | 
					
						
						|  | return self.lm_head | 
					
						
						|  |  | 
					
						
						|  | def set_output_embeddings(self, new_embeddings): | 
					
						
						|  | self.lm_head = new_embeddings | 
					
						
						|  |  | 
					
						
						|  | def set_decoder(self, decoder): | 
					
						
						|  | self.model = decoder | 
					
						
						|  |  | 
					
						
						|  | def get_decoder(self): | 
					
						
						|  | return self.model | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) | 
					
						
						|  | @replace_return_docstrings( | 
					
						
						|  | output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC | 
					
						
						|  | ) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, CausalLMOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | Args: | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): | 
					
						
						|  | Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers., | 
					
						
						|  | config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored | 
					
						
						|  | (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  |  | 
					
						
						|  | Example: | 
					
						
						|  |  | 
					
						
						|  | ```python | 
					
						
						|  | >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM | 
					
						
						|  |  | 
					
						
						|  | >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS) | 
					
						
						|  | >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER) | 
					
						
						|  |  | 
					
						
						|  | >>> prompt = "Hey, are you conscious? Can you talk to me?" | 
					
						
						|  | >>> inputs = tokenizer(prompt, return_tensors="pt") | 
					
						
						|  |  | 
					
						
						|  | >>> # Generate | 
					
						
						|  | >>> generate_ids = model.generate(inputs.input_ids, max_length=30) | 
					
						
						|  | >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0] | 
					
						
						|  | "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you." | 
					
						
						|  | ```""" | 
					
						
						|  | output_attentions = ( | 
					
						
						|  | output_attentions | 
					
						
						|  | if output_attentions is not None | 
					
						
						|  | else self.config.output_attentions | 
					
						
						|  | ) | 
					
						
						|  | output_hidden_states = ( | 
					
						
						|  | output_hidden_states | 
					
						
						|  | if output_hidden_states is not None | 
					
						
						|  | else self.config.output_hidden_states | 
					
						
						|  | ) | 
					
						
						|  | return_dict = ( | 
					
						
						|  | return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | outputs = self.model( | 
					
						
						|  | input_ids=input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | hidden_states = outputs[0] | 
					
						
						|  | logits = self.lm_head(hidden_states) | 
					
						
						|  | logits = logits.float() | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  |  | 
					
						
						|  | shift_logits = logits[..., :-1, :].contiguous() | 
					
						
						|  | shift_labels = labels[..., 1:].contiguous() | 
					
						
						|  |  | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | shift_logits = shift_logits.view(-1, self.config.vocab_size) | 
					
						
						|  | shift_labels = shift_labels.view(-1) | 
					
						
						|  |  | 
					
						
						|  | shift_labels = shift_labels.to(shift_logits.device) | 
					
						
						|  | loss = loss_fct(shift_logits, shift_labels) | 
					
						
						|  |  | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (logits,) + outputs[1:] | 
					
						
						|  | return (loss,) + output if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return CausalLMOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=logits, | 
					
						
						|  | past_key_values=outputs.past_key_values, | 
					
						
						|  | hidden_states=outputs.hidden_states, | 
					
						
						|  | attentions=outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def prepare_inputs_for_generation( | 
					
						
						|  | self, | 
					
						
						|  | input_ids, | 
					
						
						|  | past_key_values=None, | 
					
						
						|  | attention_mask=None, | 
					
						
						|  | inputs_embeds=None, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | if past_key_values is not None: | 
					
						
						|  | if isinstance(past_key_values, Cache): | 
					
						
						|  | cache_length = past_key_values.get_seq_length() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | past_length = cache_length | 
					
						
						|  | max_cache_length = past_key_values.get_max_cache_shape() | 
					
						
						|  | else: | 
					
						
						|  | cache_length = past_length = past_key_values[0][0].shape[2] | 
					
						
						|  | max_cache_length = None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | attention_mask is not None | 
					
						
						|  | and attention_mask.shape[1] > input_ids.shape[1] | 
					
						
						|  | ): | 
					
						
						|  | input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | elif past_length < input_ids.shape[1]: | 
					
						
						|  | input_ids = input_ids[:, past_length:] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if ( | 
					
						
						|  | max_cache_length is not None | 
					
						
						|  | and attention_mask is not None | 
					
						
						|  | and cache_length + input_ids.shape[1] > max_cache_length | 
					
						
						|  | ): | 
					
						
						|  | attention_mask = attention_mask[:, -max_cache_length:] | 
					
						
						|  |  | 
					
						
						|  | position_ids = kwargs.get("position_ids", None) | 
					
						
						|  | if attention_mask is not None and position_ids is None: | 
					
						
						|  |  | 
					
						
						|  | position_ids = attention_mask.long().cumsum(-1) - 1 | 
					
						
						|  | position_ids.masked_fill_(attention_mask == 0, 1) | 
					
						
						|  | if past_key_values: | 
					
						
						|  | position_ids = position_ids[:, -input_ids.shape[1] :] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if inputs_embeds is not None and past_key_values is None: | 
					
						
						|  | model_inputs = {"inputs_embeds": inputs_embeds} | 
					
						
						|  | else: | 
					
						
						|  | model_inputs = {"input_ids": input_ids} | 
					
						
						|  |  | 
					
						
						|  | model_inputs.update( | 
					
						
						|  | { | 
					
						
						|  | "position_ids": position_ids, | 
					
						
						|  | "past_key_values": past_key_values, | 
					
						
						|  | "use_cache": kwargs.get("use_cache"), | 
					
						
						|  | "attention_mask": attention_mask, | 
					
						
						|  | } | 
					
						
						|  | ) | 
					
						
						|  | return model_inputs | 
					
						
						|  |  | 
					
						
						|  | @staticmethod | 
					
						
						|  | def _reorder_cache(past_key_values, beam_idx): | 
					
						
						|  | reordered_past = () | 
					
						
						|  | for layer_past in past_key_values: | 
					
						
						|  | reordered_past += ( | 
					
						
						|  | tuple( | 
					
						
						|  | past_state.index_select(0, beam_idx.to(past_state.device)) | 
					
						
						|  | for past_state in layer_past | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  | return reordered_past | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings( | 
					
						
						|  | """ | 
					
						
						|  | The DeepseekV3 Model transformer with a sequence classification head on top (linear layer). | 
					
						
						|  |  | 
					
						
						|  | [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models | 
					
						
						|  | (e.g. GPT-2) do. | 
					
						
						|  |  | 
					
						
						|  | Since it does classification on the last token, it requires to know the position of the last token. If a | 
					
						
						|  | `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If | 
					
						
						|  | no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the | 
					
						
						|  | padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in | 
					
						
						|  | each row of the batch). | 
					
						
						|  | """, | 
					
						
						|  | DeepseekV3_START_DOCSTRING, | 
					
						
						|  | ) | 
					
						
						|  | class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel): | 
					
						
						|  | def __init__(self, config): | 
					
						
						|  | super().__init__(config) | 
					
						
						|  | self.num_labels = config.num_labels | 
					
						
						|  | self.model = DeepseekV3Model(config) | 
					
						
						|  | self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.post_init() | 
					
						
						|  |  | 
					
						
						|  | def get_input_embeddings(self): | 
					
						
						|  | return self.model.embed_tokens | 
					
						
						|  |  | 
					
						
						|  | def set_input_embeddings(self, value): | 
					
						
						|  | self.model.embed_tokens = value | 
					
						
						|  |  | 
					
						
						|  | @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING) | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | input_ids: torch.LongTensor = None, | 
					
						
						|  | attention_mask: Optional[torch.Tensor] = None, | 
					
						
						|  | position_ids: Optional[torch.LongTensor] = None, | 
					
						
						|  | past_key_values: Optional[List[torch.FloatTensor]] = None, | 
					
						
						|  | inputs_embeds: Optional[torch.FloatTensor] = None, | 
					
						
						|  | labels: Optional[torch.LongTensor] = None, | 
					
						
						|  | use_cache: Optional[bool] = None, | 
					
						
						|  | output_attentions: Optional[bool] = None, | 
					
						
						|  | output_hidden_states: Optional[bool] = None, | 
					
						
						|  | return_dict: Optional[bool] = None, | 
					
						
						|  | ) -> Union[Tuple, SequenceClassifierOutputWithPast]: | 
					
						
						|  | r""" | 
					
						
						|  | labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): | 
					
						
						|  | Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers., | 
					
						
						|  | config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If | 
					
						
						|  | `config.num_labels > 1` a classification loss is computed (Cross-Entropy). | 
					
						
						|  | """ | 
					
						
						|  | return_dict = ( | 
					
						
						|  | return_dict if return_dict is not None else self.config.use_return_dict | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | transformer_outputs = self.model( | 
					
						
						|  | input_ids, | 
					
						
						|  | attention_mask=attention_mask, | 
					
						
						|  | position_ids=position_ids, | 
					
						
						|  | past_key_values=past_key_values, | 
					
						
						|  | inputs_embeds=inputs_embeds, | 
					
						
						|  | use_cache=use_cache, | 
					
						
						|  | output_attentions=output_attentions, | 
					
						
						|  | output_hidden_states=output_hidden_states, | 
					
						
						|  | return_dict=return_dict, | 
					
						
						|  | ) | 
					
						
						|  | hidden_states = transformer_outputs[0] | 
					
						
						|  | logits = self.score(hidden_states) | 
					
						
						|  |  | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | batch_size = input_ids.shape[0] | 
					
						
						|  | else: | 
					
						
						|  | batch_size = inputs_embeds.shape[0] | 
					
						
						|  |  | 
					
						
						|  | if self.config.pad_token_id is None and batch_size != 1: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Cannot handle batch sizes > 1 if no padding token is defined." | 
					
						
						|  | ) | 
					
						
						|  | if self.config.pad_token_id is None: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  | else: | 
					
						
						|  | if input_ids is not None: | 
					
						
						|  | sequence_lengths = ( | 
					
						
						|  | torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1 | 
					
						
						|  | ).to(logits.device) | 
					
						
						|  | else: | 
					
						
						|  | sequence_lengths = -1 | 
					
						
						|  |  | 
					
						
						|  | pooled_logits = logits[ | 
					
						
						|  | torch.arange(batch_size, device=logits.device), sequence_lengths | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | loss = None | 
					
						
						|  | if labels is not None: | 
					
						
						|  | labels = labels.to(logits.device) | 
					
						
						|  | if self.config.problem_type is None: | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | self.config.problem_type = "regression" | 
					
						
						|  | elif self.num_labels > 1 and ( | 
					
						
						|  | labels.dtype == torch.long or labels.dtype == torch.int | 
					
						
						|  | ): | 
					
						
						|  | self.config.problem_type = "single_label_classification" | 
					
						
						|  | else: | 
					
						
						|  | self.config.problem_type = "multi_label_classification" | 
					
						
						|  |  | 
					
						
						|  | if self.config.problem_type == "regression": | 
					
						
						|  | loss_fct = MSELoss() | 
					
						
						|  | if self.num_labels == 1: | 
					
						
						|  | loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) | 
					
						
						|  | else: | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | elif self.config.problem_type == "single_label_classification": | 
					
						
						|  | loss_fct = CrossEntropyLoss() | 
					
						
						|  | loss = loss_fct( | 
					
						
						|  | pooled_logits.view(-1, self.num_labels), labels.view(-1) | 
					
						
						|  | ) | 
					
						
						|  | elif self.config.problem_type == "multi_label_classification": | 
					
						
						|  | loss_fct = BCEWithLogitsLoss() | 
					
						
						|  | loss = loss_fct(pooled_logits, labels) | 
					
						
						|  | if not return_dict: | 
					
						
						|  | output = (pooled_logits,) + transformer_outputs[1:] | 
					
						
						|  | return ((loss,) + output) if loss is not None else output | 
					
						
						|  |  | 
					
						
						|  | return SequenceClassifierOutputWithPast( | 
					
						
						|  | loss=loss, | 
					
						
						|  | logits=pooled_logits, | 
					
						
						|  | past_key_values=transformer_outputs.past_key_values, | 
					
						
						|  | hidden_states=transformer_outputs.hidden_states, | 
					
						
						|  | attentions=transformer_outputs.attentions, | 
					
						
						|  | ) | 
					
						
						|  |  |