hanhainebula commited on
Commit
b3e930a
·
verified ·
1 Parent(s): c36507a

Upload folder using huggingface_hub

Browse files
Files changed (44) hide show
  1. .gitattributes +22 -0
  2. README.md +144 -0
  3. added_tokens.json +28 -0
  4. config.json +30 -0
  5. imgs/bright-performance.png +3 -0
  6. merges.txt +0 -0
  7. model-00001-of-00007.safetensors +3 -0
  8. model-00002-of-00007.safetensors +3 -0
  9. model-00003-of-00007.safetensors +3 -0
  10. model-00004-of-00007.safetensors +3 -0
  11. model-00005-of-00007.safetensors +3 -0
  12. model-00006-of-00007.safetensors +3 -0
  13. model-00007-of-00007.safetensors +3 -0
  14. model.safetensors.index.json +405 -0
  15. search_results/examples/EVAL/eval_results.json +146 -0
  16. search_results/examples/aops-examples.json +0 -0
  17. search_results/examples/biology-examples.json +3 -0
  18. search_results/examples/earth_science-examples.json +3 -0
  19. search_results/examples/economics-examples.json +3 -0
  20. search_results/examples/leetcode-examples.json +3 -0
  21. search_results/examples/pony-examples.json +3 -0
  22. search_results/examples/psychology-examples.json +3 -0
  23. search_results/examples/robotics-examples.json +3 -0
  24. search_results/examples/stackoverflow-examples.json +3 -0
  25. search_results/examples/sustainable_living-examples.json +3 -0
  26. search_results/examples/theoremqa_questions-examples.json +3 -0
  27. search_results/examples/theoremqa_theorems-examples.json +0 -0
  28. search_results/gpt4_reason/EVAL/eval_results.json +146 -0
  29. search_results/gpt4_reason/aops-gpt4_reason.json +0 -0
  30. search_results/gpt4_reason/biology-gpt4_reason.json +3 -0
  31. search_results/gpt4_reason/earth_science-gpt4_reason.json +3 -0
  32. search_results/gpt4_reason/economics-gpt4_reason.json +3 -0
  33. search_results/gpt4_reason/leetcode-gpt4_reason.json +3 -0
  34. search_results/gpt4_reason/pony-gpt4_reason.json +3 -0
  35. search_results/gpt4_reason/psychology-gpt4_reason.json +3 -0
  36. search_results/gpt4_reason/robotics-gpt4_reason.json +3 -0
  37. search_results/gpt4_reason/stackoverflow-gpt4_reason.json +3 -0
  38. search_results/gpt4_reason/sustainable_living-gpt4_reason.json +3 -0
  39. search_results/gpt4_reason/theoremqa_questions-gpt4_reason.json +3 -0
  40. search_results/gpt4_reason/theoremqa_theorems-gpt4_reason.json +0 -0
  41. special_tokens_map.json +31 -0
  42. tokenizer.json +3 -0
  43. tokenizer_config.json +245 -0
  44. vocab.json +0 -0
.gitattributes CHANGED
@@ -33,3 +33,25 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ imgs/bright-performance.png filter=lfs diff=lfs merge=lfs -text
37
+ search_results/examples/biology-examples.json filter=lfs diff=lfs merge=lfs -text
38
+ search_results/examples/earth_science-examples.json filter=lfs diff=lfs merge=lfs -text
39
+ search_results/examples/economics-examples.json filter=lfs diff=lfs merge=lfs -text
40
+ search_results/examples/leetcode-examples.json filter=lfs diff=lfs merge=lfs -text
41
+ search_results/examples/pony-examples.json filter=lfs diff=lfs merge=lfs -text
42
+ search_results/examples/psychology-examples.json filter=lfs diff=lfs merge=lfs -text
43
+ search_results/examples/robotics-examples.json filter=lfs diff=lfs merge=lfs -text
44
+ search_results/examples/stackoverflow-examples.json filter=lfs diff=lfs merge=lfs -text
45
+ search_results/examples/sustainable_living-examples.json filter=lfs diff=lfs merge=lfs -text
46
+ search_results/examples/theoremqa_questions-examples.json filter=lfs diff=lfs merge=lfs -text
47
+ search_results/gpt4_reason/biology-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
48
+ search_results/gpt4_reason/earth_science-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
49
+ search_results/gpt4_reason/economics-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
50
+ search_results/gpt4_reason/leetcode-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
51
+ search_results/gpt4_reason/pony-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
52
+ search_results/gpt4_reason/psychology-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
53
+ search_results/gpt4_reason/robotics-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
54
+ search_results/gpt4_reason/stackoverflow-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
55
+ search_results/gpt4_reason/sustainable_living-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
56
+ search_results/gpt4_reason/theoremqa_questions-gpt4_reason.json filter=lfs diff=lfs merge=lfs -text
57
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - feature-extraction
4
+ - sentence-similarity
5
+ - transformers
6
+ license: apache-2.0
7
+ ---
8
+
9
+
10
+ <h1 align="center">BGE-Reasoner-Embed</h1>
11
+
12
+
13
+
14
+ For more details please refer to our Github: [BGE-Reasoner](https://github.com/FlagOpen/FlagEmbedding/tree/master/research/BGE_Reasoner).
15
+
16
+ **BGE-Reasoner-Embed-Qwen3-8B-0923** is an embedding model trained for reasoning-intensive retrieval tasks, based on [Qwen/Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B). It achieves an nDCG@10 of 37.2 on the [BRIGHT](https://brightbenchmark.github.io/) benchmark with original query, demonstrating its strong capability in reasoning-intensive retrieval tasks.
17
+
18
+ The search results on BRIGHT are available [here](https://huggingface.co/BAAI/bge-reasoner-embed-qwen3-8b-0923/tree/main/search_results).
19
+
20
+ ## Usage
21
+
22
+ ### Using FlagEmbedding
23
+ ```
24
+ git clone https://github.com/FlagOpen/FlagEmbedding.git
25
+ cd FlagEmbedding
26
+ pip install -e .
27
+ ```
28
+
29
+ ```python
30
+ from FlagEmbedding import FlagLLMModel
31
+ queries = [
32
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_wenhuchen/eigen_value1.json
33
+ "Imagine you have a magical box that transforms any object you put inside it, where the object is represented by the column vector x = (x_1, x_2). The box's transformation can be represented by the matrix A = [[5, 4], [1, 2]], so when given an object x, the box outputs the new object Ax. On some special objects, this new object is just a constant multiple of the original object, λx = (λx_1, λx_2). Find both possible values of λ where this occurs — note that these are the box's eigenvalues.",
34
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_maxku/ipnetwork13-hammingdist.json
35
+ "Imagine you're comparing three digital images that are extremely simplified down to a grid of 5 pixels each, represented by either black (0) or white (1) pixels. The images are as follows: Image A: 00000, Image B: 10101, and Image C: 01010. By counting the number of pixels that differ between each pair of images, find the smallest number of differing pixels."
36
+ ]
37
+ documents = [
38
+ # taken from BRIGHT TheoT dataset, docid: 2723
39
+ "\\begin{definition}[Definition:Eigenvector/Linear Operator]\nLet $K$ be a field.\nLet $V$ be a vector space over $K$. \nLet $A : V \\to V$ be a linear operator.\nLet $\\lambda \\in K$ be an eigenvalue of $A$.\nA non-zero vector $v \\in V$ is an '''eigenvector corresponding to $\\lambda$''' {{iff}}:\n:$v \\in \\map \\ker {A - \\lambda I}$\nwhere: \n:$I : V \\to V$ is the identity mapping on $V$\n:$\\map \\ker {A - \\lambda I}$ denotes the kernel of $A - \\lambda I$.\nThat is, {{iff}}: \n:$A v = \\lambda v$\n\\end{definition}",
40
+ # taken from BRIGHT TheoT dataset, docid: 14101
41
+ "\\section{Error Correction Capability of Linear Code}\nTags: Linear Codes\n\n\\begin{theorem}\nLet $C$ be a linear code.\nLet $C$ have a minimum distance $d$.\nThen $C$ corrects $e$ transmission errors for all $e$ such that $2 e + 1 \\le d$.\n\\end{theorem}\n\n\\begin{proof}\nLet $C$ be a linear code whose master code is $V$.\nLet $c \\in C$ be a transmitted codeword.\nLet $v$ be the received word from $c$.\nBy definition, $v$ is an element of $V$.\nLet $v$ have a distance $e$ from $c$, where $2 e + 1 \\le d$.\nThus there have been $e$ transmission errors.\n{{AimForCont}} $c_1$ is a codeword of $C$, distinct from $c$, such that $\\map d {v, c_1} \\le e$.\nThen:\n{{begin-eqn}}\n{{eqn | l = \\map d {c, c_1}\n | o = \\le\n | r = \\map d {c, v} + \\map d {v, c_1}\n | c = \n}}\n{{eqn | o = \\le\n | r = e + e\n | c = \n}}\n{{eqn | o = <\n | r = d\n | c = \n}}\n{{end-eqn}}\nSo $c_1$ has a distance from $c$ less than $d$.\nBut $C$ has a minimum distance $d$.\nThus $c_1$ cannot be a codeword of $C$.\nFrom this contradiction it follows that there is no codeword of $C$ closer to $v$ than $c$.\nHence there is a unique codeword of $C$ which has the smallest distance from $v$.\nHence it can be understood that $C$ has corrected the transmission errors of $v$.\n{{Qed}}\n\\end{proof}\n\n"
42
+ ]
43
+ model = FlagLLMModel("BAAI/bge-reasoner-embed-qwen3-8b-0923",
44
+ query_instruction_for_retrieval="Given a Math problem, retrieve relevant theorems that help answer the problem.",
45
+ query_instruction_format="Instruct: {}\nQuery: {}",
46
+ devices="cuda:0", # set devices to "cuda:0" for testing on a single GPU
47
+ use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
48
+ embeddings_1 = model.encode_queries(queries)
49
+ embeddings_2 = model.encode_corpus(documents)
50
+ similarity = embeddings_1 @ embeddings_2.T
51
+ print(similarity)
52
+ # [[0.8228 0.5386]
53
+ # [0.575 0.6533]]
54
+ ```
55
+
56
+
57
+ ### Using HuggingFace Transformers
58
+ ```python
59
+ import torch
60
+ import torch.nn.functional as F
61
+
62
+ from torch import Tensor
63
+ from transformers import AutoTokenizer, AutoModel
64
+
65
+
66
+ def last_token_pool(last_hidden_states: Tensor,
67
+ attention_mask: Tensor) -> Tensor:
68
+ left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
69
+ if left_padding:
70
+ return last_hidden_states[:, -1]
71
+ else:
72
+ sequence_lengths = attention_mask.sum(dim=1) - 1
73
+ batch_size = last_hidden_states.shape[0]
74
+ return last_hidden_states[torch.arange(batch_size, device=last_hidden_states.device), sequence_lengths]
75
+
76
+
77
+ def get_detailed_instruct(task_description: str, query: str) -> str:
78
+ return f'Instruct: {task_description}\nQuery: {query}'
79
+
80
+
81
+ def tokenize_texts(tokenizer, texts, max_length: int, device: str):
82
+ batch_dict = tokenizer(texts, max_length=max_length, padding=True, truncation=True, return_tensors='pt', pad_to_multiple_of=8)
83
+ batch_dict = {k: v.to(device) for k, v in batch_dict.items()}
84
+ return batch_dict
85
+
86
+
87
+ task = 'Given a Math problem, retrieve relevant theorems that help answer the problem.'
88
+ queries = [
89
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_wenhuchen/eigen_value1.json
90
+ "Imagine you have a magical box that transforms any object you put inside it, where the object is represented by the column vector x = (x_1, x_2). The box's transformation can be represented by the matrix A = [[5, 4], [1, 2]], so when given an object x, the box outputs the new object Ax. On some special objects, this new object is just a constant multiple of the original object, λx = (λx_1, λx_2). Find both possible values of λ where this occurs — note that these are the box's eigenvalues.",
91
+ # taken from BRIGHT TheoT dataset, qid: examples-TheoremQA_maxku/ipnetwork13-hammingdist.json
92
+ "Imagine you're comparing three digital images that are extremely simplified down to a grid of 5 pixels each, represented by either black (0) or white (1) pixels. The images are as follows: Image A: 00000, Image B: 10101, and Image C: 01010. By counting the number of pixels that differ between each pair of images, find the smallest number of differing pixels."
93
+ ]
94
+ queries = [get_detailed_instruct(task, q) for q in queries]
95
+ documents = [
96
+ # taken from BRIGHT TheoT dataset, docid: 2723
97
+ "\\begin{definition}[Definition:Eigenvector/Linear Operator]\nLet $K$ be a field.\nLet $V$ be a vector space over $K$. \nLet $A : V \\to V$ be a linear operator.\nLet $\\lambda \\in K$ be an eigenvalue of $A$.\nA non-zero vector $v \\in V$ is an '''eigenvector corresponding to $\\lambda$''' {{iff}}:\n:$v \\in \\map \\ker {A - \\lambda I}$\nwhere: \n:$I : V \\to V$ is the identity mapping on $V$\n:$\\map \\ker {A - \\lambda I}$ denotes the kernel of $A - \\lambda I$.\nThat is, {{iff}}: \n:$A v = \\lambda v$\n\\end{definition}",
98
+ # taken from BRIGHT TheoT dataset, docid: 14101
99
+ "\\section{Error Correction Capability of Linear Code}\nTags: Linear Codes\n\n\\begin{theorem}\nLet $C$ be a linear code.\nLet $C$ have a minimum distance $d$.\nThen $C$ corrects $e$ transmission errors for all $e$ such that $2 e + 1 \\le d$.\n\\end{theorem}\n\n\\begin{proof}\nLet $C$ be a linear code whose master code is $V$.\nLet $c \\in C$ be a transmitted codeword.\nLet $v$ be the received word from $c$.\nBy definition, $v$ is an element of $V$.\nLet $v$ have a distance $e$ from $c$, where $2 e + 1 \\le d$.\nThus there have been $e$ transmission errors.\n{{AimForCont}} $c_1$ is a codeword of $C$, distinct from $c$, such that $\\map d {v, c_1} \\le e$.\nThen:\n{{begin-eqn}}\n{{eqn | l = \\map d {c, c_1}\n | o = \\le\n | r = \\map d {c, v} + \\map d {v, c_1}\n | c = \n}}\n{{eqn | o = \\le\n | r = e + e\n | c = \n}}\n{{eqn | o = <\n | r = d\n | c = \n}}\n{{end-eqn}}\nSo $c_1$ has a distance from $c$ less than $d$.\nBut $C$ has a minimum distance $d$.\nThus $c_1$ cannot be a codeword of $C$.\nFrom this contradiction it follows that there is no codeword of $C$ closer to $v$ than $c$.\nHence there is a unique codeword of $C$ which has the smallest distance from $v$.\nHence it can be understood that $C$ has corrected the transmission errors of $v$.\n{{Qed}}\n\\end{proof}\n\n"
100
+ ]
101
+
102
+ tokenizer = AutoTokenizer.from_pretrained("BAAI/bge-reasoner-embed-qwen3-8b-0923")
103
+ model = AutoModel.from_pretrained("BAAI/bge-reasoner-embed-qwen3-8b-0923")
104
+ model.eval()
105
+
106
+ device = "cuda:0" # set device to "cuda:0" for testing on a single GPU
107
+ model.to(device)
108
+ model.half()
109
+
110
+ max_length = 512
111
+ # Tokenize the input texts
112
+ query_batch_dict = tokenize_texts(tokenizer, queries, max_length, device)
113
+ doc_batch_dict = tokenize_texts(tokenizer, documents, max_length, device)
114
+
115
+ with torch.no_grad():
116
+ query_outputs = model(**query_batch_dict)
117
+ query_embeddings = last_token_pool(query_outputs.last_hidden_state, query_batch_dict['attention_mask'])
118
+
119
+ doc_outputs = model(**doc_batch_dict)
120
+ doc_embeddings = last_token_pool(doc_outputs.last_hidden_state, doc_batch_dict['attention_mask'])
121
+
122
+ # normalize embeddings
123
+ query_embeddings = F.normalize(query_embeddings, p=2, dim=1)
124
+ doc_embeddings = F.normalize(doc_embeddings, p=2, dim=1)
125
+ scores = (query_embeddings @ doc_embeddings.T) * 100
126
+ print(scores.cpu().tolist())
127
+ # [[82.25, 53.84375], [57.53125, 65.3125]]
128
+ ```
129
+
130
+
131
+ ## Evaluation
132
+
133
+ BGE-Reasoner-Embed-Qwen3-8B-0923 exhibits strong performance in reasoning-intensive retrieval tasks, as demonstrated by its results (nDCG@10 = 37.2 using original query) on the BRIGHT benchmark.
134
+
135
+ <img src="./imgs/bright-performance.png" alt="BRIGHT Performance" style="zoom:200%;" />
136
+
137
+
138
+ ## Citation
139
+
140
+ If you find this repository useful, please consider giving a star :star: and citation
141
+
142
+ ```
143
+ To be added
144
+ ```
added_tokens.json ADDED
@@ -0,0 +1,28 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</think>": 151668,
3
+ "</tool_call>": 151658,
4
+ "</tool_response>": 151666,
5
+ "<think>": 151667,
6
+ "<tool_call>": 151657,
7
+ "<tool_response>": 151665,
8
+ "<|box_end|>": 151649,
9
+ "<|box_start|>": 151648,
10
+ "<|endoftext|>": 151643,
11
+ "<|file_sep|>": 151664,
12
+ "<|fim_middle|>": 151660,
13
+ "<|fim_pad|>": 151662,
14
+ "<|fim_prefix|>": 151659,
15
+ "<|fim_suffix|>": 151661,
16
+ "<|im_end|>": 151645,
17
+ "<|im_start|>": 151644,
18
+ "<|image_pad|>": 151655,
19
+ "<|object_ref_end|>": 151647,
20
+ "<|object_ref_start|>": 151646,
21
+ "<|quad_end|>": 151651,
22
+ "<|quad_start|>": 151650,
23
+ "<|repo_name|>": 151663,
24
+ "<|video_pad|>": 151656,
25
+ "<|vision_end|>": 151653,
26
+ "<|vision_pad|>": 151654,
27
+ "<|vision_start|>": 151652
28
+ }
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Qwen3Model"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151645,
9
+ "head_dim": 128,
10
+ "hidden_act": "silu",
11
+ "hidden_size": 4096,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 12288,
14
+ "max_position_embeddings": 40960,
15
+ "max_window_layers": 36,
16
+ "model_type": "qwen3",
17
+ "num_attention_heads": 32,
18
+ "num_hidden_layers": 36,
19
+ "num_key_value_heads": 8,
20
+ "rms_norm_eps": 1e-06,
21
+ "rope_scaling": null,
22
+ "rope_theta": 1000000,
23
+ "sliding_window": null,
24
+ "tie_word_embeddings": false,
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.1",
27
+ "use_cache": false,
28
+ "use_sliding_window": false,
29
+ "vocab_size": 151936
30
+ }
imgs/bright-performance.png ADDED

Git LFS Details

  • SHA256: a99db7e24959989ecdcb8b0f00c8a2e8517ec5fe51d860e4880950682a9af566
  • Pointer size: 131 Bytes
  • Size of remote file: 126 kB
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:23735afff7b5c593498770ad7aae03015c654b15704b3b96ff6942749fb1db90
3
+ size 4972454136
model-00002-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:445fa2ef4c1a6e1017c065b81d7f093d1e2bd0c38fbcbf66d9eb103110cba7eb
3
+ size 4832048200
model-00003-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:116e3da92c066e1882e1542ac6f6bee5c6ed5d7c7628370ef20cdc7f14bda11e
3
+ size 4832048248
model-00004-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:acc49af2f5ef9bb6110d36d283985b09dce57e84f18b16e77e57083959c1518d
3
+ size 4999855080
model-00005-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:493967c31db9e3797c6fd5fc333594d72f0d620c8834e7d67b96f51026b499a7
3
+ size 4832048272
model-00006-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9a7d880cb754b2e9eb5bfde7f6e5a4d20a499aeea9b6c5626777cfd3329ca407
3
+ size 4832048264
model-00007-of-00007.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:48ae6a7506557bd220521094305cb815782bea7bcc9721db8aa38719330bede4
3
+ size 973163080
model.safetensors.index.json ADDED
@@ -0,0 +1,405 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 30273622016
4
+ },
5
+ "weight_map": {
6
+ "embed_tokens.weight": "model-00001-of-00007.safetensors",
7
+ "layers.0.input_layernorm.weight": "model-00001-of-00007.safetensors",
8
+ "layers.0.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
9
+ "layers.0.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
10
+ "layers.0.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
11
+ "layers.0.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
12
+ "layers.0.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
13
+ "layers.0.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
14
+ "layers.0.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
15
+ "layers.0.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
16
+ "layers.0.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
17
+ "layers.0.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
18
+ "layers.1.input_layernorm.weight": "model-00001-of-00007.safetensors",
19
+ "layers.1.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
20
+ "layers.1.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
21
+ "layers.1.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
22
+ "layers.1.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
23
+ "layers.1.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
24
+ "layers.1.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
25
+ "layers.1.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
26
+ "layers.1.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
27
+ "layers.1.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
28
+ "layers.1.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
29
+ "layers.10.input_layernorm.weight": "model-00003-of-00007.safetensors",
30
+ "layers.10.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
31
+ "layers.10.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
32
+ "layers.10.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
33
+ "layers.10.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
34
+ "layers.10.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
35
+ "layers.10.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
36
+ "layers.10.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
37
+ "layers.10.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
38
+ "layers.10.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
39
+ "layers.10.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
40
+ "layers.11.input_layernorm.weight": "model-00003-of-00007.safetensors",
41
+ "layers.11.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
42
+ "layers.11.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
43
+ "layers.11.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
44
+ "layers.11.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
45
+ "layers.11.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
46
+ "layers.11.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
47
+ "layers.11.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
48
+ "layers.11.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
49
+ "layers.11.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
50
+ "layers.11.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
51
+ "layers.12.input_layernorm.weight": "model-00003-of-00007.safetensors",
52
+ "layers.12.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
53
+ "layers.12.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
54
+ "layers.12.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
55
+ "layers.12.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
56
+ "layers.12.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
57
+ "layers.12.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
58
+ "layers.12.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
59
+ "layers.12.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
60
+ "layers.12.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
61
+ "layers.12.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
62
+ "layers.13.input_layernorm.weight": "model-00003-of-00007.safetensors",
63
+ "layers.13.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
64
+ "layers.13.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
65
+ "layers.13.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
66
+ "layers.13.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
67
+ "layers.13.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
68
+ "layers.13.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
69
+ "layers.13.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
70
+ "layers.13.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
71
+ "layers.13.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
72
+ "layers.13.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
73
+ "layers.14.input_layernorm.weight": "model-00003-of-00007.safetensors",
74
+ "layers.14.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
75
+ "layers.14.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
76
+ "layers.14.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
77
+ "layers.14.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
78
+ "layers.14.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
79
+ "layers.14.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
80
+ "layers.14.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
81
+ "layers.14.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
82
+ "layers.14.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
83
+ "layers.14.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
84
+ "layers.15.input_layernorm.weight": "model-00004-of-00007.safetensors",
85
+ "layers.15.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
86
+ "layers.15.mlp.gate_proj.weight": "model-00003-of-00007.safetensors",
87
+ "layers.15.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
88
+ "layers.15.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
89
+ "layers.15.self_attn.k_norm.weight": "model-00003-of-00007.safetensors",
90
+ "layers.15.self_attn.k_proj.weight": "model-00003-of-00007.safetensors",
91
+ "layers.15.self_attn.o_proj.weight": "model-00003-of-00007.safetensors",
92
+ "layers.15.self_attn.q_norm.weight": "model-00003-of-00007.safetensors",
93
+ "layers.15.self_attn.q_proj.weight": "model-00003-of-00007.safetensors",
94
+ "layers.15.self_attn.v_proj.weight": "model-00003-of-00007.safetensors",
95
+ "layers.16.input_layernorm.weight": "model-00004-of-00007.safetensors",
96
+ "layers.16.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
97
+ "layers.16.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
98
+ "layers.16.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
99
+ "layers.16.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
100
+ "layers.16.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
101
+ "layers.16.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
102
+ "layers.16.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
103
+ "layers.16.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
104
+ "layers.16.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
105
+ "layers.16.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
106
+ "layers.17.input_layernorm.weight": "model-00004-of-00007.safetensors",
107
+ "layers.17.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
108
+ "layers.17.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
109
+ "layers.17.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
110
+ "layers.17.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
111
+ "layers.17.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
112
+ "layers.17.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
113
+ "layers.17.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
114
+ "layers.17.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
115
+ "layers.17.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
116
+ "layers.17.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
117
+ "layers.18.input_layernorm.weight": "model-00004-of-00007.safetensors",
118
+ "layers.18.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
119
+ "layers.18.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
120
+ "layers.18.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
121
+ "layers.18.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
122
+ "layers.18.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
123
+ "layers.18.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
124
+ "layers.18.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
125
+ "layers.18.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
126
+ "layers.18.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
127
+ "layers.18.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
128
+ "layers.19.input_layernorm.weight": "model-00004-of-00007.safetensors",
129
+ "layers.19.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
130
+ "layers.19.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
131
+ "layers.19.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
132
+ "layers.19.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
133
+ "layers.19.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
134
+ "layers.19.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
135
+ "layers.19.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
136
+ "layers.19.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
137
+ "layers.19.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
138
+ "layers.19.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
139
+ "layers.2.input_layernorm.weight": "model-00001-of-00007.safetensors",
140
+ "layers.2.mlp.down_proj.weight": "model-00001-of-00007.safetensors",
141
+ "layers.2.mlp.gate_proj.weight": "model-00001-of-00007.safetensors",
142
+ "layers.2.mlp.up_proj.weight": "model-00001-of-00007.safetensors",
143
+ "layers.2.post_attention_layernorm.weight": "model-00001-of-00007.safetensors",
144
+ "layers.2.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
145
+ "layers.2.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
146
+ "layers.2.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
147
+ "layers.2.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
148
+ "layers.2.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
149
+ "layers.2.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
150
+ "layers.20.input_layernorm.weight": "model-00004-of-00007.safetensors",
151
+ "layers.20.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
152
+ "layers.20.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
153
+ "layers.20.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
154
+ "layers.20.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
155
+ "layers.20.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
156
+ "layers.20.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
157
+ "layers.20.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
158
+ "layers.20.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
159
+ "layers.20.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
160
+ "layers.20.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
161
+ "layers.21.input_layernorm.weight": "model-00004-of-00007.safetensors",
162
+ "layers.21.mlp.down_proj.weight": "model-00004-of-00007.safetensors",
163
+ "layers.21.mlp.gate_proj.weight": "model-00004-of-00007.safetensors",
164
+ "layers.21.mlp.up_proj.weight": "model-00004-of-00007.safetensors",
165
+ "layers.21.post_attention_layernorm.weight": "model-00004-of-00007.safetensors",
166
+ "layers.21.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
167
+ "layers.21.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
168
+ "layers.21.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
169
+ "layers.21.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
170
+ "layers.21.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
171
+ "layers.21.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
172
+ "layers.22.input_layernorm.weight": "model-00005-of-00007.safetensors",
173
+ "layers.22.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
174
+ "layers.22.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
175
+ "layers.22.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
176
+ "layers.22.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
177
+ "layers.22.self_attn.k_norm.weight": "model-00004-of-00007.safetensors",
178
+ "layers.22.self_attn.k_proj.weight": "model-00004-of-00007.safetensors",
179
+ "layers.22.self_attn.o_proj.weight": "model-00004-of-00007.safetensors",
180
+ "layers.22.self_attn.q_norm.weight": "model-00004-of-00007.safetensors",
181
+ "layers.22.self_attn.q_proj.weight": "model-00004-of-00007.safetensors",
182
+ "layers.22.self_attn.v_proj.weight": "model-00004-of-00007.safetensors",
183
+ "layers.23.input_layernorm.weight": "model-00005-of-00007.safetensors",
184
+ "layers.23.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
185
+ "layers.23.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
186
+ "layers.23.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
187
+ "layers.23.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
188
+ "layers.23.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
189
+ "layers.23.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
190
+ "layers.23.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
191
+ "layers.23.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
192
+ "layers.23.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
193
+ "layers.23.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
194
+ "layers.24.input_layernorm.weight": "model-00005-of-00007.safetensors",
195
+ "layers.24.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
196
+ "layers.24.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
197
+ "layers.24.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
198
+ "layers.24.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
199
+ "layers.24.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
200
+ "layers.24.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
201
+ "layers.24.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
202
+ "layers.24.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
203
+ "layers.24.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
204
+ "layers.24.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
205
+ "layers.25.input_layernorm.weight": "model-00005-of-00007.safetensors",
206
+ "layers.25.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
207
+ "layers.25.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
208
+ "layers.25.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
209
+ "layers.25.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
210
+ "layers.25.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
211
+ "layers.25.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
212
+ "layers.25.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
213
+ "layers.25.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
214
+ "layers.25.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
215
+ "layers.25.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
216
+ "layers.26.input_layernorm.weight": "model-00005-of-00007.safetensors",
217
+ "layers.26.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
218
+ "layers.26.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
219
+ "layers.26.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
220
+ "layers.26.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
221
+ "layers.26.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
222
+ "layers.26.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
223
+ "layers.26.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
224
+ "layers.26.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
225
+ "layers.26.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
226
+ "layers.26.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
227
+ "layers.27.input_layernorm.weight": "model-00005-of-00007.safetensors",
228
+ "layers.27.mlp.down_proj.weight": "model-00005-of-00007.safetensors",
229
+ "layers.27.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
230
+ "layers.27.mlp.up_proj.weight": "model-00005-of-00007.safetensors",
231
+ "layers.27.post_attention_layernorm.weight": "model-00005-of-00007.safetensors",
232
+ "layers.27.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
233
+ "layers.27.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
234
+ "layers.27.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
235
+ "layers.27.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
236
+ "layers.27.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
237
+ "layers.27.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
238
+ "layers.28.input_layernorm.weight": "model-00006-of-00007.safetensors",
239
+ "layers.28.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
240
+ "layers.28.mlp.gate_proj.weight": "model-00005-of-00007.safetensors",
241
+ "layers.28.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
242
+ "layers.28.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
243
+ "layers.28.self_attn.k_norm.weight": "model-00005-of-00007.safetensors",
244
+ "layers.28.self_attn.k_proj.weight": "model-00005-of-00007.safetensors",
245
+ "layers.28.self_attn.o_proj.weight": "model-00005-of-00007.safetensors",
246
+ "layers.28.self_attn.q_norm.weight": "model-00005-of-00007.safetensors",
247
+ "layers.28.self_attn.q_proj.weight": "model-00005-of-00007.safetensors",
248
+ "layers.28.self_attn.v_proj.weight": "model-00005-of-00007.safetensors",
249
+ "layers.29.input_layernorm.weight": "model-00006-of-00007.safetensors",
250
+ "layers.29.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
251
+ "layers.29.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
252
+ "layers.29.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
253
+ "layers.29.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
254
+ "layers.29.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
255
+ "layers.29.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
256
+ "layers.29.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
257
+ "layers.29.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
258
+ "layers.29.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
259
+ "layers.29.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
260
+ "layers.3.input_layernorm.weight": "model-00002-of-00007.safetensors",
261
+ "layers.3.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
262
+ "layers.3.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
263
+ "layers.3.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
264
+ "layers.3.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
265
+ "layers.3.self_attn.k_norm.weight": "model-00001-of-00007.safetensors",
266
+ "layers.3.self_attn.k_proj.weight": "model-00001-of-00007.safetensors",
267
+ "layers.3.self_attn.o_proj.weight": "model-00001-of-00007.safetensors",
268
+ "layers.3.self_attn.q_norm.weight": "model-00001-of-00007.safetensors",
269
+ "layers.3.self_attn.q_proj.weight": "model-00001-of-00007.safetensors",
270
+ "layers.3.self_attn.v_proj.weight": "model-00001-of-00007.safetensors",
271
+ "layers.30.input_layernorm.weight": "model-00006-of-00007.safetensors",
272
+ "layers.30.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
273
+ "layers.30.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
274
+ "layers.30.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
275
+ "layers.30.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
276
+ "layers.30.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
277
+ "layers.30.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
278
+ "layers.30.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
279
+ "layers.30.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
280
+ "layers.30.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
281
+ "layers.30.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
282
+ "layers.31.input_layernorm.weight": "model-00006-of-00007.safetensors",
283
+ "layers.31.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
284
+ "layers.31.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
285
+ "layers.31.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
286
+ "layers.31.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
287
+ "layers.31.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
288
+ "layers.31.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
289
+ "layers.31.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
290
+ "layers.31.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
291
+ "layers.31.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
292
+ "layers.31.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
293
+ "layers.32.input_layernorm.weight": "model-00006-of-00007.safetensors",
294
+ "layers.32.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
295
+ "layers.32.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
296
+ "layers.32.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
297
+ "layers.32.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
298
+ "layers.32.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
299
+ "layers.32.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
300
+ "layers.32.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
301
+ "layers.32.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
302
+ "layers.32.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
303
+ "layers.32.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
304
+ "layers.33.input_layernorm.weight": "model-00006-of-00007.safetensors",
305
+ "layers.33.mlp.down_proj.weight": "model-00006-of-00007.safetensors",
306
+ "layers.33.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
307
+ "layers.33.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
308
+ "layers.33.post_attention_layernorm.weight": "model-00006-of-00007.safetensors",
309
+ "layers.33.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
310
+ "layers.33.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
311
+ "layers.33.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
312
+ "layers.33.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
313
+ "layers.33.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
314
+ "layers.33.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
315
+ "layers.34.input_layernorm.weight": "model-00007-of-00007.safetensors",
316
+ "layers.34.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
317
+ "layers.34.mlp.gate_proj.weight": "model-00006-of-00007.safetensors",
318
+ "layers.34.mlp.up_proj.weight": "model-00006-of-00007.safetensors",
319
+ "layers.34.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
320
+ "layers.34.self_attn.k_norm.weight": "model-00006-of-00007.safetensors",
321
+ "layers.34.self_attn.k_proj.weight": "model-00006-of-00007.safetensors",
322
+ "layers.34.self_attn.o_proj.weight": "model-00006-of-00007.safetensors",
323
+ "layers.34.self_attn.q_norm.weight": "model-00006-of-00007.safetensors",
324
+ "layers.34.self_attn.q_proj.weight": "model-00006-of-00007.safetensors",
325
+ "layers.34.self_attn.v_proj.weight": "model-00006-of-00007.safetensors",
326
+ "layers.35.input_layernorm.weight": "model-00007-of-00007.safetensors",
327
+ "layers.35.mlp.down_proj.weight": "model-00007-of-00007.safetensors",
328
+ "layers.35.mlp.gate_proj.weight": "model-00007-of-00007.safetensors",
329
+ "layers.35.mlp.up_proj.weight": "model-00007-of-00007.safetensors",
330
+ "layers.35.post_attention_layernorm.weight": "model-00007-of-00007.safetensors",
331
+ "layers.35.self_attn.k_norm.weight": "model-00007-of-00007.safetensors",
332
+ "layers.35.self_attn.k_proj.weight": "model-00007-of-00007.safetensors",
333
+ "layers.35.self_attn.o_proj.weight": "model-00007-of-00007.safetensors",
334
+ "layers.35.self_attn.q_norm.weight": "model-00007-of-00007.safetensors",
335
+ "layers.35.self_attn.q_proj.weight": "model-00007-of-00007.safetensors",
336
+ "layers.35.self_attn.v_proj.weight": "model-00007-of-00007.safetensors",
337
+ "layers.4.input_layernorm.weight": "model-00002-of-00007.safetensors",
338
+ "layers.4.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
339
+ "layers.4.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
340
+ "layers.4.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
341
+ "layers.4.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
342
+ "layers.4.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
343
+ "layers.4.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
344
+ "layers.4.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
345
+ "layers.4.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
346
+ "layers.4.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
347
+ "layers.4.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
348
+ "layers.5.input_layernorm.weight": "model-00002-of-00007.safetensors",
349
+ "layers.5.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
350
+ "layers.5.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
351
+ "layers.5.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
352
+ "layers.5.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
353
+ "layers.5.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
354
+ "layers.5.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
355
+ "layers.5.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
356
+ "layers.5.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
357
+ "layers.5.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
358
+ "layers.5.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
359
+ "layers.6.input_layernorm.weight": "model-00002-of-00007.safetensors",
360
+ "layers.6.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
361
+ "layers.6.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
362
+ "layers.6.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
363
+ "layers.6.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
364
+ "layers.6.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
365
+ "layers.6.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
366
+ "layers.6.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
367
+ "layers.6.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
368
+ "layers.6.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
369
+ "layers.6.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
370
+ "layers.7.input_layernorm.weight": "model-00002-of-00007.safetensors",
371
+ "layers.7.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
372
+ "layers.7.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
373
+ "layers.7.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
374
+ "layers.7.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
375
+ "layers.7.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
376
+ "layers.7.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
377
+ "layers.7.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
378
+ "layers.7.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
379
+ "layers.7.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
380
+ "layers.7.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
381
+ "layers.8.input_layernorm.weight": "model-00002-of-00007.safetensors",
382
+ "layers.8.mlp.down_proj.weight": "model-00002-of-00007.safetensors",
383
+ "layers.8.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
384
+ "layers.8.mlp.up_proj.weight": "model-00002-of-00007.safetensors",
385
+ "layers.8.post_attention_layernorm.weight": "model-00002-of-00007.safetensors",
386
+ "layers.8.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
387
+ "layers.8.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
388
+ "layers.8.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
389
+ "layers.8.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
390
+ "layers.8.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
391
+ "layers.8.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
392
+ "layers.9.input_layernorm.weight": "model-00003-of-00007.safetensors",
393
+ "layers.9.mlp.down_proj.weight": "model-00003-of-00007.safetensors",
394
+ "layers.9.mlp.gate_proj.weight": "model-00002-of-00007.safetensors",
395
+ "layers.9.mlp.up_proj.weight": "model-00003-of-00007.safetensors",
396
+ "layers.9.post_attention_layernorm.weight": "model-00003-of-00007.safetensors",
397
+ "layers.9.self_attn.k_norm.weight": "model-00002-of-00007.safetensors",
398
+ "layers.9.self_attn.k_proj.weight": "model-00002-of-00007.safetensors",
399
+ "layers.9.self_attn.o_proj.weight": "model-00002-of-00007.safetensors",
400
+ "layers.9.self_attn.q_norm.weight": "model-00002-of-00007.safetensors",
401
+ "layers.9.self_attn.q_proj.weight": "model-00002-of-00007.safetensors",
402
+ "layers.9.self_attn.v_proj.weight": "model-00002-of-00007.safetensors",
403
+ "norm.weight": "model-00007-of-00007.safetensors"
404
+ }
405
+ }
search_results/examples/EVAL/eval_results.json ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "biology-examples": {
3
+ "ndcg_at_1": 0.50485,
4
+ "ndcg_at_10": 0.54407,
5
+ "map_at_1": 0.16222,
6
+ "map_at_10": 0.43293,
7
+ "recall_at_1": 0.16222,
8
+ "recall_at_10": 0.63582,
9
+ "precision_at_1": 0.50485,
10
+ "precision_at_10": 0.22524,
11
+ "mrr_at_1": 0.49515,
12
+ "mrr_at_10": 0.61066
13
+ },
14
+ "theoremqa_theorems-examples": {
15
+ "ndcg_at_1": 0.34211,
16
+ "ndcg_at_10": 0.47592,
17
+ "map_at_1": 0.18499,
18
+ "map_at_10": 0.39117,
19
+ "recall_at_1": 0.18499,
20
+ "recall_at_10": 0.65116,
21
+ "precision_at_1": 0.34211,
22
+ "precision_at_10": 0.11974,
23
+ "mrr_at_1": 0.34211,
24
+ "mrr_at_10": 0.45854
25
+ },
26
+ "psychology-examples": {
27
+ "ndcg_at_1": 0.36634,
28
+ "ndcg_at_10": 0.45155,
29
+ "map_at_1": 0.16264,
30
+ "map_at_10": 0.33572,
31
+ "recall_at_1": 0.16264,
32
+ "recall_at_10": 0.52951,
33
+ "precision_at_1": 0.36634,
34
+ "precision_at_10": 0.19406,
35
+ "mrr_at_1": 0.36634,
36
+ "mrr_at_10": 0.47711
37
+ },
38
+ "robotics-examples": {
39
+ "ndcg_at_1": 0.28713,
40
+ "ndcg_at_10": 0.31993,
41
+ "map_at_1": 0.14029,
42
+ "map_at_10": 0.23822,
43
+ "recall_at_1": 0.14029,
44
+ "recall_at_10": 0.37368,
45
+ "precision_at_1": 0.28713,
46
+ "precision_at_10": 0.11386,
47
+ "mrr_at_1": 0.28713,
48
+ "mrr_at_10": 0.37628
49
+ },
50
+ "aops-examples": {
51
+ "ndcg_at_1": 0.13514,
52
+ "ndcg_at_10": 0.13305,
53
+ "map_at_1": 0.03062,
54
+ "map_at_10": 0.07937,
55
+ "recall_at_1": 0.03062,
56
+ "recall_at_10": 0.1598,
57
+ "precision_at_1": 0.13514,
58
+ "precision_at_10": 0.07207,
59
+ "mrr_at_1": 0.13514,
60
+ "mrr_at_10": 0.20256
61
+ },
62
+ "sustainable_living-examples": {
63
+ "ndcg_at_1": 0.35185,
64
+ "ndcg_at_10": 0.37341,
65
+ "map_at_1": 0.13027,
66
+ "map_at_10": 0.27505,
67
+ "recall_at_1": 0.13027,
68
+ "recall_at_10": 0.45011,
69
+ "precision_at_1": 0.35185,
70
+ "precision_at_10": 0.16019,
71
+ "mrr_at_1": 0.35185,
72
+ "mrr_at_10": 0.43959
73
+ },
74
+ "leetcode-examples": {
75
+ "ndcg_at_1": 0.28169,
76
+ "ndcg_at_10": 0.32309,
77
+ "map_at_1": 0.17535,
78
+ "map_at_10": 0.25267,
79
+ "recall_at_1": 0.17535,
80
+ "recall_at_10": 0.41808,
81
+ "precision_at_1": 0.28169,
82
+ "precision_at_10": 0.07254,
83
+ "mrr_at_1": 0.28169,
84
+ "mrr_at_10": 0.37478
85
+ },
86
+ "earth_science-examples": {
87
+ "ndcg_at_1": 0.57759,
88
+ "ndcg_at_10": 0.55426,
89
+ "map_at_1": 0.23269,
90
+ "map_at_10": 0.44959,
91
+ "recall_at_1": 0.23269,
92
+ "recall_at_10": 0.58342,
93
+ "precision_at_1": 0.57759,
94
+ "precision_at_10": 0.2181,
95
+ "mrr_at_1": 0.57759,
96
+ "mrr_at_10": 0.67135
97
+ },
98
+ "economics-examples": {
99
+ "ndcg_at_1": 0.29126,
100
+ "ndcg_at_10": 0.33832,
101
+ "map_at_1": 0.13804,
102
+ "map_at_10": 0.23934,
103
+ "recall_at_1": 0.13804,
104
+ "recall_at_10": 0.35798,
105
+ "precision_at_1": 0.29126,
106
+ "precision_at_10": 0.15049,
107
+ "mrr_at_1": 0.29126,
108
+ "mrr_at_10": 0.37666
109
+ },
110
+ "theoremqa_questions-examples": {
111
+ "ndcg_at_1": 0.39691,
112
+ "ndcg_at_10": 0.4124,
113
+ "map_at_1": 0.22809,
114
+ "map_at_10": 0.37578,
115
+ "recall_at_1": 0.22809,
116
+ "recall_at_10": 0.45814,
117
+ "precision_at_1": 0.39691,
118
+ "precision_at_10": 0.09639,
119
+ "mrr_at_1": 0.39691,
120
+ "mrr_at_10": 0.43798
121
+ },
122
+ "stackoverflow-examples": {
123
+ "ndcg_at_1": 0.30769,
124
+ "ndcg_at_10": 0.34329,
125
+ "map_at_1": 0.12812,
126
+ "map_at_10": 0.26281,
127
+ "recall_at_1": 0.12812,
128
+ "recall_at_10": 0.43316,
129
+ "precision_at_1": 0.30769,
130
+ "precision_at_10": 0.12222,
131
+ "mrr_at_1": 0.2906,
132
+ "mrr_at_10": 0.3824
133
+ },
134
+ "pony-examples": {
135
+ "ndcg_at_1": 0.24107,
136
+ "ndcg_at_10": 0.1903,
137
+ "map_at_1": 0.0161,
138
+ "map_at_10": 0.05666,
139
+ "recall_at_1": 0.0161,
140
+ "recall_at_10": 0.09687,
141
+ "precision_at_1": 0.24107,
142
+ "precision_at_10": 0.17054,
143
+ "mrr_at_1": 0.24107,
144
+ "mrr_at_10": 0.37504
145
+ }
146
+ }
search_results/examples/aops-examples.json ADDED
The diff for this file is too large to render. See raw diff
 
search_results/examples/biology-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73ff1cf7ff2e2aaaf8c4589982ae31198a58744ee5aba0393a10a4c4cb040f1c
3
+ size 16553902
search_results/examples/earth_science-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a3c02bb3fd382207d49a63897dd34ec396c9e1175e35921fd3c1b95fcf5620f2
3
+ size 18149199
search_results/examples/economics-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ca54dce3b507334fd5fb1752bc7979ce1ffc19529339f04e3b02bc3aeea77e65
3
+ size 16602998
search_results/examples/leetcode-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5605b0a3e4529214669438e02af8060bdc07cd168872742e0b13b0f16422b0c0
3
+ size 18343889
search_results/examples/pony-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2df5caf0f85432924ec0848713162cce488c6f63f63c2da36907c4aab1981c2c
3
+ size 14633844
search_results/examples/psychology-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27abb7eeb6ef1fd323c8d0edd4693711ccb2f3ab475ad7cb852d79486ec64c15
3
+ size 15426536
search_results/examples/robotics-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ccaa49fe930eef8a75a4f95775041d720fd98f590ee4a2e43639d85060f0f841
3
+ size 14420936
search_results/examples/stackoverflow-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e8583c0c7ad3583159cdbfe1af10f6d7d02867d1d966a649517158809a0cdcdf
3
+ size 19083216
search_results/examples/sustainable_living-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:424f15ba7d04f4e36a09940fe5ca4c8e1186904cb8cf828341121911aa4a2f74
3
+ size 17535702
search_results/examples/theoremqa_questions-examples.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:11ef6db56d097e389508bece9f359d2e5cac0a5d9c5966343fa0d20475366e84
3
+ size 14691873
search_results/examples/theoremqa_theorems-examples.json ADDED
The diff for this file is too large to render. See raw diff
 
search_results/gpt4_reason/EVAL/eval_results.json ADDED
@@ -0,0 +1,146 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "biology-gpt4_reason": {
3
+ "ndcg_at_1": 0.58252,
4
+ "ndcg_at_10": 0.6238,
5
+ "map_at_1": 0.20161,
6
+ "map_at_10": 0.52321,
7
+ "recall_at_1": 0.20161,
8
+ "recall_at_10": 0.70649,
9
+ "precision_at_1": 0.58252,
10
+ "precision_at_10": 0.24757,
11
+ "mrr_at_1": 0.57282,
12
+ "mrr_at_10": 0.67721
13
+ },
14
+ "stackoverflow-gpt4_reason": {
15
+ "ndcg_at_1": 0.33333,
16
+ "ndcg_at_10": 0.39248,
17
+ "map_at_1": 0.15138,
18
+ "map_at_10": 0.3128,
19
+ "recall_at_1": 0.15138,
20
+ "recall_at_10": 0.48351,
21
+ "precision_at_1": 0.33333,
22
+ "precision_at_10": 0.13761,
23
+ "mrr_at_1": 0.34188,
24
+ "mrr_at_10": 0.43379
25
+ },
26
+ "sustainable_living-gpt4_reason": {
27
+ "ndcg_at_1": 0.36111,
28
+ "ndcg_at_10": 0.40345,
29
+ "map_at_1": 0.15859,
30
+ "map_at_10": 0.3077,
31
+ "recall_at_1": 0.15859,
32
+ "recall_at_10": 0.47684,
33
+ "precision_at_1": 0.36111,
34
+ "precision_at_10": 0.16944,
35
+ "mrr_at_1": 0.36111,
36
+ "mrr_at_10": 0.46219
37
+ },
38
+ "leetcode-gpt4_reason": {
39
+ "ndcg_at_1": 0.23239,
40
+ "ndcg_at_10": 0.28348,
41
+ "map_at_1": 0.14894,
42
+ "map_at_10": 0.21761,
43
+ "recall_at_1": 0.14894,
44
+ "recall_at_10": 0.37946,
45
+ "precision_at_1": 0.23239,
46
+ "precision_at_10": 0.0662,
47
+ "mrr_at_1": 0.23239,
48
+ "mrr_at_10": 0.31958
49
+ },
50
+ "pony-gpt4_reason": {
51
+ "ndcg_at_1": 0.4375,
52
+ "ndcg_at_10": 0.31629,
53
+ "map_at_1": 0.02577,
54
+ "map_at_10": 0.09796,
55
+ "recall_at_1": 0.02577,
56
+ "recall_at_10": 0.1572,
57
+ "precision_at_1": 0.4375,
58
+ "precision_at_10": 0.27321,
59
+ "mrr_at_1": 0.4375,
60
+ "mrr_at_10": 0.58011
61
+ },
62
+ "aops-gpt4_reason": {
63
+ "ndcg_at_1": 0.0991,
64
+ "ndcg_at_10": 0.12337,
65
+ "map_at_1": 0.02301,
66
+ "map_at_10": 0.07287,
67
+ "recall_at_1": 0.02301,
68
+ "recall_at_10": 0.15546,
69
+ "precision_at_1": 0.0991,
70
+ "precision_at_10": 0.07748,
71
+ "mrr_at_1": 0.0991,
72
+ "mrr_at_10": 0.17159
73
+ },
74
+ "theoremqa_questions-gpt4_reason": {
75
+ "ndcg_at_1": 0.39175,
76
+ "ndcg_at_10": 0.39407,
77
+ "map_at_1": 0.2268,
78
+ "map_at_10": 0.36037,
79
+ "recall_at_1": 0.2268,
80
+ "recall_at_10": 0.42649,
81
+ "precision_at_1": 0.39175,
82
+ "precision_at_10": 0.08918,
83
+ "mrr_at_1": 0.39175,
84
+ "mrr_at_10": 0.42989
85
+ },
86
+ "theoremqa_theorems-gpt4_reason": {
87
+ "ndcg_at_1": 0.31579,
88
+ "ndcg_at_10": 0.41518,
89
+ "map_at_1": 0.18061,
90
+ "map_at_10": 0.34361,
91
+ "recall_at_1": 0.18061,
92
+ "recall_at_10": 0.55138,
93
+ "precision_at_1": 0.31579,
94
+ "precision_at_10": 0.10526,
95
+ "mrr_at_1": 0.31579,
96
+ "mrr_at_10": 0.41206
97
+ },
98
+ "earth_science-gpt4_reason": {
99
+ "ndcg_at_1": 0.68966,
100
+ "ndcg_at_10": 0.62277,
101
+ "map_at_1": 0.27438,
102
+ "map_at_10": 0.51581,
103
+ "recall_at_1": 0.27438,
104
+ "recall_at_10": 0.62818,
105
+ "precision_at_1": 0.68966,
106
+ "precision_at_10": 0.23966,
107
+ "mrr_at_1": 0.68966,
108
+ "mrr_at_10": 0.75591
109
+ },
110
+ "economics-gpt4_reason": {
111
+ "ndcg_at_1": 0.25243,
112
+ "ndcg_at_10": 0.35251,
113
+ "map_at_1": 0.1225,
114
+ "map_at_10": 0.24774,
115
+ "recall_at_1": 0.1225,
116
+ "recall_at_10": 0.39583,
117
+ "precision_at_1": 0.25243,
118
+ "precision_at_10": 0.16214,
119
+ "mrr_at_1": 0.25243,
120
+ "mrr_at_10": 0.36646
121
+ },
122
+ "psychology-gpt4_reason": {
123
+ "ndcg_at_1": 0.43564,
124
+ "ndcg_at_10": 0.49823,
125
+ "map_at_1": 0.19875,
126
+ "map_at_10": 0.37395,
127
+ "recall_at_1": 0.19875,
128
+ "recall_at_10": 0.56675,
129
+ "precision_at_1": 0.43564,
130
+ "precision_at_10": 0.20396,
131
+ "mrr_at_1": 0.43564,
132
+ "mrr_at_10": 0.55344
133
+ },
134
+ "robotics-gpt4_reason": {
135
+ "ndcg_at_1": 0.30693,
136
+ "ndcg_at_10": 0.3438,
137
+ "map_at_1": 0.13674,
138
+ "map_at_10": 0.25764,
139
+ "recall_at_1": 0.13674,
140
+ "recall_at_10": 0.39831,
141
+ "precision_at_1": 0.30693,
142
+ "precision_at_10": 0.12277,
143
+ "mrr_at_1": 0.30693,
144
+ "mrr_at_10": 0.40114
145
+ }
146
+ }
search_results/gpt4_reason/aops-gpt4_reason.json ADDED
The diff for this file is too large to render. See raw diff
 
search_results/gpt4_reason/biology-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a314b2948bd2a48f44d4d949645051600cd1cba4e600dc9b89c31753570e4c8a
3
+ size 16518223
search_results/gpt4_reason/earth_science-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f2fa207b74ef2808c22bbed1d086941cd177cd442c26b7ea8cdd4991bce3411
3
+ size 18093660
search_results/gpt4_reason/economics-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:41293661ab3cec60d7620fe33a4689ccbd0f5b67ee5f8dbf5ba589fb0f70fb0f
3
+ size 16558285
search_results/gpt4_reason/leetcode-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4520f31f78b5d0543af77eee8c7f29ddfe7d3c17960778ca654893490fac36d9
3
+ size 18454399
search_results/gpt4_reason/pony-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f9f79f2d325a64c1362fcf7cc7707b6ddb3adfbd164c246bb70dcac003d7765f
3
+ size 14625227
search_results/gpt4_reason/psychology-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1347e9db837913ab175f6b5daee4b8e1e3babb69ba3a43396a5b49cec2655d0d
3
+ size 15322577
search_results/gpt4_reason/robotics-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6fd310df6a895d2d566674614b1976af7a85248ceca02e583d7c2b61bcde49d2
3
+ size 14451325
search_results/gpt4_reason/stackoverflow-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9f98cedc37011e2e1900a716e3330342562bf028dfd6ea6fd056a7c1b44fb293
3
+ size 19155033
search_results/gpt4_reason/sustainable_living-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ef85268f068dccb8f806d7f6d5deeb748e9d72f7ca82cd092ee3c93b4b9d52fd
3
+ size 17382433
search_results/gpt4_reason/theoremqa_questions-gpt4_reason.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:96c0abc7644d10c4a13532f2420a6a3ef9d952917ef422e7cb0658b199f783c2
3
+ size 14333959
search_results/gpt4_reason/theoremqa_theorems-gpt4_reason.json ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4689bbafe5096d0a16cf2849ede8c67a98d4925bde8eba491f4a6839b1954fc6
3
+ size 11423803
tokenizer_config.json ADDED
@@ -0,0 +1,245 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_eos_token": true,
4
+ "add_prefix_space": false,
5
+ "added_tokens_decoder": {
6
+ "151643": {
7
+ "content": "<|endoftext|>",
8
+ "lstrip": false,
9
+ "normalized": false,
10
+ "rstrip": false,
11
+ "single_word": false,
12
+ "special": true
13
+ },
14
+ "151644": {
15
+ "content": "<|im_start|>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false,
20
+ "special": true
21
+ },
22
+ "151645": {
23
+ "content": "<|im_end|>",
24
+ "lstrip": false,
25
+ "normalized": false,
26
+ "rstrip": false,
27
+ "single_word": false,
28
+ "special": true
29
+ },
30
+ "151646": {
31
+ "content": "<|object_ref_start|>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false,
36
+ "special": true
37
+ },
38
+ "151647": {
39
+ "content": "<|object_ref_end|>",
40
+ "lstrip": false,
41
+ "normalized": false,
42
+ "rstrip": false,
43
+ "single_word": false,
44
+ "special": true
45
+ },
46
+ "151648": {
47
+ "content": "<|box_start|>",
48
+ "lstrip": false,
49
+ "normalized": false,
50
+ "rstrip": false,
51
+ "single_word": false,
52
+ "special": true
53
+ },
54
+ "151649": {
55
+ "content": "<|box_end|>",
56
+ "lstrip": false,
57
+ "normalized": false,
58
+ "rstrip": false,
59
+ "single_word": false,
60
+ "special": true
61
+ },
62
+ "151650": {
63
+ "content": "<|quad_start|>",
64
+ "lstrip": false,
65
+ "normalized": false,
66
+ "rstrip": false,
67
+ "single_word": false,
68
+ "special": true
69
+ },
70
+ "151651": {
71
+ "content": "<|quad_end|>",
72
+ "lstrip": false,
73
+ "normalized": false,
74
+ "rstrip": false,
75
+ "single_word": false,
76
+ "special": true
77
+ },
78
+ "151652": {
79
+ "content": "<|vision_start|>",
80
+ "lstrip": false,
81
+ "normalized": false,
82
+ "rstrip": false,
83
+ "single_word": false,
84
+ "special": true
85
+ },
86
+ "151653": {
87
+ "content": "<|vision_end|>",
88
+ "lstrip": false,
89
+ "normalized": false,
90
+ "rstrip": false,
91
+ "single_word": false,
92
+ "special": true
93
+ },
94
+ "151654": {
95
+ "content": "<|vision_pad|>",
96
+ "lstrip": false,
97
+ "normalized": false,
98
+ "rstrip": false,
99
+ "single_word": false,
100
+ "special": true
101
+ },
102
+ "151655": {
103
+ "content": "<|image_pad|>",
104
+ "lstrip": false,
105
+ "normalized": false,
106
+ "rstrip": false,
107
+ "single_word": false,
108
+ "special": true
109
+ },
110
+ "151656": {
111
+ "content": "<|video_pad|>",
112
+ "lstrip": false,
113
+ "normalized": false,
114
+ "rstrip": false,
115
+ "single_word": false,
116
+ "special": true
117
+ },
118
+ "151657": {
119
+ "content": "<tool_call>",
120
+ "lstrip": false,
121
+ "normalized": false,
122
+ "rstrip": false,
123
+ "single_word": false,
124
+ "special": false
125
+ },
126
+ "151658": {
127
+ "content": "</tool_call>",
128
+ "lstrip": false,
129
+ "normalized": false,
130
+ "rstrip": false,
131
+ "single_word": false,
132
+ "special": false
133
+ },
134
+ "151659": {
135
+ "content": "<|fim_prefix|>",
136
+ "lstrip": false,
137
+ "normalized": false,
138
+ "rstrip": false,
139
+ "single_word": false,
140
+ "special": false
141
+ },
142
+ "151660": {
143
+ "content": "<|fim_middle|>",
144
+ "lstrip": false,
145
+ "normalized": false,
146
+ "rstrip": false,
147
+ "single_word": false,
148
+ "special": false
149
+ },
150
+ "151661": {
151
+ "content": "<|fim_suffix|>",
152
+ "lstrip": false,
153
+ "normalized": false,
154
+ "rstrip": false,
155
+ "single_word": false,
156
+ "special": false
157
+ },
158
+ "151662": {
159
+ "content": "<|fim_pad|>",
160
+ "lstrip": false,
161
+ "normalized": false,
162
+ "rstrip": false,
163
+ "single_word": false,
164
+ "special": false
165
+ },
166
+ "151663": {
167
+ "content": "<|repo_name|>",
168
+ "lstrip": false,
169
+ "normalized": false,
170
+ "rstrip": false,
171
+ "single_word": false,
172
+ "special": false
173
+ },
174
+ "151664": {
175
+ "content": "<|file_sep|>",
176
+ "lstrip": false,
177
+ "normalized": false,
178
+ "rstrip": false,
179
+ "single_word": false,
180
+ "special": false
181
+ },
182
+ "151665": {
183
+ "content": "<tool_response>",
184
+ "lstrip": false,
185
+ "normalized": false,
186
+ "rstrip": false,
187
+ "single_word": false,
188
+ "special": false
189
+ },
190
+ "151666": {
191
+ "content": "</tool_response>",
192
+ "lstrip": false,
193
+ "normalized": false,
194
+ "rstrip": false,
195
+ "single_word": false,
196
+ "special": false
197
+ },
198
+ "151667": {
199
+ "content": "<think>",
200
+ "lstrip": false,
201
+ "normalized": false,
202
+ "rstrip": false,
203
+ "single_word": false,
204
+ "special": false
205
+ },
206
+ "151668": {
207
+ "content": "</think>",
208
+ "lstrip": false,
209
+ "normalized": false,
210
+ "rstrip": false,
211
+ "single_word": false,
212
+ "special": false
213
+ }
214
+ },
215
+ "additional_special_tokens": [
216
+ "<|im_start|>",
217
+ "<|im_end|>",
218
+ "<|object_ref_start|>",
219
+ "<|object_ref_end|>",
220
+ "<|box_start|>",
221
+ "<|box_end|>",
222
+ "<|quad_start|>",
223
+ "<|quad_end|>",
224
+ "<|vision_start|>",
225
+ "<|vision_end|>",
226
+ "<|vision_pad|>",
227
+ "<|image_pad|>",
228
+ "<|video_pad|>"
229
+ ],
230
+ "bos_token": null,
231
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0].role == 'system' %}\n {{- messages[0].content + '\\n\\n' }}\n {%- endif %}\n {{- \"# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0].role == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0].content + '<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- set ns = namespace(multi_step_tool=true, last_query_index=messages|length - 1) %}\n{%- for message in messages[::-1] %}\n {%- set index = (messages|length - 1) - loop.index0 %}\n {%- if ns.multi_step_tool and message.role == \"user\" and not(message.content.startswith('<tool_response>') and message.content.endswith('</tool_response>')) %}\n {%- set ns.multi_step_tool = false %}\n {%- set ns.last_query_index = index %}\n {%- endif %}\n{%- endfor %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {%- set content = message.content %}\n {%- set reasoning_content = '' %}\n {%- if message.reasoning_content is defined and message.reasoning_content is not none %}\n {%- set reasoning_content = message.reasoning_content %}\n {%- else %}\n {%- if '</think>' in message.content %}\n {%- set content = message.content.split('</think>')[-1].lstrip('\\n') %}\n {%- set reasoning_content = message.content.split('</think>')[0].rstrip('\\n').split('<think>')[-1].lstrip('\\n') %}\n {%- endif %}\n {%- endif %}\n {%- if loop.index0 > ns.last_query_index %}\n {%- if loop.last or (not loop.last and reasoning_content) %}\n {{- '<|im_start|>' + message.role + '\\n<think>\\n' + reasoning_content.strip('\\n') + '\\n</think>\\n\\n' + content.lstrip('\\n') }}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- else %}\n {{- '<|im_start|>' + message.role + '\\n' + content }}\n {%- endif %}\n {%- if message.tool_calls %}\n {%- for tool_call in message.tool_calls %}\n {%- if (loop.first and content) or (not loop.first) %}\n {{- '\\n' }}\n {%- endif %}\n {%- if tool_call.function %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {%- if tool_call.arguments is string %}\n {{- tool_call.arguments }}\n {%- else %}\n {{- tool_call.arguments | tojson }}\n {%- endif %}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {%- endif %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if loop.first or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n {%- if enable_thinking is defined and enable_thinking is false %}\n {{- '<think>\\n\\n</think>\\n\\n' }}\n {%- endif %}\n{%- endif %}",
232
+ "clean_up_tokenization_spaces": false,
233
+ "eos_token": "<|im_end|>",
234
+ "errors": "replace",
235
+ "extra_special_tokens": {},
236
+ "max_length": 512,
237
+ "model_max_length": 131072,
238
+ "pad_token": "<|endoftext|>",
239
+ "split_special_tokens": false,
240
+ "stride": 0,
241
+ "tokenizer_class": "Qwen2Tokenizer",
242
+ "truncation_side": "right",
243
+ "truncation_strategy": "longest_first",
244
+ "unk_token": null
245
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff