""" Mixed-Precision Quantization Script for Small Language Models Supports selective quantization of different model components with configurable bitwidths. """ import torch import torch.nn as nn from transformers import AutoModelForCausalLM, AutoTokenizer, AutoConfig import argparse import os import json from pathlib import Path from typing import Dict, Optional, Tuple import time class MixedPrecisionQuantizer: """ Quantizes model components with different precision levels. Supports more aggressive quantization for attention layers while preserving higher precision for FFN layers. """ def __init__( self, model_name: str, attention_bits: int = 4, ffn_bits: int = 8, embedding_bits: int = 8, output_dir: str = "./quantized_models", device: str = "cuda" if torch.cuda.is_available() else "cpu" ): self.model_name = model_name self.attention_bits = attention_bits self.ffn_bits = ffn_bits self.embedding_bits = embedding_bits self.output_dir = Path(output_dir) self.device = device # Create output directory self.output_dir.mkdir(parents=True, exist_ok=True) print(f"Initializing quantizer for {model_name}") print(f"Attention layers: {attention_bits}-bit") print(f"FFN layers: {ffn_bits}-bit") print(f"Embeddings: {embedding_bits}-bit") print(f"Device: {device}") def load_model(self) -> Tuple[nn.Module, AutoTokenizer]: """Load the pretrained model and tokenizer.""" print(f"\nLoading model: {self.model_name}") start_time = time.time() # Load with low_cpu_mem_usage for large models model = AutoModelForCausalLM.from_pretrained( self.model_name, torch_dtype=torch.float32, low_cpu_mem_usage=True, trust_remote_code=True ) tokenizer = AutoTokenizer.from_pretrained( self.model_name, trust_remote_code=True ) load_time = time.time() - start_time print(f"Model loaded in {load_time:.2f} seconds") # Calculate original model size param_count = sum(p.numel() for p in model.parameters()) param_size_mb = sum(p.numel() * p.element_size() for p in model.parameters()) / (1024 ** 2) print(f"Parameters: {param_count:,} ({param_size_mb:.2f} MB)") return model, tokenizer def quantize_linear_layer(self, layer: nn.Linear, bits: int) -> nn.Linear: """ Quantize a linear layer to specified bit width using symmetric quantization. """ if bits == 32: return layer weight = layer.weight.data.clone() # Symmetric quantization qmin = -(2 ** (bits - 1)) qmax = 2 ** (bits - 1) - 1 # Calculate scale per-channel (per output channel) # This provides better accuracy than per-tensor quantization max_val = torch.max(torch.abs(weight), dim=1, keepdim=True)[0] max_val = torch.clamp(max_val, min=1e-5) # Avoid division by zero scale = max_val / qmax # Quantize and dequantize (fake quantization) weight_q = torch.clamp(torch.round(weight / scale), qmin, qmax) weight_dq = weight_q * scale # Store dequantized weights as float (required for autograd) layer.weight.data = weight_dq.contiguous() # Store quantization metadata as layer attributes layer.weight_scale = scale layer.quantized = True layer.bits = bits return layer def identify_layer_type(self, name: str, module: nn.Module) -> str: """ Identify if a layer is part of attention, FFN, embedding, or other components. """ name_lower = name.lower() # Attention-related patterns attention_patterns = [ 'attn', 'attention', 'q_proj', 'k_proj', 'v_proj', 'qkv', 'query', 'key', 'value', 'o_proj', 'out_proj', 'c_attn', 'c_proj' ] # FFN-related patterns ffn_patterns = [ 'mlp', 'ffn', 'fc', 'dense', 'intermediate', 'gate_proj', 'up_proj', 'down_proj', 'w1', 'w2', 'w3' ] # Embedding patterns embedding_patterns = ['embed', 'wte', 'wpe', 'lm_head'] if any(pattern in name_lower for pattern in attention_patterns): return 'attention' elif any(pattern in name_lower for pattern in ffn_patterns): return 'ffn' elif any(pattern in name_lower for pattern in embedding_patterns): return 'embedding' else: return 'other' def quantize_model(self, model: nn.Module) -> Tuple[nn.Module, Dict]: """ Apply mixed-precision quantization to the model. """ print("\nApplying mixed-precision quantization...") start_time = time.time() stats = { 'attention_layers': 0, 'ffn_layers': 0, 'embedding_layers': 0, 'other_layers': 0, 'total_quantized': 0 } # Iterate through all modules for name, module in model.named_modules(): if isinstance(module, nn.Linear): layer_type = self.identify_layer_type(name, module) # Select quantization bitwidth based on layer type if layer_type == 'attention': bits = self.attention_bits stats['attention_layers'] += 1 elif layer_type == 'ffn': bits = self.ffn_bits stats['ffn_layers'] += 1 elif layer_type == 'embedding': bits = self.embedding_bits stats['embedding_layers'] += 1 else: bits = self.ffn_bits # Default to FFN bitwidth stats['other_layers'] += 1 # Quantize the layer self.quantize_linear_layer(module, bits) stats['total_quantized'] += 1 quant_time = time.time() - start_time print(f"\nQuantization completed in {quant_time:.2f} seconds") print(f"Quantized layers breakdown:") print(f" - Attention: {stats['attention_layers']} layers ({self.attention_bits}-bit)") print(f" - FFN: {stats['ffn_layers']} layers ({self.ffn_bits}-bit)") print(f" - Embedding: {stats['embedding_layers']} layers ({self.embedding_bits}-bit)") print(f" - Other: {stats['other_layers']} layers ({self.ffn_bits}-bit)") print(f" - Total quantized: {stats['total_quantized']} layers") return model, stats def save_quantized_model( self, model: nn.Module, tokenizer: AutoTokenizer, stats: Dict ) -> str: """Save the quantized model, tokenizer, and metadata.""" # Create model-specific output directory model_short_name = self.model_name.split('/')[-1] quant_config = f"attn{self.attention_bits}_ffn{self.ffn_bits}_emb{self.embedding_bits}" save_dir = self.output_dir / f"{model_short_name}_{quant_config}" save_dir.mkdir(parents=True, exist_ok=True) print(f"\nSaving quantized model to: {save_dir}") # Save model model.save_pretrained(save_dir) # Save tokenizer tokenizer.save_pretrained(save_dir) # Calculate quantized model size quantized_size_mb = sum( p.numel() * p.element_size() for p in model.parameters() ) / (1024 ** 2) # Save metadata metadata = { 'original_model': self.model_name, 'quantization_config': { 'attention_bits': self.attention_bits, 'ffn_bits': self.ffn_bits, 'embedding_bits': self.embedding_bits }, 'layer_stats': stats, 'model_size_mb': quantized_size_mb, 'quantization_timestamp': time.strftime('%Y-%m-%d %H:%M:%S') } with open(save_dir / 'quantization_metadata.json', 'w') as f: json.dump(metadata, f, indent=2) print(f"Quantized model size: {quantized_size_mb:.2f} MB") print(f"Metadata saved to: {save_dir / 'quantization_metadata.json'}") return str(save_dir) def run(self) -> str: """Execute the full quantization pipeline.""" print("=" * 80) print("MIXED-PRECISION QUANTIZATION PIPELINE") print("=" * 80) # Load model model, tokenizer = self.load_model() # Quantize model quantized_model, stats = self.quantize_model(model) # Save quantized model save_path = self.save_quantized_model(quantized_model, tokenizer, stats) print("\n" + "=" * 80) print("QUANTIZATION COMPLETE") print("=" * 80) print(f"Saved to: {save_path}") return save_path def main(): parser = argparse.ArgumentParser( description="Mixed-Precision Quantization for Small Language Models" ) parser.add_argument( '--model_name', type=str, required=True, help='HuggingFace model name or path' ) parser.add_argument( '--attention_bits', type=int, default=4, help='Bit width for attention layers (default: 4)' ) parser.add_argument( '--ffn_bits', type=int, default=8, help='Bit width for FFN layers (default: 8)' ) parser.add_argument( '--embedding_bits', type=int, default=8, help='Bit width for embedding layers (default: 8)' ) parser.add_argument( '--output_dir', type=str, default='./quantized_models', help='Output directory for quantized models' ) parser.add_argument( '--device', type=str, default='cuda' if torch.cuda.is_available() else 'cpu', help='Device to use (cuda/cpu)' ) args = parser.parse_args() # Initialize quantizer quantizer = MixedPrecisionQuantizer( model_name=args.model_name, attention_bits=args.attention_bits, ffn_bits=args.ffn_bits, embedding_bits=args.embedding_bits, output_dir=args.output_dir, device=args.device ) # Run quantization quantizer.run() if __name__ == "__main__": main()