#!/usr/bin/env python3 """ eval.py - Evaluation script for OLMoE models using lm-evaluation-harness This script supports evaluation of both: 1. Standard Transformers OLMoE models 2. Custom MyOLMoE models (uses top-k routing by default) Usage Examples: # Evaluate standard OLMoE model python eval.py --model_type transformers --tasks mmlu hellaswag # Evaluate custom MyOLMoE model python eval.py --model_type custom --tasks mmlu """ import argparse import json import os import sys import logging from typing import Dict, List, Optional, Any import numpy as np import torch from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM # lm-eval imports from lm_eval import evaluator from lm_eval.models.huggingface import HFLM # Set up logging logging.basicConfig( level=logging.INFO, format='%(asctime)s - %(name)s - %(levelname)s - %(message)s' ) logger = logging.getLogger(__name__) def parse_args(): """Parse command line arguments.""" parser = argparse.ArgumentParser( description="Evaluate OLMoE models using lm-evaluation-harness", formatter_class=argparse.RawDescriptionHelpFormatter, epilog=""" Examples: # Standard OLMoE evaluation python eval.py --model_type transformers --tasks mmlu arc_easy # Custom MyOLMoE evaluation (uses top-k routing by default) python eval.py --model_type custom --tasks mmlu hellaswag """ ) # Model arguments parser.add_argument( "--model_path", type=str, default="allenai/OLMoE-1B-7B-0924", help="Path or name of the pretrained model" ) parser.add_argument( "--model_type", type=str, default="transformers", choices=["transformers", "custom"], help="Model type: 'transformers' for standard OLMoE, 'custom' for MyOLMoE" ) parser.add_argument( "--custom_model_path", type=str, default="./myolmoe_model", help="Path to custom MyOLMoE model code (when using --model_type custom)" ) # Evaluation arguments parser.add_argument( "--tasks", type=str, nargs="+", default=["mmlu"], help="Tasks to evaluate on (e.g., mmlu, hellaswag, arc_easy, gsm8k)" ) parser.add_argument( "--num_fewshot", type=int, default=0, help="Number of few-shot examples" ) parser.add_argument( "--batch_size", type=int, default=8, help="Batch size for evaluation" ) parser.add_argument( "--max_batch_size", type=int, default=None, help="Maximum batch size (auto if None)" ) parser.add_argument( "--device", type=str, default="auto", help="Device to use ('auto', 'cuda', 'cpu')" ) parser.add_argument( "--dtype", type=str, default="auto", choices=["auto", "float16", "bfloat16", "float32"], help="Data type for model weights" ) # Output arguments parser.add_argument( "--output_dir", type=str, default="./eval_results", help="Directory to save evaluation results" ) parser.add_argument( "--output_filename", type=str, default=None, help="Custom filename for results (auto-generated if not provided)" ) # Additional arguments parser.add_argument( "--limit", type=int, default=None, help="Limit number of examples per task (for testing)" ) parser.add_argument( "--write_out", action="store_true", help="Write out individual predictions to files" ) parser.add_argument( "--trust_remote_code", action="store_true", help="Trust remote code when loading model" ) parser.add_argument( "--verbosity", type=str, default="INFO", choices=["DEBUG", "INFO", "WARNING", "ERROR"], help="Logging verbosity level" ) return parser.parse_args() def load_transformers_model(args) -> HFLM: """ Load standard Transformers OLMoE model. Args: args: Parsed command line arguments Returns: HFLM: Wrapped model ready for evaluation """ logger.info(f"Loading Transformers OLMoE model: {args.model_path}") # Create HFLM model directly model = HFLM( pretrained=args.model_path, device=args.device, batch_size=args.batch_size, max_batch_size=args.max_batch_size, dtype=args.dtype, trust_remote_code=args.trust_remote_code ) logger.info("Transformers model loaded successfully") return model def load_custom_model(args) -> HFLM: """ Load custom MyOLMoE model (uses top-k routing by default). Args: args: Parsed command line arguments Returns: HFLM: Wrapped model ready for evaluation """ logger.info(f"Loading custom MyOLMoE model: {args.model_path}") logger.info("Using top-k routing (default)") # Add custom model path to Python path if os.path.exists(args.custom_model_path): sys.path.insert(0, args.custom_model_path) logger.info(f"Added {args.custom_model_path} to Python path") else: logger.warning(f"Custom model path not found: {args.custom_model_path}") try: # Import custom model class from modeling_myolmoe import MyOlmoeForCausalLM logger.info("Successfully imported MyOlmoeForCausalLM") except ImportError as e: logger.error(f"Failed to import custom model: {e}") logger.error("Make sure the custom model code is available in the specified path") raise # Load model configuration config = AutoConfig.from_pretrained( args.model_path, trust_remote_code=args.trust_remote_code ) logger.info("Model will use default top-k routing configuration") # Determine torch dtype if args.dtype == "auto": torch_dtype = "auto" else: torch_dtype = { "float16": torch.float16, "bfloat16": torch.bfloat16, "float32": torch.float32 }[args.dtype] # Load the custom model hf_model = MyOlmoeForCausalLM.from_pretrained( args.model_path, config=config, torch_dtype=torch_dtype, device_map="auto" if args.device == "auto" else None, trust_remote_code=args.trust_remote_code ).eval() # Wrap in HFLM model = HFLM( pretrained=args.model_path, device=args.device, batch_size=args.batch_size, max_batch_size=args.max_batch_size, dtype=args.dtype ) logger.info("Custom model loaded successfully") return model def validate_model_config(model_path: str, trust_remote_code: bool = False) -> Dict[str, Any]: """ Validate model configuration and return key information. Args: model_path: Path to the model trust_remote_code: Whether to trust remote code Returns: Dict containing model configuration information """ try: config = AutoConfig.from_pretrained(model_path, trust_remote_code=trust_remote_code) tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=trust_remote_code) model_info = { "model_type": getattr(config, "model_type", "unknown"), "vocab_size": getattr(config, "vocab_size", "unknown"), "hidden_size": getattr(config, "hidden_size", "unknown"), "num_layers": getattr(config, "num_hidden_layers", "unknown"), "num_experts": getattr(config, "num_experts", "not specified"), } logger.info("Model validation successful:") for key, value in model_info.items(): logger.info(f" {key}: {value}") return model_info except Exception as e: logger.error(f"Model validation failed: {e}") raise def make_serializable(obj: Any) -> Any: """ Convert objects to JSON-serializable format. Args: obj: Object to convert Returns: JSON-serializable version of the object """ if isinstance(obj, dict): return {k: make_serializable(v) for k, v in obj.items()} elif isinstance(obj, list): return [make_serializable(v) for v in obj] elif isinstance(obj, tuple): return tuple(make_serializable(v) for v in obj) elif isinstance(obj, (np.integer, np.floating)): return obj.item() elif isinstance(obj, np.dtype): return str(obj) elif isinstance(obj, torch.Tensor): return obj.tolist() elif isinstance(obj, torch.dtype): return str(obj) else: return obj def run_evaluation(args) -> Dict[str, Any]: """ Run evaluation on the specified model. Args: args: Parsed command line arguments Returns: Dict containing evaluation results """ logger.info("Starting evaluation...") # Validate model first validate_model_config(args.model_path, args.trust_remote_code) # Load appropriate model if args.model_type == "transformers": model = load_transformers_model(args) elif args.model_type == "custom": model = load_custom_model(args) else: raise ValueError(f"Unknown model type: {args.model_type}") # Run evaluation logger.info(f"Running evaluation on tasks: {args.tasks}") logger.info(f"Few-shot examples: {args.num_fewshot}") logger.info(f"Batch size: {args.batch_size}") results = evaluator.simple_evaluate( model=model, tasks=args.tasks, num_fewshot=args.num_fewshot, limit=args.limit, write_out=args.write_out, ) logger.info("Evaluation completed successfully") return results def save_results(results: Dict[str, Any], args) -> str: """ Save evaluation results to file. Args: results: Evaluation results args: Parsed command line arguments Returns: str: Path to saved results file """ os.makedirs(args.output_dir, exist_ok=True) # Generate filename if not provided if args.output_filename is None: model_name = os.path.basename(args.model_path.rstrip('/')) tasks_str = "_".join(args.tasks[:3]) if len(args.tasks) > 3: tasks_str += f"_and_{len(args.tasks)-3}_more" if args.model_type == "custom": filename = f"{model_name}_custom_{tasks_str}_results.json" else: filename = f"{model_name}_transformers_{tasks_str}_results.json" else: filename = args.output_filename if not filename.endswith('.json'): filename += '.json' output_path = os.path.join(args.output_dir, filename) # Prepare metadata metadata = { "model_path": args.model_path, "model_type": args.model_type, "tasks": args.tasks, "num_fewshot": args.num_fewshot, "batch_size": args.batch_size, "device": args.device, "dtype": args.dtype, "limit": args.limit, } # Add routing info for custom models if args.model_type == "custom": metadata["routing_type"] = "top-k (default)" results_with_metadata = { "metadata": metadata, "results": results } # Convert to JSON-serializable format serializable_results = make_serializable(results_with_metadata) # Save to file with open(output_path, 'w') as f: json.dump(serializable_results, f, indent=2) logger.info(f"Results saved to {output_path}") return output_path def print_summary(results: Dict[str, Any], args) -> None: """ Print a formatted summary of evaluation results. Args: results: Evaluation results args: Parsed command line arguments """ print(f"\n{'='*80}") print(f"EVALUATION SUMMARY") print(f"Model: {args.model_path}") print(f"Type: {args.model_type.upper()}") if args.model_type == "custom": print(f"Routing: TOP-K (default)") print(f"Tasks: {', '.join(args.tasks)}") print(f"{'='*80}") if "results" in results: for task, metrics in results["results"].items(): if isinstance(metrics, dict): print(f"\nšŸ“Š {task.upper()}:") for metric, value in metrics.items(): if isinstance(value, (int, float)) and not metric.endswith('_stderr'): stderr_key = f"{metric}_stderr" stderr = metrics.get(stderr_key, 0) print(f" {metric:.<20} {value:.4f} (±{stderr:.4f})") else: print("\nāš ļø No results found in evaluation output") print(f"\n{'='*80}") def main(): """Main evaluation function.""" args = parse_args() # Set logging level numeric_level = getattr(logging, args.verbosity.upper(), None) if isinstance(numeric_level, int): logging.getLogger().setLevel(numeric_level) logger.setLevel(numeric_level) try: logger.info("="*80) logger.info("Starting OLMoE Model Evaluation") logger.info("="*80) # Run evaluation results = run_evaluation(args) # Save results output_path = save_results(results, args) # Print summary print_summary(results, args) logger.info(f"āœ… Evaluation completed successfully!") logger.info(f"šŸ“ Results saved to: {output_path}") except KeyboardInterrupt: logger.info("Evaluation interrupted by user") sys.exit(1) except Exception as e: logger.error(f"āŒ Evaluation failed: {e}") logger.debug("Full traceback:", exc_info=True) sys.exit(1) if __name__ == "__main__": main()