File size: 15,623 Bytes
6ad2738
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
6ad2738
b87e5c8
6ad2738
 
 
b87e5c8
 
 
 
6ad2738
b87e5c8
 
 
6ad2738
b87e5c8
6ad2738
 
b87e5c8
 
 
 
6ad2738
 
 
 
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad2738
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c085dea
4091143
b87e5c8
 
 
 
 
 
 
 
 
 
858f5a5
b87e5c8
 
6ad2738
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad2738
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
6ad2738
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
181c6a9
 
 
 
 
 
 
6ad2738
 
 
 
b87e5c8
6ad2738
b87e5c8
6ad2738
b87e5c8
 
6ad2738
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad2738
 
b87e5c8
6ad2738
b87e5c8
 
 
 
 
 
 
6ad2738
b87e5c8
 
 
 
 
 
 
 
 
 
6ad2738
b87e5c8
dc61de6
 
b87e5c8
 
 
 
 
 
6ad2738
 
b87e5c8
6ad2738
b87e5c8
 
6ad2738
 
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc61de6
6ad2738
 
 
b87e5c8
 
6ad2738
b87e5c8
 
 
 
6ad2738
 
 
 
 
b87e5c8
 
 
6ad2738
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad2738
 
b87e5c8
 
 
 
 
 
 
 
 
 
6ad2738
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b87e5c8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6ad2738
 
 
 
 
b87e5c8
 
 
 
 
6ad2738
 
b87e5c8
6ad2738
 
b87e5c8
6ad2738
b87e5c8
 
6ad2738
 
b87e5c8
6ad2738
 
 
 
 
b87e5c8
6ad2738
b87e5c8
 
 
 
 
 
 
 
 
6ad2738
 
 
 
b87e5c8
 
 
 
 
6ad2738
b87e5c8
 
6ad2738
 
 
 
b87e5c8
6ad2738
b87e5c8
 
 
 
 
6ad2738
b87e5c8
 
 
 
 
 
 
 
6ad2738
 
 
 
b87e5c8
6ad2738
b87e5c8
6ad2738
 
b87e5c8
 
 
6ad2738
b87e5c8
6ad2738
 
 
 
 
 
 
 
 
 
 
 
 
b87e5c8
 
 
 
6ad2738
 
 
 
 
 
 
b87e5c8
6ad2738
b87e5c8
 
6ad2738
b87e5c8
 
 
6ad2738
b87e5c8
 
 
6ad2738
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
#!/usr/bin/env python3
"""
eval.py - Evaluation script for OLMoE models using lm-evaluation-harness

This script supports evaluation of both:
1. Standard Transformers OLMoE models
2. Custom MyOLMoE models with modified routing

Usage Examples:
    # Evaluate standard OLMoE model
    python eval.py --model_type transformers --tasks mmlu hellaswag

    # Evaluate custom MyOLMoE model with non-deterministic routing
    python eval.py --model_type custom --routing_type non_deterministic --tasks mmlu
"""

import argparse
import json
import os
import sys
import logging
from typing import Dict, List, Optional, Any
import numpy as np
import torch
from transformers import AutoConfig, AutoTokenizer, AutoModelForCausalLM

# lm-eval imports
from lm_eval import evaluator
from lm_eval.models.huggingface import HFLM

# Set up logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)


def parse_args():
    """Parse command line arguments."""
    parser = argparse.ArgumentParser(
        description="Evaluate OLMoE models using lm-evaluation-harness",
        formatter_class=argparse.RawDescriptionHelpFormatter,
        epilog="""
Examples:
  # Standard OLMoE evaluation
  python eval.py --model_type transformers --tasks mmlu arc_easy

  # Custom MyOLMoE with non-deterministic routing
  python eval.py --model_type custom --routing_type non_deterministic \\
    --router_temperature 0.8 --tasks mmlu hellaswag

  # Dense routing evaluation
  python eval.py --model_type custom --routing_type dense --tasks gsm8k
        """
    )
    
    # Model arguments
    parser.add_argument(
        "--model_path", 
        type=str, 
        default="allenai/OLMoE-1B-7B-0924",
        help="Path or name of the pretrained model"
    )
    parser.add_argument(
        "--model_type", 
        type=str, 
        default="transformers",
        choices=["transformers", "custom"],
        help="Model type: 'transformers' for standard OLMoE, 'custom' for MyOLMoE"
    )
    parser.add_argument(
        "--custom_model_path",
        type=str,
        default="./myolmoe_model",
        help="Path to custom MyOLMoE model code (when using --model_type custom)"
    )
    
    # Routing configuration (only for custom models)
    parser.add_argument(
        "--routing_type", 
        type=str, 
        default="topk",
        choices=["topk", "multinomial", "botk", "topk+botk", "nth-descending", "depthconstant", "depthlatter"],
        help="Routing type (only used with custom models)"
    )
    parser.add_argument(
        "--router_temperature", 
        type=float, 
        default=1.0,
        help="Temperature for non-deterministic routing"
    )
    parser.add_argument(
        "--num_experts_per_tok", 
        type=int,
        help="Number of experts per token"
    )
    
    # Evaluation arguments
    parser.add_argument(
        "--tasks", 
        type=str, 
        nargs="+", 
        default=["mmlu"],
        help="Tasks to evaluate on (e.g., mmlu, hellaswag, arc_easy, gsm8k)"
    )
    parser.add_argument(
        "--num_fewshot", 
        type=int, 
        default=0,
        help="Number of few-shot examples"
    )
    parser.add_argument(
        "--batch_size", 
        type=int, 
        default=8,
        help="Batch size for evaluation"
    )
    parser.add_argument(
        "--max_batch_size", 
        type=int, 
        default=None,
        help="Maximum batch size (auto if None)"
    )
    parser.add_argument(
        "--device", 
        type=str, 
        default="auto",
        help="Device to use ('auto', 'cuda', 'cpu')"
    )
    parser.add_argument(
        "--dtype", 
        type=str, 
        default="auto",
        choices=["auto", "float16", "bfloat16", "float32"],
        help="Data type for model weights"
    )
    
    # Output arguments
    parser.add_argument(
        "--output_dir", 
        type=str, 
        default="./eval_results",
        help="Directory to save evaluation results"
    )
    parser.add_argument(
        "--output_filename", 
        type=str, 
        default=None,
        help="Custom filename for results (auto-generated if not provided)"
    )
    
    # Additional arguments
    parser.add_argument(
        "--limit", 
        type=int, 
        default=None,
        help="Limit number of examples per task (for testing)"
    )
    parser.add_argument(
        "--write_out", 
        action="store_true",
        help="Write out individual predictions to files"
    )
    parser.add_argument(
        "--trust_remote_code", 
        action="store_true",
        help="Trust remote code when loading model"
    )
    parser.add_argument(
        "--verbosity", 
        type=str, 
        default="INFO",
        choices=["DEBUG", "INFO", "WARNING", "ERROR"],
        help="Logging verbosity level"
    )
    
    return parser.parse_args()


def load_transformers_model(args) -> HFLM:
    """
    Load standard Transformers OLMoE model.
    
    Args:
        args: Parsed command line arguments
        
    Returns:
        HFLM: Wrapped model ready for evaluation
    """
    logger.info(f"Loading Transformers OLMoE model: {args.model_path}")
    
    # Create HFLM model directly
    model = HFLM(
        pretrained=args.model_path,
        device=args.device,
        batch_size=args.batch_size,
        max_batch_size=args.max_batch_size,
        dtype=args.dtype,
        trust_remote_code=args.trust_remote_code
    )
    
    logger.info("Transformers model loaded successfully")
    return model


def load_custom_model(args) -> HFLM:
    """
    Load custom MyOLMoE model with routing configuration.
    
    Args:
        args: Parsed command line arguments
        
    Returns:
        HFLM: Wrapped model ready for evaluation
    """
    logger.info(f"Loading custom MyOLMoE model: {args.model_path}")
    logger.info(f"Routing configuration: {args.routing_type}")
    
    # Add custom model path to Python path
    if os.path.exists(args.custom_model_path):
        sys.path.insert(0, args.custom_model_path)
        logger.info(f"Added {args.custom_model_path} to Python path")
    else:
        logger.warning(f"Custom model path not found: {args.custom_model_path}")
    
    try:
        # Import custom model class
        from modeling_myolmoe import MyOlmoeForCausalLM
        logger.info("Successfully imported MyOlmoeForCausalLM")
    except ImportError as e:
        logger.error(f"Failed to import custom model: {e}")
        logger.error("Make sure the custom model code is available in the specified path")
        raise
    
    # Load and configure model
    config = AutoConfig.from_pretrained(
        args.model_path,
        trust_remote_code=args.trust_remote_code
    )
    
    # Override routing configuration
    config.routing_type = args.routing_type
    config.router_temperature = args.router_temperature
    config.num_experts_per_tok = args.num_experts_per_tok
    
    logger.info(f"Model config updated:")
    logger.info(f"  - routing_type: {config.routing_type}")
    logger.info(f"  - router_temperature: {config.router_temperature}")
    logger.info(f"  - num_experts_per_tok: {config.num_experts_per_tok}")
    
    # Determine torch dtype
    if args.dtype == "auto":
        torch_dtype = "auto"
    else:
        torch_dtype = {
            "float16": torch.float16,
            "bfloat16": torch.bfloat16,
            "float32": torch.float32
        }[args.dtype]
    
    # Load the custom model
    hf_model = MyOlmoeForCausalLM.from_pretrained(
        args.model_path,
        config=config,
        torch_dtype=torch_dtype,
        device_map="auto" if args.device == "auto" else None,
        trust_remote_code=args.trust_remote_code
    ).eval()
    
    # Wrap in HFLM
    model = HFLM(
        pretrained=hf_model,
        device=args.device,
        batch_size=args.batch_size,
        max_batch_size=args.max_batch_size,
        dtype=args.dtype
    )
    
    logger.info("Custom model loaded successfully")
    return model


def validate_model_config(model_path: str, trust_remote_code: bool = False) -> Dict[str, Any]:
    """
    Validate model configuration and return key information.
    
    Args:
        model_path: Path to the model
        trust_remote_code: Whether to trust remote code
        
    Returns:
        Dict containing model configuration information
    """
    try:
        config = AutoConfig.from_pretrained(model_path, trust_remote_code=trust_remote_code)
        tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=trust_remote_code)
        
        model_info = {
            "model_type": getattr(config, "model_type", "unknown"),
            "vocab_size": getattr(config, "vocab_size", "unknown"),
            "hidden_size": getattr(config, "hidden_size", "unknown"),
            "num_layers": getattr(config, "num_hidden_layers", "unknown"),
            "num_experts": getattr(config, "num_experts", "not specified"),
            "routing_type": getattr(config, "routing_type", "default"),
        }
        
        logger.info("Model validation successful:")
        for key, value in model_info.items():
            logger.info(f"  {key}: {value}")
            
        return model_info
        
    except Exception as e:
        logger.error(f"Model validation failed: {e}")
        raise


def make_serializable(obj: Any) -> Any:
    """
    Convert objects to JSON-serializable format.
    
    Args:
        obj: Object to convert
        
    Returns:
        JSON-serializable version of the object
    """
    if isinstance(obj, dict):
        return {k: make_serializable(v) for k, v in obj.items()}
    elif isinstance(obj, list):
        return [make_serializable(v) for v in obj]
    elif isinstance(obj, tuple):
        return tuple(make_serializable(v) for v in obj)
    elif isinstance(obj, (np.integer, np.floating)):
        return obj.item()
    elif isinstance(obj, np.dtype):
        return str(obj)
    elif isinstance(obj, torch.Tensor):
        return obj.tolist()
    elif isinstance(obj, torch.dtype):
        return str(obj)
    else:
        return obj


def run_evaluation(args) -> Dict[str, Any]:
    """
    Run evaluation on the specified model.
    
    Args:
        args: Parsed command line arguments
        
    Returns:
        Dict containing evaluation results
    """
    logger.info("Starting evaluation...")
    
    # Validate model first
    validate_model_config(args.model_path, args.trust_remote_code)
    
    # Load appropriate model
    if args.model_type == "transformers":
        model = load_transformers_model(args)
    elif args.model_type == "custom":
        model = load_custom_model(args)
    else:
        raise ValueError(f"Unknown model type: {args.model_type}")
    
    # Run evaluation
    logger.info(f"Running evaluation on tasks: {args.tasks}")
    logger.info(f"Few-shot examples: {args.num_fewshot}")
    logger.info(f"Batch size: {args.batch_size}")
    
    results = evaluator.simple_evaluate(
        model=model,
        tasks=args.tasks,
        num_fewshot=args.num_fewshot,
        limit=args.limit,
        write_out=args.write_out,
    )
    
    logger.info("Evaluation completed successfully")
    return results


def save_results(results: Dict[str, Any], args) -> str:
    """
    Save evaluation results to file.
    
    Args:
        results: Evaluation results
        args: Parsed command line arguments
        
    Returns:
        str: Path to saved results file
    """
    os.makedirs(args.output_dir, exist_ok=True)
    
    # Generate filename if not provided
    if args.output_filename is None:
        model_name = os.path.basename(args.model_path.rstrip('/'))
        tasks_str = "_".join(args.tasks[:3])
        if len(args.tasks) > 3:
            tasks_str += f"_and_{len(args.tasks)-3}_more"
        
        if args.model_type == "custom":
            filename = f"{model_name}_{args.routing_type}_{tasks_str}_results.json"
        else:
            filename = f"{model_name}_transformers_{tasks_str}_results.json"
    else:
        filename = args.output_filename
        
    if not filename.endswith('.json'):
        filename += '.json'
    
    output_path = os.path.join(args.output_dir, filename)
    
    # Prepare metadata
    metadata = {
        "model_path": args.model_path,
        "model_type": args.model_type,
        "tasks": args.tasks,
        "num_fewshot": args.num_fewshot,
        "batch_size": args.batch_size,
        "device": args.device,
        "dtype": args.dtype,
        "limit": args.limit,
    }
    
    # Add routing-specific metadata for custom models
    if args.model_type == "custom":
        metadata.update({
            "routing_type": args.routing_type,
            "router_temperature": args.router_temperature,
            "num_experts_per_tok": args.num_experts_per_tok,
        })
    
    results_with_metadata = {
        "metadata": metadata,
        "results": results
    }
    
    # Convert to JSON-serializable format
    serializable_results = make_serializable(results_with_metadata)
    
    # Save to file
    with open(output_path, 'w') as f:
        json.dump(serializable_results, f, indent=2)
    
    logger.info(f"Results saved to {output_path}")
    return output_path


def print_summary(results: Dict[str, Any], args) -> None:
    """
    Print a formatted summary of evaluation results.
    
    Args:
        results: Evaluation results
        args: Parsed command line arguments
    """
    print(f"\n{'='*80}")
    print(f"EVALUATION SUMMARY")
    print(f"Model: {args.model_path}")
    print(f"Type: {args.model_type.upper()}")
    if args.model_type == "custom":
        print(f"Routing: {args.routing_type.upper()}")
    print(f"Tasks: {', '.join(args.tasks)}")
    print(f"{'='*80}")
    
    if "results" in results:
        for task, metrics in results["results"].items():
            if isinstance(metrics, dict):
                print(f"\n📊 {task.upper()}:")
                for metric, value in metrics.items():
                    if isinstance(value, (int, float)) and not metric.endswith('_stderr'):
                        stderr_key = f"{metric}_stderr"
                        stderr = metrics.get(stderr_key, 0)
                        print(f"   {metric:.<20} {value:.4f}{stderr:.4f})")
    else:
        print("\n⚠️  No results found in evaluation output")
    
    print(f"\n{'='*80}")


def main():
    """Main evaluation function."""
    args = parse_args()
    
    # Set logging level
    numeric_level = getattr(logging, args.verbosity.upper(), None)
    if isinstance(numeric_level, int):
        logging.getLogger().setLevel(numeric_level)
        logger.setLevel(numeric_level)
    
    try:
        logger.info("="*80)
        logger.info("Starting OLMoE Model Evaluation")
        logger.info("="*80)
        
        # Run evaluation
        results = run_evaluation(args)
        
        # Save results
        output_path = save_results(results, args)
        
        # Print summary
        print_summary(results, args)
        
        logger.info(f"✅ Evaluation completed successfully!")
        logger.info(f"📁 Results saved to: {output_path}")
        
    except KeyboardInterrupt:
        logger.info("Evaluation interrupted by user")
        sys.exit(1)
    except Exception as e:
        logger.error(f"❌ Evaluation failed: {e}")
        logger.debug("Full traceback:", exc_info=True)
        sys.exit(1)


if __name__ == "__main__":
    main()