File size: 9,557 Bytes
680e7ec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import sys
import torch
from datasets import Dataset, DatasetDict, load_from_disk
from torch.utils.data import DataLoader
import os
from multiprocessing import Pool
from tqdm import tqdm
import lightning.pytorch as pl
sys.path.append('/home/yz927/projects/peptune/scripts/')
from tokenizer.my_tokenizers import SMILES_SPE_Tokenizer
global_tokenizer = None


def init_pool(tokenizer):
    global global_tokenizer
    global_tokenizer = tokenizer

class SequenceDataset:
    def __init__(self, sequences, tokenizer, max_sequence_length, num_cores=8):
        self.sequences = sequences
        self.tokenizer = tokenizer
        self.max_sequence_length = max_sequence_length
        self.num_cores = 8
        self.tokenized_sequences = []
        self.original_sequences = []

    def tokenize_sequences(self):
        print(f"Starting parallel tokenization using {self.num_cores} cores")
        with Pool(processes=self.num_cores, initializer=init_pool, initargs=(self.tokenizer,)) as pool:
            results = list(tqdm(
                pool.imap(standalone_tokenize_function, self.sequences),
                total=len(self.sequences)
            ))

        for result, seq in zip(results, self.sequences):
            if result is not None and len(result['input_ids'][0]) <= self.max_sequence_length:
                self.tokenized_sequences.append(result)
                self.original_sequences.append(seq)

    
    def process_sequences(self, batch_size):
        self.tokenize_sequences()
        
        lengths = [(len(seq['input_ids'][0]), i) for i, seq in enumerate(self.tokenized_sequences)]
        lengths.sort()
        
        batches = []
        sequence_batches = []
        current_batch = []
        current_sequence_batch = []
        current_length = 0
        
        for length, idx in tqdm(lengths):
            if current_length + length > self.max_sequence_length or len(current_batch) == batch_size:
                if current_batch:
                    batches.append([self.tokenized_sequences[i] for i in current_batch])
                    sequence_batches.append([self.original_sequences[i] for i in current_batch])
                current_batch = [idx]
                current_sequence_batch = [self.original_sequences[idx]]
                current_length = length
            else:
                current_batch.append(idx)
                current_sequence_batch.append(self.original_sequences[idx])
                current_length += length
                
        if current_batch:
            batches.append([self.tokenized_sequences[i] for i in current_batch])
            sequence_batches.append([self.original_sequences[i] for i in current_batch])
        
        token_batch_fn = TokenizeBatch(self.tokenizer)
        processed_batches = [token_batch_fn(batch) for batch in tqdm(batches)]
        
        dataset = Dataset.from_dict({
            'attention_mask': [batch['attention_mask'] for batch in processed_batches],
            'input_ids': [batch['input_ids'] for batch in processed_batches],
            'labels': sequence_batches
        })
        
        return dataset

class DynamicBatchingDataset(Dataset):
    """
    Process dynamically batched datasets of Huggingface Datasets object. Need special handling since in the previous
    steps, each batch (row in the Datasets object) is already processed for per batch loading
    """

    def __init__(self, dataset_dict):
        print('Initializing dataset...')
        self.dataset_dict = {
            'attention_mask': [torch.tensor(item) for item in dataset_dict['attention_mask']],
            'input_ids': [torch.tensor(item) for item in dataset_dict['input_ids']],
            'labels': dataset_dict['labels']  # Store original sequences as it is
        }

    def __len__(self):
        return len(self.dataset_dict['attention_mask'])

    def __getitem__(self, idx):
        if isinstance(idx, int):
            return {
                'attention_mask': self.dataset_dict['attention_mask'][idx],
                'input_ids': self.dataset_dict['input_ids'][idx],
                'labels': self.dataset_dict['labels'][idx]
            }
        elif isinstance(idx, list):
            return {
                'attention_mask': [self.dataset_dict['attention_mask'][i] for i in idx],
                'input_ids': [self.dataset_dict['input_ids'][i] for i in idx],
                'labels': [self.dataset_dict['labels'][i] for i in idx]
            }   
        else:
            raise ValueError(f"Expected idx to be int or list, but got {type(idx)}")    

    @staticmethod
    def collate_fn(batch, verbose=False):
        item = batch[0]
        return {
            'input_ids': item['input_ids'],
            'attention_mask': item['attention_mask'],
            'labels': item['labels']
        }

def standalone_tokenize_function(sequence):
    global global_tokenizer
    try:
        tokens = global_tokenizer(sequence)
        # The tokenizer already returns lists of integers, so we just need to wrap them in another list
        # to match the expected format [batch_size, sequence_length]
        return {
            'input_ids': [tokens['input_ids']],
            'attention_mask': [tokens['attention_mask']]
        }
    except Exception as e:
        print(f"Error tokenizing sequence '{sequence}': {e}")
        return None
    
class TokenizeBatch:
    def __init__(self, tokenizer):
        self.pad_token_id = tokenizer.pad_token_id

    def __call__(self, batches):
        data_tokens = [torch.tensor(batch['input_ids'][0]) for batch in batches]
        data_tokens_padded = torch.nn.utils.rnn.pad_sequence(data_tokens, batch_first=True, padding_value=self.pad_token_id)
        attention_masks = (data_tokens_padded != self.pad_token_id).long()
        
        return {
            'input_ids': data_tokens_padded,
            'attention_mask': attention_masks,
        }

class PretrainSequenceDataModule(pl.LightningDataModule):
    def __init__(self,
                 tokenizer,
                 input_dataset_path,
                 output_dataset_path,
                 num_workers,
                 batch_size,
                 max_sequence_length=512,):
        super().__init__()
        self.tokenizer = tokenizer
        self.input_path = input_dataset_path
        self.output_path = output_dataset_path
        self.num_workers = num_workers
        self.batch_size = batch_size
        self.max_sequence_length = max_sequence_length
        
    def prepare_data(self):
        if not os.path.exists(self.output_path):
            print("Loading text files")
            with open(f"{self.input_path}/train.txt", 'r') as f:
                train_sequences = [line.strip() for line in f if line.strip()]
            with open(f"{self.input_path}/val.txt", 'r') as f:
                val_sequences = [line.strip() for line in f if line.strip()]
            
            print("Processing training data")
            train_dataset = SequenceDataset(train_sequences, 
                                        self.tokenizer,
                                        self.max_sequence_length)
            print("Processing validation data")
            val_dataset = SequenceDataset(val_sequences,
                                        self.tokenizer,
                                        self.max_sequence_length)

            processed_train = train_dataset.process_sequences(self.batch_size)
            processed_val = val_dataset.process_sequences(self.batch_size)
            
            print("Combining datasets")
            combined_dataset = DatasetDict({
                'train': processed_train,
                'val': processed_val,
            })
            
            print(f"Saving dataset to {self.output_path}")
            combined_dataset.save_to_disk(self.output_path)
        
    def setup(self, stage: str):
        print("Loading processed dataset")
        dataset = load_from_disk(self.output_path)
        self.train_dataset = DynamicBatchingDataset(dataset['train'])
        self.val_dataset = DynamicBatchingDataset(dataset['val'])
    
    def train_dataloader(self):
        print("Creating training dataloader")
        return DataLoader(self.train_dataset, 
                        batch_size=1,
                        shuffle=False,
                        num_workers=self.num_workers,
                        collate_fn=DynamicBatchingDataset.collate_fn,
                        pin_memory=True)
    
    def val_dataloader(self):
        print("Creating validation dataloader")
        return DataLoader(self.val_dataset,
                        batch_size=1,
                        shuffle=False,
                        num_workers=self.num_workers,
                        collate_fn=DynamicBatchingDataset.collate_fn,
                        pin_memory=True)
        

if __name__ == '__main__':
    tokenizer = SMILES_SPE_Tokenizer('/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_vocab.txt', 
                                 '/home/st512/peptune/scripts/peptide-mdlm-mcts/tokenizer/new_splits.txt')
    dm = PretrainSequenceDataModule(
        tokenizer=tokenizer,
        input_dataset_path='/home/yz927/projects/peptune/tokens/11M_smiles',
        output_dataset_path='/home/yz927/projects/peptune/tokenized/11M_smiles_old_tokenizer_no_limit',
        num_workers=8,
        batch_size=2000,
        max_sequence_length=16*1000,
    )
    dm.prepare_data()
    dm.setup('fit')
    dm.train_dataloader()
    dm.val_dataloader()