File size: 12,741 Bytes
3527383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset, DataLoader
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, f1_score
from scipy.stats import spearmanr
from collections import defaultdict
import pandas as pd
import logging
import os
import torch.optim as optim
from datetime import datetime
from transformers import AutoModel, AutoConfig, AutoTokenizer
class UnpooledBindingPredictor(nn.Module):
    def __init__(self, 
                 esm_model_name="facebook/esm2_t33_650M_UR50D",
                 hidden_dim=512,
                 kernel_sizes=[3, 5, 7],
                 n_heads=8,
                 n_layers=3,
                 dropout=0.1,
                 freeze_esm=True):
        super().__init__()
        
        # Define binding thresholds
        self.tight_threshold = 7.5    # Kd/Ki/IC50 ≤ ~30nM
        self.weak_threshold = 6.0     # Kd/Ki/IC50 > 1μM
        
        # Load ESM model for computing embeddings on the fly
        self.esm_model = AutoModel.from_pretrained(esm_model_name)
        self.config = AutoConfig.from_pretrained(esm_model_name)
        
        # Freeze ESM parameters if needed
        if freeze_esm:
            for param in self.esm_model.parameters():
                param.requires_grad = False
        
        # Get ESM hidden size
        esm_dim = self.config.hidden_size
        
        # Output channels for CNN layers
        output_channels_per_kernel = 64
        
        # CNN layers for handling variable length sequences
        self.protein_conv_layers = nn.ModuleList([
            nn.Conv1d(
                in_channels=esm_dim,
                out_channels=output_channels_per_kernel,
                kernel_size=k,
                padding='same'
            ) for k in kernel_sizes
        ])
        
        self.binder_conv_layers = nn.ModuleList([
            nn.Conv1d(
                in_channels=esm_dim,
                out_channels=output_channels_per_kernel,
                kernel_size=k,
                padding='same'
            ) for k in kernel_sizes
        ])
        
        # Calculate total features after convolution and pooling
        total_features_per_seq = output_channels_per_kernel * len(kernel_sizes) * 2
        
        # Project to same dimension after CNN processing
        self.protein_projection = nn.Linear(total_features_per_seq, hidden_dim)
        self.binder_projection = nn.Linear(total_features_per_seq, hidden_dim)
        
        self.protein_norm = nn.LayerNorm(hidden_dim)
        self.binder_norm = nn.LayerNorm(hidden_dim)
        
        # Cross attention blocks with layer norm
        self.cross_attention_layers = nn.ModuleList([
            nn.ModuleDict({
                'attention': nn.MultiheadAttention(hidden_dim, n_heads, dropout=dropout),
                'norm1': nn.LayerNorm(hidden_dim),
                'ffn': nn.Sequential(
                    nn.Linear(hidden_dim, hidden_dim * 4),
                    nn.ReLU(),
                    nn.Dropout(dropout),
                    nn.Linear(hidden_dim * 4, hidden_dim)
                ),
                'norm2': nn.LayerNorm(hidden_dim)
            }) for _ in range(n_layers)
        ])
        
        # Prediction heads
        self.shared_head = nn.Sequential(
            nn.Linear(hidden_dim * 2, hidden_dim),
            nn.ReLU(),
            nn.Dropout(dropout),
        )
        
        # Regression head
        self.regression_head = nn.Linear(hidden_dim, 1)
        
        # Classification head (3 classes: tight, medium, loose binding)
        self.classification_head = nn.Linear(hidden_dim, 3)
        
    def get_binding_class(self, affinity):
        """Convert affinity values to class indices
        0: tight binding (>= 7.5)
        1: medium binding (6.0-7.5)
        2: weak binding (< 6.0)
        """
        if isinstance(affinity, torch.Tensor):
            tight_mask = affinity >= self.tight_threshold
            weak_mask = affinity < self.weak_threshold
            medium_mask = ~(tight_mask | weak_mask)
            
            classes = torch.zeros_like(affinity, dtype=torch.long)
            classes[medium_mask] = 1
            classes[weak_mask] = 2
            return classes
        else:
            if affinity >= self.tight_threshold:
                return 0  # tight binding
            elif affinity < self.weak_threshold:
                return 2  # weak binding
            else:
                return 1  # medium binding
    
    def compute_embeddings(self, input_ids, attention_mask=None):
        """Compute ESM embeddings on the fly"""
        esm_outputs = self.esm_model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            return_dict=True
        )
        
        # Get the unpooled last hidden states (batch_size x seq_length x hidden_size)
        return esm_outputs.last_hidden_state
    
    def process_sequence(self, unpooled_emb, conv_layers, attention_mask=None):
        """Process a sequence through CNN layers and pooling"""
        # Transpose for CNN: [batch_size, hidden_size, seq_length]
        x = unpooled_emb.transpose(1, 2)
        
        # Apply CNN layers and collect outputs
        conv_outputs = []
        for conv in conv_layers:
            conv_out = F.relu(conv(x))
            conv_outputs.append(conv_out)
        
        # Concatenate along channel dimension
        conv_output = torch.cat(conv_outputs, dim=1)
        
        # Global pooling (both max and average)
        # If attention mask is provided, use it to create a proper mask for pooling
        if attention_mask is not None:
            # Create a mask for pooling (1 for valid positions, 0 for padding)
            # Expand mask to match conv_output channels
            expanded_mask = attention_mask.unsqueeze(1).expand(-1, conv_output.size(1), -1)
            
            # Apply mask (set padding to large negative value for max pooling)
            masked_output = conv_output.clone()
            masked_output = masked_output.masked_fill(expanded_mask == 0, float('-inf'))
            
            # Max pooling along sequence dimension
            max_pooled = torch.max(masked_output, dim=2)[0]
            
            # Average pooling (sum divided by number of valid positions)
            sum_pooled = torch.sum(conv_output * expanded_mask, dim=2)
            valid_positions = torch.sum(expanded_mask, dim=2)
            valid_positions = torch.clamp(valid_positions, min=1.0)  # Avoid division by zero
            avg_pooled = sum_pooled / valid_positions
        else:
            # If no mask, use standard pooling
            max_pooled = torch.max(conv_output, dim=2)[0]
            avg_pooled = torch.mean(conv_output, dim=2)
        
        # Concatenate the pooled features
        pooled = torch.cat([max_pooled, avg_pooled], dim=1)
        
        return pooled
        
    def forward(self, protein_input_ids, binder_input_ids, protein_mask=None, binder_mask=None):
        # Compute embeddings on the fly using the ESM model
        protein_unpooled = self.compute_embeddings(protein_input_ids, protein_mask)
        binder_unpooled = self.compute_embeddings(binder_input_ids, binder_mask)
        
        # Process protein and binder sequences through CNN layers
        protein_features = self.process_sequence(protein_unpooled, self.protein_conv_layers, protein_mask)
        binder_features = self.process_sequence(binder_unpooled, self.binder_conv_layers, binder_mask)
        
        # Project to same dimension
        protein = self.protein_norm(self.protein_projection(protein_features))
        binder = self.binder_norm(self.binder_projection(binder_features))
        
        # Reshape for attention: from [batch_size, hidden_dim] to [1, batch_size, hidden_dim]
        protein = protein.unsqueeze(0)
        binder = binder.unsqueeze(0)
        
        # Cross attention layers
        for layer in self.cross_attention_layers:
            # Protein attending to binder
            attended_protein = layer['attention'](
                protein, binder, binder
            )[0]
            protein = layer['norm1'](protein + attended_protein)
            protein = layer['norm2'](protein + layer['ffn'](protein))
            
            # Binder attending to protein
            attended_binder = layer['attention'](
                binder, protein, protein
            )[0]
            binder = layer['norm1'](binder + attended_binder)
            binder = layer['norm2'](binder + layer['ffn'](binder))
        
        # Remove sequence dimension
        protein_pool = protein.squeeze(0)
        binder_pool = binder.squeeze(0)
        
        # Concatenate both representations
        combined = torch.cat([protein_pool, binder_pool], dim=-1)
        
        # Shared features
        shared_features = self.shared_head(combined)
        
        regression_output = self.regression_head(shared_features)
        classification_logits = self.classification_head(shared_features)
        
        return regression_output, classification_logits

def load_model(checkpoint_path, device):
    """Load trained model from checkpoint."""
    checkpoint = torch.load(checkpoint_path, map_location=device)
    # Import the model class from your module or redefine it here

    # Initialize model with the same parameters used during training
    model = UnpooledBindingPredictor(
        esm_model_name="facebook/esm2_t33_650M_UR50D",
        hidden_dim=384,
        kernel_sizes=[3, 5, 7],
        n_heads=8,
        n_layers=4,
        dropout=0.14561457009902096,
        freeze_esm=True
    ).to(device)
    
    # Load the trained weights
    model.load_state_dict(checkpoint['model_state_dict'])
    model.eval()  # Set to evaluation mode
    
    return model


def prepare_inputs(protein_sequence, binder_sequence, tokenizer, max_length=1024, device='cuda'):
    """Tokenize protein and binder sequences."""
    protein_tokens = tokenizer(
        protein_sequence,
        return_tensors="pt",
        padding="max_length",
        max_length=max_length,
        truncation=True
    )
    
    binder_tokens = tokenizer(
        binder_sequence,
        return_tensors="pt",
        padding="max_length",
        max_length=max_length,
        truncation=True
    )
    
    return {
        'protein_input_ids': protein_tokens['input_ids'].to(device),
        'protein_attention_mask': protein_tokens['attention_mask'].to(device),
        'binder_input_ids': binder_tokens['input_ids'].to(device),
        'binder_attention_mask': binder_tokens['attention_mask'].to(device)
    }

# Perform prediction
def predict_binding(model, protein_sequence, binder_sequence, device='cuda'):
    """Predict binding affinity between protein and binder sequences."""
    tokenizer = AutoTokenizer.from_pretrained("facebook/esm2_t33_650M_UR50D")
    inputs = prepare_inputs(protein_sequence, binder_sequence, tokenizer, device=device)
    
    with torch.no_grad():
        regression_output, classification_logits = model(
            inputs['protein_input_ids'],
            inputs['binder_input_ids'],
            inputs['protein_attention_mask'],
            inputs['binder_attention_mask']
        )
    
    # Get numerical prediction (pKd/pKi)
    predicted_affinity = regression_output.item()
    
    # Get classification prediction (tight, medium, weak)
    predicted_class_idx = torch.argmax(classification_logits, dim=1).item()
    class_names = ['Tight binding', 'Medium binding', 'Weak binding']
    predicted_class = class_names[predicted_class_idx]
    
    # Get class probabilities
    class_probs = F.softmax(classification_logits, dim=1).cpu().numpy()[0]
    
    return {
        'predicted_affinity': predicted_affinity,
        'binding_class': predicted_class,
        'class_probabilities': {name: prob for name, prob in zip(class_names, class_probs)},
        'tight_threshold': model.tight_threshold,  # 7.5 (≤ ~30nM)
        'weak_threshold': model.weak_threshold     # 6.0 (> 1μM)
    }

# Example usage
if __name__ == "__main__":
    # Set device
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    
    # Load the model
    model = load_model('../classifier_ckpt/binding_affinity_unpooled.pt', device)
    
    protein_sequence = "GSHMIEPNVISVRLFKRKVGGLGFLVKERVSKPPVIISDLIRGGAAEQSGLIQAGDIILAVNDRPLVDLSYDSALEVLRGIASETHVVLILRGPEGFTTHLETTFTGDGTPKTIRVTQPLGPPTKAV"
    binder_sequence = "VVKVDSV"

    result = predict_binding(model, protein_sequence, binder, device)
    print(f"Affinity Score: {result['predicted_affinity']}")