File size: 21,661 Bytes
38d7272 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 |
# /// script
# requires-python = ">=3.10"
# dependencies = [
# "torch>=2.0.0",
# "transformers>=4.50.0",
# "datasets>=2.14.0",
# "trl>=0.12.0",
# "peft>=0.7.0",
# "accelerate>=0.25.0",
# "bitsandbytes>=0.41.0",
# "trackio",
# "huggingface_hub",
# ]
# ///
"""
LoRA Fine-tuning Script: Add Tool Calling to Synthia-S1-27b
This script fine-tunes Tesslate/Synthia-S1-27b with LoRA using the
nvidia/Nemotron-Agentic-v1 tool_calling dataset.
Usage:
# With uv (recommended)
uv run train_tool_calling.py
# Or with pip
pip install torch transformers datasets trl peft accelerate bitsandbytes trackio
python train_tool_calling.py
Hardware Requirements:
- Minimum: 1x A100 80GB or 2x A10G 24GB
- Recommended: 1x A100 80GB for fastest training
"""
import os
import json
from datasets import load_dataset, Dataset
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, DataCollatorForLanguageModeling
from peft import LoraConfig, get_peft_model, prepare_model_for_kbit_training
from trl import SFTTrainer, SFTConfig
import torch
import trackio
from huggingface_hub import hf_hub_download, HfApi, create_repo
# ============================================================================
# CONFIGURATION - Modify these values as needed
# ============================================================================
# Model configuration
BASE_MODEL = "Tesslate/Synthia-S1-27b"
OUTPUT_MODEL = "Synthia-S1-27b-tool-calling" # Will be pushed as Codyfederer/Synthia-S1-27b-tool-calling
# Dataset configuration
DATASET_NAME = "nvidia/Nemotron-Agentic-v1"
DATASET_SPLIT = "tool_calling"
MAX_SAMPLES = None # Set to a number (e.g., 10000) to limit dataset size for testing
# Training hyperparameters
NUM_EPOCHS = 1 # 1 epoch is often sufficient for large datasets
MAX_SEQ_LENGTH = 4096 # Adjust based on your GPU memory
BATCH_SIZE = 1 # Per device batch size
GRADIENT_ACCUMULATION = 16 # Effective batch size = BATCH_SIZE * GRADIENT_ACCUMULATION
LEARNING_RATE = 2e-4
WARMUP_RATIO = 0.03
# LoRA configuration
LORA_R = 64 # LoRA rank - higher = more capacity but more memory
LORA_ALPHA = 128 # LoRA alpha - typically 2x rank
LORA_DROPOUT = 0.05
# Quantization (4-bit for memory efficiency)
USE_4BIT = False # Using BF16 LoRA on H100 for better quality
# Tokenized dataset caching
TOKENIZED_DATASET_REPO = "Codyfederer/synthia-tool-calling-tokenized"
SAVE_TOKENIZED = True # Save tokenized dataset to Hub for reuse
TOKENIZED_DATASET_PRIVATE = True # Make tokenized dataset private
LOAD_TOKENIZED_IF_EXISTS = True # Skip tokenization if already exists on Hub
# Hub configuration
PUSH_TO_HUB = True
HUB_PRIVATE = False # Set to True for private model
# ============================================================================
# TRAINING SCRIPT
# ============================================================================
def tokenize_conversation(example, tokenizer, max_length):
"""
Tokenize a conversation using the model's chat template.
Returns input_ids, attention_mask, and labels for causal LM training.
"""
messages = example["messages"]
# Apply chat template to get the full text
text = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=False
)
# Tokenize the text
tokenized = tokenizer(
text,
truncation=True,
max_length=max_length,
padding=False, # We'll pad later in the data collator
return_tensors=None, # Return lists, not tensors
)
# For causal LM, labels are the same as input_ids (shifted internally by the model)
tokenized["labels"] = tokenized["input_ids"].copy()
return tokenized
def main():
print("=" * 60)
print("Tool Calling Fine-tuning for Synthia-S1-27b")
print("=" * 60)
# Initialize Trackio for monitoring
trackio.init(project="synthia-tool-calling")
# Get HF username for hub_model_id
from huggingface_hub import whoami
try:
username = whoami()["name"]
hub_model_id = f"{username}/{OUTPUT_MODEL}"
print(f"Will push to: {hub_model_id}")
except Exception as e:
print(f"Warning: Not logged in to HF Hub ({e})")
print("Model will be saved locally only. Run 'huggingface-cli login' to enable Hub push.")
hub_model_id = OUTPUT_MODEL
global PUSH_TO_HUB
PUSH_TO_HUB = False
# -------------------------------------------------------------------------
# Load Tokenizer FIRST (needed for tokenization)
# -------------------------------------------------------------------------
print(f"\nLoading tokenizer from {BASE_MODEL}...")
tokenizer = AutoTokenizer.from_pretrained(
BASE_MODEL,
trust_remote_code=True,
padding_side="right",
)
# Ensure pad token is set
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
tokenizer.pad_token_id = tokenizer.eos_token_id
print(f"Vocab size: {len(tokenizer):,}")
# -------------------------------------------------------------------------
# Try to Load Pre-tokenized Dataset from Hub
# -------------------------------------------------------------------------
train_dataset = None
eval_dataset = None
if LOAD_TOKENIZED_IF_EXISTS:
print(f"\nChecking for pre-tokenized dataset: {TOKENIZED_DATASET_REPO}")
try:
from datasets import load_dataset as hf_load_dataset
# Try to load the tokenized dataset
tokenized_ds = hf_load_dataset(TOKENIZED_DATASET_REPO)
# Check if it has the required columns (input_ids, attention_mask)
if "train" in tokenized_ds and "input_ids" in tokenized_ds["train"].column_names:
print(" Found pre-tokenized dataset with input_ids!")
train_dataset = tokenized_ds["train"]
eval_dataset = tokenized_ds.get("test", tokenized_ds.get("validation"))
print(f" Train samples: {len(train_dataset):,}")
if eval_dataset:
print(f" Eval samples: {len(eval_dataset):,}")
else:
print(" Dataset exists but is not tokenized (no input_ids column)")
print(" Will re-tokenize and save...")
except Exception as e:
print(f" Could not load pre-tokenized dataset: {e}")
print(" Will tokenize from scratch...")
# -------------------------------------------------------------------------
# Load and Tokenize Dataset (if not loaded from Hub)
# -------------------------------------------------------------------------
if train_dataset is None:
print(f"\nLoading dataset: {DATASET_NAME} ({DATASET_SPLIT} split)...")
# Download the JSONL file directly from the dataset repo
jsonl_file = f"data/{DATASET_SPLIT}.jsonl"
print(f"Downloading {jsonl_file}...")
local_path = hf_hub_download(
repo_id=DATASET_NAME,
filename=jsonl_file,
repo_type="dataset"
)
print(f"Downloaded to: {local_path}")
# Load JSONL manually to handle schema inconsistencies
print("Loading and processing JSONL file...")
processed_examples = []
skipped = 0
with open(local_path, 'r', encoding='utf-8') as f:
for line_num, line in enumerate(f):
if line_num % 50000 == 0:
print(f" Processed {line_num:,} lines...")
try:
example = json.loads(line.strip())
messages = example.get("messages", [])
# Convert messages to consistent format
formatted_messages = []
for msg in messages:
role = msg.get("role", "user")
content = msg.get("content", "")
# Handle content that might be a list or complex object
if isinstance(content, list):
# For tool calls, content is often a list of dicts
parts = []
for item in content:
if isinstance(item, dict):
if "text" in item:
parts.append(item["text"])
else:
parts.append(json.dumps(item))
else:
parts.append(str(item))
content = "\n".join(parts) if parts else ""
elif isinstance(content, dict):
content = json.dumps(content)
elif content is None:
content = ""
else:
content = str(content)
formatted_messages.append({
"role": role,
"content": content
})
# Ensure proper role alternation for chat template
# Merge consecutive messages with same role, handle tool messages
if formatted_messages:
merged_messages = []
for msg in formatted_messages:
role = msg["role"]
content = msg["content"]
# Map tool role to assistant (tool responses are from assistant's perspective)
if role == "tool":
role = "user" # Tool output is provided to the model like user input
content = f"[Tool Result]\n{content}"
# If same role as previous, merge content
if merged_messages and merged_messages[-1]["role"] == role:
merged_messages[-1]["content"] += f"\n\n{content}"
else:
merged_messages.append({"role": role, "content": content})
# Ensure conversation starts with user and alternates
if merged_messages and merged_messages[0]["role"] != "user":
# Prepend a placeholder user message if starts with assistant
merged_messages.insert(0, {"role": "user", "content": "[Start]"})
processed_examples.append({"messages": merged_messages})
except Exception as e:
skipped += 1
if skipped < 5:
print(f" Warning: Skipped line {line_num}: {e}")
print(f"Loaded {len(processed_examples):,} examples (skipped {skipped})")
# Create dataset from processed examples
dataset = Dataset.from_list(processed_examples)
print(f"Dataset size: {len(dataset):,} examples")
if MAX_SAMPLES and len(dataset) > MAX_SAMPLES:
dataset = dataset.shuffle(seed=42).select(range(MAX_SAMPLES))
print(f"Limited to {MAX_SAMPLES:,} samples for training")
# Create train/eval split
split_dataset = dataset.train_test_split(test_size=0.02, seed=42)
train_dataset = split_dataset["train"]
eval_dataset = split_dataset["test"]
print(f"Train samples: {len(train_dataset):,}")
print(f"Eval samples: {len(eval_dataset):,}")
# -------------------------------------------------------------------------
# TOKENIZE the dataset (this is the key step!)
# -------------------------------------------------------------------------
print(f"\nTokenizing dataset with max_length={MAX_SEQ_LENGTH}...")
print("This may take a while for large datasets...")
# Tokenize train dataset
train_dataset = train_dataset.map(
lambda x: tokenize_conversation(x, tokenizer, MAX_SEQ_LENGTH),
remove_columns=["messages"], # Remove text, keep only tokens
num_proc=4, # Parallelize
desc="Tokenizing train",
)
# Tokenize eval dataset
eval_dataset = eval_dataset.map(
lambda x: tokenize_conversation(x, tokenizer, MAX_SEQ_LENGTH),
remove_columns=["messages"],
num_proc=4,
desc="Tokenizing eval",
)
print(f"Tokenization complete!")
print(f"Train dataset columns: {train_dataset.column_names}")
print(f"Sample input_ids length: {len(train_dataset[0]['input_ids'])}")
# Save TOKENIZED dataset to Hub for reuse
if SAVE_TOKENIZED:
print(f"\nSaving TOKENIZED dataset to Hub: {TOKENIZED_DATASET_REPO}")
try:
# Create the repo if it doesn't exist (private!)
api = HfApi()
try:
create_repo(
TOKENIZED_DATASET_REPO,
repo_type="dataset",
private=TOKENIZED_DATASET_PRIVATE,
exist_ok=True
)
print(f" Created/verified repo (private={TOKENIZED_DATASET_PRIVATE})")
# Try to update visibility if repo already exists
if TOKENIZED_DATASET_PRIVATE:
try:
api.update_repo_visibility(
TOKENIZED_DATASET_REPO,
repo_type="dataset",
private=True
)
print(f" Ensured repo is private")
except Exception:
pass # Ignore if already private or no permission
except Exception as e:
print(f" Repo creation note: {e}")
# Reset format to ensure data is serializable (not torch tensors)
train_dataset.reset_format()
eval_dataset.reset_format()
# Verify the data looks correct before pushing
print(f" Verifying tokenized data...")
print(f" Train columns: {train_dataset.column_names}")
print(f" Sample input_ids type: {type(train_dataset[0]['input_ids'])}")
print(f" Sample input_ids length: {len(train_dataset[0]['input_ids'])}")
print(f" First 10 tokens: {train_dataset[0]['input_ids'][:10]}")
# Push tokenized datasets to Hub (private is set at repo creation)
print(f" Pushing train split ({len(train_dataset):,} examples)...")
train_dataset.push_to_hub(
TOKENIZED_DATASET_REPO,
split="train",
)
print(f" Pushing test split ({len(eval_dataset):,} examples)...")
eval_dataset.push_to_hub(
TOKENIZED_DATASET_REPO,
split="test",
)
print(f" SUCCESS! Saved TOKENIZED data to: https://huggingface.co/datasets/{TOKENIZED_DATASET_REPO}")
print(f" Columns saved: {train_dataset.column_names}")
print(f" Dataset is private: {TOKENIZED_DATASET_PRIVATE}")
# Verify the upload by trying to load it back
print(f" Verifying upload...")
try:
from datasets import load_dataset as verify_load
verify_ds = verify_load(TOKENIZED_DATASET_REPO, split="train", streaming=True)
sample = next(iter(verify_ds))
if "input_ids" in sample:
print(f" VERIFIED: Dataset contains input_ids with {len(sample['input_ids'])} tokens")
else:
print(f" WARNING: Dataset uploaded but input_ids not found in columns: {list(sample.keys())}")
except Exception as ve:
print(f" Could not verify upload: {ve}")
except Exception as e:
print(f" ERROR saving to Hub: {e}")
import traceback
traceback.print_exc()
print(" Continuing with training anyway...")
# -------------------------------------------------------------------------
# Load Model with Quantization
# -------------------------------------------------------------------------
print(f"\nLoading model: {BASE_MODEL}...")
if USE_4BIT:
print("Using 4-bit quantization (QLoRA)")
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.bfloat16,
bnb_4bit_use_double_quant=True,
)
else:
bnb_config = None
model = AutoModelForCausalLM.from_pretrained(
BASE_MODEL,
quantization_config=bnb_config,
device_map="auto",
trust_remote_code=True,
torch_dtype=torch.bfloat16,
attn_implementation="sdpa", # Use PyTorch's Scaled Dot Product Attention
)
if USE_4BIT:
model = prepare_model_for_kbit_training(model)
print(f"Model loaded. Parameters: {model.num_parameters():,}")
# -------------------------------------------------------------------------
# Configure LoRA
# -------------------------------------------------------------------------
print(f"\nConfiguring LoRA (r={LORA_R}, alpha={LORA_ALPHA})...")
# Target modules for Gemma 3 architecture
target_modules = [
"q_proj", "k_proj", "v_proj", "o_proj", # Attention
"gate_proj", "up_proj", "down_proj", # MLP
]
lora_config = LoraConfig(
r=LORA_R,
lora_alpha=LORA_ALPHA,
lora_dropout=LORA_DROPOUT,
target_modules=target_modules,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()
# -------------------------------------------------------------------------
# Training Configuration
# -------------------------------------------------------------------------
print("\nConfiguring training...")
training_args = SFTConfig(
output_dir=f"./{OUTPUT_MODEL}",
# Training params
num_train_epochs=NUM_EPOCHS,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRADIENT_ACCUMULATION,
# Optimizer
learning_rate=LEARNING_RATE,
lr_scheduler_type="cosine",
warmup_ratio=WARMUP_RATIO,
weight_decay=0.01,
optim="adamw_torch",
# Memory optimization
gradient_checkpointing=True,
gradient_checkpointing_kwargs={"use_reentrant": False},
max_grad_norm=1.0,
# Sequence length
max_length=MAX_SEQ_LENGTH,
packing=False, # Disable packing for tool calling (preserve conversation structure)
# Evaluation
eval_strategy="steps",
eval_steps=500,
# Saving
save_strategy="steps",
save_steps=500,
save_total_limit=3,
# Hub
push_to_hub=PUSH_TO_HUB,
hub_model_id=hub_model_id if PUSH_TO_HUB else None,
hub_strategy="checkpoint",
hub_private_repo=HUB_PRIVATE,
# Logging
logging_steps=10,
report_to="trackio",
run_name=f"lora-r{LORA_R}-lr{LEARNING_RATE}",
# Performance
bf16=True,
dataloader_num_workers=4,
dataloader_pin_memory=True,
# Reproducibility
seed=42,
)
# -------------------------------------------------------------------------
# Initialize Trainer
# -------------------------------------------------------------------------
print("\nInitializing trainer...")
# Create data collator for padding pre-tokenized data
data_collator = DataCollatorForLanguageModeling(
tokenizer=tokenizer,
mlm=False, # Causal LM, not masked LM
)
# Check if dataset is pre-tokenized
is_pretokenized = "input_ids" in train_dataset.column_names
print(f"Dataset is pre-tokenized: {is_pretokenized}")
print(f"Dataset columns: {train_dataset.column_names}")
trainer = SFTTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
processing_class=tokenizer,
data_collator=data_collator,
)
# -------------------------------------------------------------------------
# Train!
# -------------------------------------------------------------------------
print("\n" + "=" * 60)
print("Starting training...")
print("=" * 60 + "\n")
trainer.train()
# -------------------------------------------------------------------------
# Save Final Model
# -------------------------------------------------------------------------
print("\nSaving final model...")
trainer.save_model()
if PUSH_TO_HUB:
print(f"Pushing to Hub: {hub_model_id}")
trainer.push_to_hub()
print(f"\n✅ Model available at: https://huggingface.co/{hub_model_id}")
else:
print(f"Model saved locally to: ./{OUTPUT_MODEL}")
print("\n" + "=" * 60)
print("Training complete!")
print("=" * 60)
if __name__ == "__main__":
main()
|