--- model_name: Qwen2.5-Argunaut-1-1.5B-SFT license: apache-2.0 datasets: - DebateLabKIT/deepa2-conversations - DebateLabKIT/deep-argmap-conversations - allenai/tulu-3-sft-mixture base_model: - Qwen/Qwen2.5-1.5B-Instruct pipeline_tag: text-generation library_name: transformers tags: - logic - argumentation - critical-thinking - argument-mapping - trl - sft language: - zho - eng - fra - spa - por - deu - ita - rus - jpn - kor - vie - tha - ara --- # Model Card for Qwen2.5-Argunaut-1-1.5B-SFT 🧪 _Experimental, not recommended for use in teaching._ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct). It has been trained using [TRL](https://github.com/huggingface/trl). 📘 [HF Blog Article](https://huggingface.co/blog/ggbetz/argunauts-phase-1) ## Quick start ```python from transformers import pipeline question = "Are you familiar with Argdown syntax? What's its purpose?" generator = pipeline("text-generation", model="DebateLabKIT/Llama-3.1-Argunaut-1-8B-SFT", device="cuda") output = generator([{"role": "user", "content": question}], max_new_tokens=128, return_full_text=False)[0] print(output["generated_text"]) ``` ## Evaluation ### Chat Experience _coming soon_ ### Metrics _coming soon_ ## SFT dataset mixture |Dataset|Weight (examples)|Weight (tokens)| |:------|:----:|:----:| |DebateLabKIT/deepa2-conversations|25%|49%| |DebateLabKIT/deep-argmap-conversations|25%|18%| |allenai/tulu-3-sft-mixture|50%|33%| ## Training procedure Trained with SFT on **1M examples** and for 1 epoch with * context length 8196 * packing (trl implementation) ```yaml # Training parameters num_train_epochs: 1 per_device_train_batch_size: 32 gradient_accumulation_steps: 1 gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: false learning_rate: 5.0e-6 lr_scheduler_type: cosine warmup_ratio: 0.1 ``` Hardware: 4 x H100 GPUs. _This work was performed on the HoreKa supercomputer funded by the Ministry of Science, Research and the Arts Baden-Württemberg and by the Federal Ministry of Education and Research._ ### Framework versions - TRL: 0.14.0 - Transformers: 4.46.3 - Pytorch: 2.4.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Credits This work wouldn't be possible without all the **great contributions from the open LLM community**. Thank you! Special kudos go to - @philschmid for his latest [fine-tuning boilerplate](https://www.philschmid.de/fine-tune-llms-in-2025) - @lvwerra, @lewtun et al for building and maintaining [trl](https://github.com/huggingface/trl) - @cognitivecomputations for sharing [spectrum](https://github.com/cognitivecomputations/spectrum/tree/main) - @allenai for releasing [tulu-3-sft-mixture](https://huggingface.co/datasets/allenai/tulu-3-sft-mixture) - @qwen for building [Qwen/Qwen2.5-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct)