Devy1 commited on
Commit
38d8dec
·
verified ·
1 Parent(s): a0ced87

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,1257 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:9020
9
+ - loss:MultipleNegativesRankingLoss
10
+ base_model: sentence-transformers/all-MiniLM-L6-v2
11
+ widget:
12
+ - source_sentence: python multiprocessing show cpu count
13
+ sentences:
14
+ - "def unique(seq):\n \"\"\"Return the unique elements of a collection even if\
15
+ \ those elements are\n unhashable and unsortable, like dicts and sets\"\"\
16
+ \"\n cleaned = []\n for each in seq:\n if each not in cleaned:\n\
17
+ \ cleaned.append(each)\n return cleaned"
18
+ - "def is_in(self, point_x, point_y):\n \"\"\" Test if a point is within\
19
+ \ this polygonal region \"\"\"\n\n point_array = array(((point_x, point_y),))\n\
20
+ \ vertices = array(self.points)\n winding = self.inside_rule ==\
21
+ \ \"winding\"\n result = points_in_polygon(point_array, vertices, winding)\n\
22
+ \ return result[0]"
23
+ - "def machine_info():\n \"\"\"Retrieve core and memory information for the current\
24
+ \ machine.\n \"\"\"\n import psutil\n BYTES_IN_GIG = 1073741824.0\n \
25
+ \ free_bytes = psutil.virtual_memory().total\n return [{\"memory\": float(\"\
26
+ %.1f\" % (free_bytes / BYTES_IN_GIG)), \"cores\": multiprocessing.cpu_count(),\n\
27
+ \ \"name\": socket.gethostname()}]"
28
+ - source_sentence: python subplot set the whole title
29
+ sentences:
30
+ - "def set_title(self, title, **kwargs):\n \"\"\"Sets the title on the underlying\
31
+ \ matplotlib AxesSubplot.\"\"\"\n ax = self.get_axes()\n ax.set_title(title,\
32
+ \ **kwargs)"
33
+ - "def moving_average(array, n=3):\n \"\"\"\n Calculates the moving average\
34
+ \ of an array.\n\n Parameters\n ----------\n array : array\n The\
35
+ \ array to have the moving average taken of\n n : int\n The number of\
36
+ \ points of moving average to take\n \n Returns\n -------\n MovingAverageArray\
37
+ \ : array\n The n-point moving average of the input array\n \"\"\"\n\
38
+ \ ret = _np.cumsum(array, dtype=float)\n ret[n:] = ret[n:] - ret[:-n]\n\
39
+ \ return ret[n - 1:] / n"
40
+ - "def to_query_parameters(parameters):\n \"\"\"Converts DB-API parameter values\
41
+ \ into query parameters.\n\n :type parameters: Mapping[str, Any] or Sequence[Any]\n\
42
+ \ :param parameters: A dictionary or sequence of query parameter values.\n\n\
43
+ \ :rtype: List[google.cloud.bigquery.query._AbstractQueryParameter]\n :returns:\
44
+ \ A list of query parameters.\n \"\"\"\n if parameters is None:\n \
45
+ \ return []\n\n if isinstance(parameters, collections_abc.Mapping):\n \
46
+ \ return to_query_parameters_dict(parameters)\n\n return to_query_parameters_list(parameters)"
47
+ - source_sentence: python merge two set to dict
48
+ sentences:
49
+ - "def make_regex(separator):\n \"\"\"Utility function to create regexp for matching\
50
+ \ escaped separators\n in strings.\n\n \"\"\"\n return re.compile(r'(?:'\
51
+ \ + re.escape(separator) + r')?((?:[^' +\n re.escape(separator)\
52
+ \ + r'\\\\]|\\\\.)+)')"
53
+ - "def csvtolist(inputstr):\n \"\"\" converts a csv string into a list \"\"\"\
54
+ \n reader = csv.reader([inputstr], skipinitialspace=True)\n output = []\n\
55
+ \ for r in reader:\n output += r\n return output"
56
+ - "def dict_merge(set1, set2):\n \"\"\"Joins two dictionaries.\"\"\"\n return\
57
+ \ dict(list(set1.items()) + list(set2.items()))"
58
+ - source_sentence: python string % substitution float
59
+ sentences:
60
+ - "def _configure_logger():\n \"\"\"Configure the logging module.\"\"\"\n \
61
+ \ if not app.debug:\n _configure_logger_for_production(logging.getLogger())\n\
62
+ \ elif not app.testing:\n _configure_logger_for_debugging(logging.getLogger())"
63
+ - "def __set__(self, instance, value):\n \"\"\" Set a related object for\
64
+ \ an instance. \"\"\"\n\n self.map[id(instance)] = (weakref.ref(instance),\
65
+ \ value)"
66
+ - "def format_float(value): # not used\n \"\"\"Modified form of the 'g' format\
67
+ \ specifier.\n \"\"\"\n string = \"{:g}\".format(value).replace(\"e+\",\
68
+ \ \"e\")\n string = re.sub(\"e(-?)0*(\\d+)\", r\"e\\1\\2\", string)\n return\
69
+ \ string"
70
+ - source_sentence: bottom 5 rows in python
71
+ sentences:
72
+ - "def refresh(self, document):\n\t\t\"\"\" Load a new copy of a document from the\
73
+ \ database. does not\n\t\t\treplace the old one \"\"\"\n\t\ttry:\n\t\t\told_cache_size\
74
+ \ = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\
75
+ \t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\
76
+ \t\treturn obj"
77
+ - "def table_top_abs(self):\n \"\"\"Returns the absolute position of table\
78
+ \ top\"\"\"\n table_height = np.array([0, 0, self.table_full_size[2]])\n\
79
+ \ return string_to_array(self.floor.get(\"pos\")) + table_height"
80
+ - "def get_dimension_array(array):\n \"\"\"\n Get dimension of an array getting\
81
+ \ the number of rows and the max num of\n columns.\n \"\"\"\n if all(isinstance(el,\
82
+ \ list) for el in array):\n result = [len(array), len(max([x for x in array],\
83
+ \ key=len,))]\n\n # elif array and isinstance(array, list):\n else:\n \
84
+ \ result = [len(array), 1]\n\n return result"
85
+ pipeline_tag: sentence-similarity
86
+ library_name: sentence-transformers
87
+ ---
88
+
89
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
90
+
91
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
92
+
93
+ ## Model Details
94
+
95
+ ### Model Description
96
+ - **Model Type:** Sentence Transformer
97
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
98
+ - **Maximum Sequence Length:** 256 tokens
99
+ - **Output Dimensionality:** 384 dimensions
100
+ - **Similarity Function:** Cosine Similarity
101
+ <!-- - **Training Dataset:** Unknown -->
102
+ <!-- - **Language:** Unknown -->
103
+ <!-- - **License:** Unknown -->
104
+
105
+ ### Model Sources
106
+
107
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
108
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
109
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
110
+
111
+ ### Full Model Architecture
112
+
113
+ ```
114
+ SentenceTransformer(
115
+ (0): Transformer({'max_seq_length': 256, 'do_lower_case': False, 'architecture': 'BertModel'})
116
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
117
+ (2): Normalize()
118
+ )
119
+ ```
120
+
121
+ ## Usage
122
+
123
+ ### Direct Usage (Sentence Transformers)
124
+
125
+ First install the Sentence Transformers library:
126
+
127
+ ```bash
128
+ pip install -U sentence-transformers
129
+ ```
130
+
131
+ Then you can load this model and run inference.
132
+ ```python
133
+ from sentence_transformers import SentenceTransformer
134
+
135
+ # Download from the 🤗 Hub
136
+ model = SentenceTransformer("Devy1/MiniLM-cosqa-32")
137
+ # Run inference
138
+ sentences = [
139
+ 'bottom 5 rows in python',
140
+ 'def table_top_abs(self):\n """Returns the absolute position of table top"""\n table_height = np.array([0, 0, self.table_full_size[2]])\n return string_to_array(self.floor.get("pos")) + table_height',
141
+ 'def refresh(self, document):\n\t\t""" Load a new copy of a document from the database. does not\n\t\t\treplace the old one """\n\t\ttry:\n\t\t\told_cache_size = self.cache_size\n\t\t\tself.cache_size = 0\n\t\t\tobj = self.query(type(document)).filter_by(mongo_id=document.mongo_id).one()\n\t\tfinally:\n\t\t\tself.cache_size = old_cache_size\n\t\tself.cache_write(obj)\n\t\treturn obj',
142
+ ]
143
+ embeddings = model.encode(sentences)
144
+ print(embeddings.shape)
145
+ # [3, 384]
146
+
147
+ # Get the similarity scores for the embeddings
148
+ similarities = model.similarity(embeddings, embeddings)
149
+ print(similarities)
150
+ # tensor([[ 1.0000, 0.4728, -0.0350],
151
+ # [ 0.4728, 1.0000, -0.0494],
152
+ # [-0.0350, -0.0494, 1.0000]])
153
+ ```
154
+
155
+ <!--
156
+ ### Direct Usage (Transformers)
157
+
158
+ <details><summary>Click to see the direct usage in Transformers</summary>
159
+
160
+ </details>
161
+ -->
162
+
163
+ <!--
164
+ ### Downstream Usage (Sentence Transformers)
165
+
166
+ You can finetune this model on your own dataset.
167
+
168
+ <details><summary>Click to expand</summary>
169
+
170
+ </details>
171
+ -->
172
+
173
+ <!--
174
+ ### Out-of-Scope Use
175
+
176
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
177
+ -->
178
+
179
+ <!--
180
+ ## Bias, Risks and Limitations
181
+
182
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
183
+ -->
184
+
185
+ <!--
186
+ ### Recommendations
187
+
188
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
189
+ -->
190
+
191
+ ## Training Details
192
+
193
+ ### Training Dataset
194
+
195
+ #### Unnamed Dataset
196
+
197
+ * Size: 9,020 training samples
198
+ * Columns: <code>anchor</code> and <code>positive</code>
199
+ * Approximate statistics based on the first 1000 samples:
200
+ | | anchor | positive |
201
+ |:--------|:---------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
202
+ | type | string | string |
203
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.67 tokens</li><li>max: 21 tokens</li></ul> | <ul><li>min: 40 tokens</li><li>mean: 86.17 tokens</li><li>max: 256 tokens</li></ul> |
204
+ * Samples:
205
+ | anchor | positive |
206
+ |:--------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
207
+ | <code>1d array in char datatype in python</code> | <code>def _convert_to_array(array_like, dtype):<br> """<br> Convert Matrix attributes which are array-like or buffer to array.<br> """<br> if isinstance(array_like, bytes):<br> return np.frombuffer(array_like, dtype=dtype)<br> return np.asarray(array_like, dtype=dtype)</code> |
208
+ | <code>python condition non none</code> | <code>def _not(condition=None, **kwargs):<br> """<br> Return the opposite of input condition.<br><br> :param condition: condition to process.<br><br> :result: not condition.<br> :rtype: bool<br> """<br><br> result = True<br><br> if condition is not None:<br> result = not run(condition, **kwargs)<br><br> return result</code> |
209
+ | <code>accessing a column from a matrix in python</code> | <code>def get_column(self, X, column):<br> """Return a column of the given matrix.<br><br> Args:<br> X: `numpy.ndarray` or `pandas.DataFrame`.<br> column: `int` or `str`.<br><br> Returns:<br> np.ndarray: Selected column.<br> """<br> if isinstance(X, pd.DataFrame):<br> return X[column].values<br><br> return X[:, column]</code> |
210
+ * Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
211
+ ```json
212
+ {
213
+ "scale": 20.0,
214
+ "similarity_fct": "cos_sim",
215
+ "gather_across_devices": false
216
+ }
217
+ ```
218
+
219
+ ### Training Hyperparameters
220
+ #### Non-Default Hyperparameters
221
+
222
+ - `per_device_train_batch_size`: 32
223
+ - `fp16`: True
224
+
225
+ #### All Hyperparameters
226
+ <details><summary>Click to expand</summary>
227
+
228
+ - `overwrite_output_dir`: False
229
+ - `do_predict`: False
230
+ - `eval_strategy`: no
231
+ - `prediction_loss_only`: True
232
+ - `per_device_train_batch_size`: 32
233
+ - `per_device_eval_batch_size`: 8
234
+ - `per_gpu_train_batch_size`: None
235
+ - `per_gpu_eval_batch_size`: None
236
+ - `gradient_accumulation_steps`: 1
237
+ - `eval_accumulation_steps`: None
238
+ - `torch_empty_cache_steps`: None
239
+ - `learning_rate`: 5e-05
240
+ - `weight_decay`: 0.0
241
+ - `adam_beta1`: 0.9
242
+ - `adam_beta2`: 0.999
243
+ - `adam_epsilon`: 1e-08
244
+ - `max_grad_norm`: 1.0
245
+ - `num_train_epochs`: 3
246
+ - `max_steps`: -1
247
+ - `lr_scheduler_type`: linear
248
+ - `lr_scheduler_kwargs`: {}
249
+ - `warmup_ratio`: 0.0
250
+ - `warmup_steps`: 0
251
+ - `log_level`: passive
252
+ - `log_level_replica`: warning
253
+ - `log_on_each_node`: True
254
+ - `logging_nan_inf_filter`: True
255
+ - `save_safetensors`: True
256
+ - `save_on_each_node`: False
257
+ - `save_only_model`: False
258
+ - `restore_callback_states_from_checkpoint`: False
259
+ - `no_cuda`: False
260
+ - `use_cpu`: False
261
+ - `use_mps_device`: False
262
+ - `seed`: 42
263
+ - `data_seed`: None
264
+ - `jit_mode_eval`: False
265
+ - `use_ipex`: False
266
+ - `bf16`: False
267
+ - `fp16`: True
268
+ - `fp16_opt_level`: O1
269
+ - `half_precision_backend`: auto
270
+ - `bf16_full_eval`: False
271
+ - `fp16_full_eval`: False
272
+ - `tf32`: None
273
+ - `local_rank`: 0
274
+ - `ddp_backend`: None
275
+ - `tpu_num_cores`: None
276
+ - `tpu_metrics_debug`: False
277
+ - `debug`: []
278
+ - `dataloader_drop_last`: False
279
+ - `dataloader_num_workers`: 0
280
+ - `dataloader_prefetch_factor`: None
281
+ - `past_index`: -1
282
+ - `disable_tqdm`: False
283
+ - `remove_unused_columns`: True
284
+ - `label_names`: None
285
+ - `load_best_model_at_end`: False
286
+ - `ignore_data_skip`: False
287
+ - `fsdp`: []
288
+ - `fsdp_min_num_params`: 0
289
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
290
+ - `fsdp_transformer_layer_cls_to_wrap`: None
291
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
292
+ - `parallelism_config`: None
293
+ - `deepspeed`: None
294
+ - `label_smoothing_factor`: 0.0
295
+ - `optim`: adamw_torch_fused
296
+ - `optim_args`: None
297
+ - `adafactor`: False
298
+ - `group_by_length`: False
299
+ - `length_column_name`: length
300
+ - `ddp_find_unused_parameters`: None
301
+ - `ddp_bucket_cap_mb`: None
302
+ - `ddp_broadcast_buffers`: False
303
+ - `dataloader_pin_memory`: True
304
+ - `dataloader_persistent_workers`: False
305
+ - `skip_memory_metrics`: True
306
+ - `use_legacy_prediction_loop`: False
307
+ - `push_to_hub`: False
308
+ - `resume_from_checkpoint`: None
309
+ - `hub_model_id`: None
310
+ - `hub_strategy`: every_save
311
+ - `hub_private_repo`: None
312
+ - `hub_always_push`: False
313
+ - `hub_revision`: None
314
+ - `gradient_checkpointing`: False
315
+ - `gradient_checkpointing_kwargs`: None
316
+ - `include_inputs_for_metrics`: False
317
+ - `include_for_metrics`: []
318
+ - `eval_do_concat_batches`: True
319
+ - `fp16_backend`: auto
320
+ - `push_to_hub_model_id`: None
321
+ - `push_to_hub_organization`: None
322
+ - `mp_parameters`:
323
+ - `auto_find_batch_size`: False
324
+ - `full_determinism`: False
325
+ - `torchdynamo`: None
326
+ - `ray_scope`: last
327
+ - `ddp_timeout`: 1800
328
+ - `torch_compile`: False
329
+ - `torch_compile_backend`: None
330
+ - `torch_compile_mode`: None
331
+ - `include_tokens_per_second`: False
332
+ - `include_num_input_tokens_seen`: False
333
+ - `neftune_noise_alpha`: None
334
+ - `optim_target_modules`: None
335
+ - `batch_eval_metrics`: False
336
+ - `eval_on_start`: False
337
+ - `use_liger_kernel`: False
338
+ - `liger_kernel_config`: None
339
+ - `eval_use_gather_object`: False
340
+ - `average_tokens_across_devices`: False
341
+ - `prompts`: None
342
+ - `batch_sampler`: batch_sampler
343
+ - `multi_dataset_batch_sampler`: proportional
344
+ - `router_mapping`: {}
345
+ - `learning_rate_mapping`: {}
346
+
347
+ </details>
348
+
349
+ ### Training Logs
350
+ <details><summary>Click to expand</summary>
351
+
352
+ | Epoch | Step | Training Loss |
353
+ |:------:|:----:|:-------------:|
354
+ | 0.0035 | 1 | 0.5705 |
355
+ | 0.0071 | 2 | 0.1217 |
356
+ | 0.0106 | 3 | 0.1985 |
357
+ | 0.0142 | 4 | 0.2742 |
358
+ | 0.0177 | 5 | 0.0782 |
359
+ | 0.0213 | 6 | 0.1748 |
360
+ | 0.0248 | 7 | 0.1914 |
361
+ | 0.0284 | 8 | 0.0911 |
362
+ | 0.0319 | 9 | 0.0368 |
363
+ | 0.0355 | 10 | 0.219 |
364
+ | 0.0390 | 11 | 0.1571 |
365
+ | 0.0426 | 12 | 0.081 |
366
+ | 0.0461 | 13 | 0.1152 |
367
+ | 0.0496 | 14 | 0.0556 |
368
+ | 0.0532 | 15 | 0.1375 |
369
+ | 0.0567 | 16 | 0.1844 |
370
+ | 0.0603 | 17 | 0.3164 |
371
+ | 0.0638 | 18 | 0.2312 |
372
+ | 0.0674 | 19 | 0.1767 |
373
+ | 0.0709 | 20 | 0.0975 |
374
+ | 0.0745 | 21 | 0.2848 |
375
+ | 0.0780 | 22 | 0.0972 |
376
+ | 0.0816 | 23 | 0.3153 |
377
+ | 0.0851 | 24 | 0.1087 |
378
+ | 0.0887 | 25 | 0.1673 |
379
+ | 0.0922 | 26 | 0.2074 |
380
+ | 0.0957 | 27 | 0.2197 |
381
+ | 0.0993 | 28 | 0.2571 |
382
+ | 0.1028 | 29 | 0.1873 |
383
+ | 0.1064 | 30 | 0.0657 |
384
+ | 0.1099 | 31 | 0.0675 |
385
+ | 0.1135 | 32 | 0.0749 |
386
+ | 0.1170 | 33 | 0.0948 |
387
+ | 0.1206 | 34 | 0.0849 |
388
+ | 0.1241 | 35 | 0.0882 |
389
+ | 0.1277 | 36 | 0.0436 |
390
+ | 0.1312 | 37 | 0.1173 |
391
+ | 0.1348 | 38 | 0.1512 |
392
+ | 0.1383 | 39 | 0.1062 |
393
+ | 0.1418 | 40 | 0.0384 |
394
+ | 0.1454 | 41 | 0.148 |
395
+ | 0.1489 | 42 | 0.0432 |
396
+ | 0.1525 | 43 | 0.1027 |
397
+ | 0.1560 | 44 | 0.4193 |
398
+ | 0.1596 | 45 | 0.1003 |
399
+ | 0.1631 | 46 | 0.113 |
400
+ | 0.1667 | 47 | 0.0846 |
401
+ | 0.1702 | 48 | 0.0899 |
402
+ | 0.1738 | 49 | 0.0952 |
403
+ | 0.1773 | 50 | 0.0553 |
404
+ | 0.1809 | 51 | 0.11 |
405
+ | 0.1844 | 52 | 0.1955 |
406
+ | 0.1879 | 53 | 0.1103 |
407
+ | 0.1915 | 54 | 0.0738 |
408
+ | 0.1950 | 55 | 0.1217 |
409
+ | 0.1986 | 56 | 0.274 |
410
+ | 0.2021 | 57 | 0.1471 |
411
+ | 0.2057 | 58 | 0.0727 |
412
+ | 0.2092 | 59 | 0.0438 |
413
+ | 0.2128 | 60 | 0.1521 |
414
+ | 0.2163 | 61 | 0.1359 |
415
+ | 0.2199 | 62 | 0.1217 |
416
+ | 0.2234 | 63 | 0.2226 |
417
+ | 0.2270 | 64 | 0.2676 |
418
+ | 0.2305 | 65 | 0.1649 |
419
+ | 0.2340 | 66 | 0.1675 |
420
+ | 0.2376 | 67 | 0.1278 |
421
+ | 0.2411 | 68 | 0.1627 |
422
+ | 0.2447 | 69 | 0.108 |
423
+ | 0.2482 | 70 | 0.1327 |
424
+ | 0.2518 | 71 | 0.1762 |
425
+ | 0.2553 | 72 | 0.41 |
426
+ | 0.2589 | 73 | 0.1551 |
427
+ | 0.2624 | 74 | 0.1893 |
428
+ | 0.2660 | 75 | 0.0847 |
429
+ | 0.2695 | 76 | 0.0949 |
430
+ | 0.2730 | 77 | 0.2214 |
431
+ | 0.2766 | 78 | 0.0439 |
432
+ | 0.2801 | 79 | 0.1355 |
433
+ | 0.2837 | 80 | 0.1951 |
434
+ | 0.2872 | 81 | 0.068 |
435
+ | 0.2908 | 82 | 0.1032 |
436
+ | 0.2943 | 83 | 0.1131 |
437
+ | 0.2979 | 84 | 0.2245 |
438
+ | 0.3014 | 85 | 0.2323 |
439
+ | 0.3050 | 86 | 0.1512 |
440
+ | 0.3085 | 87 | 0.1686 |
441
+ | 0.3121 | 88 | 0.0797 |
442
+ | 0.3156 | 89 | 0.2182 |
443
+ | 0.3191 | 90 | 0.2181 |
444
+ | 0.3227 | 91 | 0.0944 |
445
+ | 0.3262 | 92 | 0.083 |
446
+ | 0.3298 | 93 | 0.1554 |
447
+ | 0.3333 | 94 | 0.0999 |
448
+ | 0.3369 | 95 | 0.1948 |
449
+ | 0.3404 | 96 | 0.1446 |
450
+ | 0.3440 | 97 | 0.2856 |
451
+ | 0.3475 | 98 | 0.0786 |
452
+ | 0.3511 | 99 | 0.1112 |
453
+ | 0.3546 | 100 | 0.0571 |
454
+ | 0.3582 | 101 | 0.2553 |
455
+ | 0.3617 | 102 | 0.0546 |
456
+ | 0.3652 | 103 | 0.1948 |
457
+ | 0.3688 | 104 | 0.0945 |
458
+ | 0.3723 | 105 | 0.0973 |
459
+ | 0.3759 | 106 | 0.0478 |
460
+ | 0.3794 | 107 | 0.3652 |
461
+ | 0.3830 | 108 | 0.2676 |
462
+ | 0.3865 | 109 | 0.1216 |
463
+ | 0.3901 | 110 | 0.0701 |
464
+ | 0.3936 | 111 | 0.0918 |
465
+ | 0.3972 | 112 | 0.1813 |
466
+ | 0.4007 | 113 | 0.1243 |
467
+ | 0.4043 | 114 | 0.2819 |
468
+ | 0.4078 | 115 | 0.0103 |
469
+ | 0.4113 | 116 | 0.2099 |
470
+ | 0.4149 | 117 | 0.0879 |
471
+ | 0.4184 | 118 | 0.1614 |
472
+ | 0.4220 | 119 | 0.0869 |
473
+ | 0.4255 | 120 | 0.0942 |
474
+ | 0.4291 | 121 | 0.0592 |
475
+ | 0.4326 | 122 | 0.1387 |
476
+ | 0.4362 | 123 | 0.0805 |
477
+ | 0.4397 | 124 | 0.1844 |
478
+ | 0.4433 | 125 | 0.0292 |
479
+ | 0.4468 | 126 | 0.3999 |
480
+ | 0.4504 | 127 | 0.1031 |
481
+ | 0.4539 | 128 | 0.3445 |
482
+ | 0.4574 | 129 | 0.2309 |
483
+ | 0.4610 | 130 | 0.1887 |
484
+ | 0.4645 | 131 | 0.2472 |
485
+ | 0.4681 | 132 | 0.1128 |
486
+ | 0.4716 | 133 | 0.1276 |
487
+ | 0.4752 | 134 | 0.1141 |
488
+ | 0.4787 | 135 | 0.1117 |
489
+ | 0.4823 | 136 | 0.1593 |
490
+ | 0.4858 | 137 | 0.0363 |
491
+ | 0.4894 | 138 | 0.1564 |
492
+ | 0.4929 | 139 | 0.21 |
493
+ | 0.4965 | 140 | 0.2024 |
494
+ | 0.5 | 141 | 0.1785 |
495
+ | 0.5035 | 142 | 0.1456 |
496
+ | 0.5071 | 143 | 0.0986 |
497
+ | 0.5106 | 144 | 0.1947 |
498
+ | 0.5142 | 145 | 0.1733 |
499
+ | 0.5177 | 146 | 0.1656 |
500
+ | 0.5213 | 147 | 0.0951 |
501
+ | 0.5248 | 148 | 0.1216 |
502
+ | 0.5284 | 149 | 0.0875 |
503
+ | 0.5319 | 150 | 0.1284 |
504
+ | 0.5355 | 151 | 0.1066 |
505
+ | 0.5390 | 152 | 0.0692 |
506
+ | 0.5426 | 153 | 0.2287 |
507
+ | 0.5461 | 154 | 0.233 |
508
+ | 0.5496 | 155 | 0.1066 |
509
+ | 0.5532 | 156 | 0.0862 |
510
+ | 0.5567 | 157 | 0.0877 |
511
+ | 0.5603 | 158 | 0.3095 |
512
+ | 0.5638 | 159 | 0.1237 |
513
+ | 0.5674 | 160 | 0.0682 |
514
+ | 0.5709 | 161 | 0.0741 |
515
+ | 0.5745 | 162 | 0.2003 |
516
+ | 0.5780 | 163 | 0.1392 |
517
+ | 0.5816 | 164 | 0.0493 |
518
+ | 0.5851 | 165 | 0.3129 |
519
+ | 0.5887 | 166 | 0.1186 |
520
+ | 0.5922 | 167 | 0.0369 |
521
+ | 0.5957 | 168 | 0.1224 |
522
+ | 0.5993 | 169 | 0.2212 |
523
+ | 0.6028 | 170 | 0.0809 |
524
+ | 0.6064 | 171 | 0.116 |
525
+ | 0.6099 | 172 | 0.2251 |
526
+ | 0.6135 | 173 | 0.0195 |
527
+ | 0.6170 | 174 | 0.0476 |
528
+ | 0.6206 | 175 | 0.0818 |
529
+ | 0.6241 | 176 | 0.0313 |
530
+ | 0.6277 | 177 | 0.188 |
531
+ | 0.6312 | 178 | 0.2736 |
532
+ | 0.6348 | 179 | 0.1444 |
533
+ | 0.6383 | 180 | 0.0924 |
534
+ | 0.6418 | 181 | 0.0895 |
535
+ | 0.6454 | 182 | 0.2116 |
536
+ | 0.6489 | 183 | 0.3288 |
537
+ | 0.6525 | 184 | 0.1659 |
538
+ | 0.6560 | 185 | 0.1367 |
539
+ | 0.6596 | 186 | 0.1834 |
540
+ | 0.6631 | 187 | 0.0822 |
541
+ | 0.6667 | 188 | 0.1384 |
542
+ | 0.6702 | 189 | 0.1602 |
543
+ | 0.6738 | 190 | 0.1325 |
544
+ | 0.6773 | 191 | 0.1033 |
545
+ | 0.6809 | 192 | 0.1102 |
546
+ | 0.6844 | 193 | 0.0786 |
547
+ | 0.6879 | 194 | 0.1158 |
548
+ | 0.6915 | 195 | 0.0639 |
549
+ | 0.6950 | 196 | 0.18 |
550
+ | 0.6986 | 197 | 0.0512 |
551
+ | 0.7021 | 198 | 0.1271 |
552
+ | 0.7057 | 199 | 0.0839 |
553
+ | 0.7092 | 200 | 0.0838 |
554
+ | 0.7128 | 201 | 0.0691 |
555
+ | 0.7163 | 202 | 0.1457 |
556
+ | 0.7199 | 203 | 0.1363 |
557
+ | 0.7234 | 204 | 0.1059 |
558
+ | 0.7270 | 205 | 0.1051 |
559
+ | 0.7305 | 206 | 0.0541 |
560
+ | 0.7340 | 207 | 0.1409 |
561
+ | 0.7376 | 208 | 0.0911 |
562
+ | 0.7411 | 209 | 0.2823 |
563
+ | 0.7447 | 210 | 0.156 |
564
+ | 0.7482 | 211 | 0.394 |
565
+ | 0.7518 | 212 | 0.1946 |
566
+ | 0.7553 | 213 | 0.0282 |
567
+ | 0.7589 | 214 | 0.1497 |
568
+ | 0.7624 | 215 | 0.1643 |
569
+ | 0.7660 | 216 | 0.0236 |
570
+ | 0.7695 | 217 | 0.0654 |
571
+ | 0.7730 | 218 | 0.0537 |
572
+ | 0.7766 | 219 | 0.1068 |
573
+ | 0.7801 | 220 | 0.051 |
574
+ | 0.7837 | 221 | 0.072 |
575
+ | 0.7872 | 222 | 0.0413 |
576
+ | 0.7908 | 223 | 0.0918 |
577
+ | 0.7943 | 224 | 0.1308 |
578
+ | 0.7979 | 225 | 0.0694 |
579
+ | 0.8014 | 226 | 0.0852 |
580
+ | 0.8050 | 227 | 0.0321 |
581
+ | 0.8085 | 228 | 0.1497 |
582
+ | 0.8121 | 229 | 0.0959 |
583
+ | 0.8156 | 230 | 0.226 |
584
+ | 0.8191 | 231 | 0.1129 |
585
+ | 0.8227 | 232 | 0.0831 |
586
+ | 0.8262 | 233 | 0.2181 |
587
+ | 0.8298 | 234 | 0.1054 |
588
+ | 0.8333 | 235 | 0.1812 |
589
+ | 0.8369 | 236 | 0.0455 |
590
+ | 0.8404 | 237 | 0.1413 |
591
+ | 0.8440 | 238 | 0.0801 |
592
+ | 0.8475 | 239 | 0.0301 |
593
+ | 0.8511 | 240 | 0.0846 |
594
+ | 0.8546 | 241 | 0.1862 |
595
+ | 0.8582 | 242 | 0.1015 |
596
+ | 0.8617 | 243 | 0.0459 |
597
+ | 0.8652 | 244 | 0.0774 |
598
+ | 0.8688 | 245 | 0.1444 |
599
+ | 0.8723 | 246 | 0.2849 |
600
+ | 0.8759 | 247 | 0.3935 |
601
+ | 0.8794 | 248 | 0.2126 |
602
+ | 0.8830 | 249 | 0.0845 |
603
+ | 0.8865 | 250 | 0.1429 |
604
+ | 0.8901 | 251 | 0.0107 |
605
+ | 0.8936 | 252 | 0.0599 |
606
+ | 0.8972 | 253 | 0.1192 |
607
+ | 0.9007 | 254 | 0.1369 |
608
+ | 0.9043 | 255 | 0.1246 |
609
+ | 0.9078 | 256 | 0.0163 |
610
+ | 0.9113 | 257 | 0.1844 |
611
+ | 0.9149 | 258 | 0.1017 |
612
+ | 0.9184 | 259 | 0.0415 |
613
+ | 0.9220 | 260 | 0.1658 |
614
+ | 0.9255 | 261 | 0.0755 |
615
+ | 0.9291 | 262 | 0.086 |
616
+ | 0.9326 | 263 | 0.081 |
617
+ | 0.9362 | 264 | 0.2776 |
618
+ | 0.9397 | 265 | 0.1284 |
619
+ | 0.9433 | 266 | 0.1591 |
620
+ | 0.9468 | 267 | 0.1397 |
621
+ | 0.9504 | 268 | 0.0334 |
622
+ | 0.9539 | 269 | 0.0449 |
623
+ | 0.9574 | 270 | 0.1382 |
624
+ | 0.9610 | 271 | 0.1736 |
625
+ | 0.9645 | 272 | 0.236 |
626
+ | 0.9681 | 273 | 0.225 |
627
+ | 0.9716 | 274 | 0.2444 |
628
+ | 0.9752 | 275 | 0.0497 |
629
+ | 0.9787 | 276 | 0.1212 |
630
+ | 0.9823 | 277 | 0.1405 |
631
+ | 0.9858 | 278 | 0.1116 |
632
+ | 0.9894 | 279 | 0.0369 |
633
+ | 0.9929 | 280 | 0.0321 |
634
+ | 0.9965 | 281 | 0.1481 |
635
+ | 1.0 | 282 | 0.1046 |
636
+ | 1.0035 | 283 | 0.0673 |
637
+ | 1.0071 | 284 | 0.078 |
638
+ | 1.0106 | 285 | 0.0723 |
639
+ | 1.0142 | 286 | 0.1328 |
640
+ | 1.0177 | 287 | 0.1399 |
641
+ | 1.0213 | 288 | 0.186 |
642
+ | 1.0248 | 289 | 0.0747 |
643
+ | 1.0284 | 290 | 0.0291 |
644
+ | 1.0319 | 291 | 0.0427 |
645
+ | 1.0355 | 292 | 0.0288 |
646
+ | 1.0390 | 293 | 0.1552 |
647
+ | 1.0426 | 294 | 0.0123 |
648
+ | 1.0461 | 295 | 0.0617 |
649
+ | 1.0496 | 296 | 0.0646 |
650
+ | 1.0532 | 297 | 0.2001 |
651
+ | 1.0567 | 298 | 0.068 |
652
+ | 1.0603 | 299 | 0.0108 |
653
+ | 1.0638 | 300 | 0.0776 |
654
+ | 1.0674 | 301 | 0.1037 |
655
+ | 1.0709 | 302 | 0.0087 |
656
+ | 1.0745 | 303 | 0.1564 |
657
+ | 1.0780 | 304 | 0.0665 |
658
+ | 1.0816 | 305 | 0.0246 |
659
+ | 1.0851 | 306 | 0.061 |
660
+ | 1.0887 | 307 | 0.038 |
661
+ | 1.0922 | 308 | 0.1016 |
662
+ | 1.0957 | 309 | 0.0434 |
663
+ | 1.0993 | 310 | 0.1178 |
664
+ | 1.1028 | 311 | 0.1235 |
665
+ | 1.1064 | 312 | 0.0164 |
666
+ | 1.1099 | 313 | 0.0838 |
667
+ | 1.1135 | 314 | 0.0516 |
668
+ | 1.1170 | 315 | 0.1195 |
669
+ | 1.1206 | 316 | 0.1026 |
670
+ | 1.1241 | 317 | 0.0387 |
671
+ | 1.1277 | 318 | 0.1057 |
672
+ | 1.1312 | 319 | 0.0332 |
673
+ | 1.1348 | 320 | 0.033 |
674
+ | 1.1383 | 321 | 0.0648 |
675
+ | 1.1418 | 322 | 0.0067 |
676
+ | 1.1454 | 323 | 0.0402 |
677
+ | 1.1489 | 324 | 0.1376 |
678
+ | 1.1525 | 325 | 0.0852 |
679
+ | 1.1560 | 326 | 0.0245 |
680
+ | 1.1596 | 327 | 0.087 |
681
+ | 1.1631 | 328 | 0.0403 |
682
+ | 1.1667 | 329 | 0.0998 |
683
+ | 1.1702 | 330 | 0.0634 |
684
+ | 1.1738 | 331 | 0.0218 |
685
+ | 1.1773 | 332 | 0.1244 |
686
+ | 1.1809 | 333 | 0.1178 |
687
+ | 1.1844 | 334 | 0.1135 |
688
+ | 1.1879 | 335 | 0.0721 |
689
+ | 1.1915 | 336 | 0.0427 |
690
+ | 1.1950 | 337 | 0.0314 |
691
+ | 1.1986 | 338 | 0.0577 |
692
+ | 1.2021 | 339 | 0.0337 |
693
+ | 1.2057 | 340 | 0.0312 |
694
+ | 1.2092 | 341 | 0.0336 |
695
+ | 1.2128 | 342 | 0.0289 |
696
+ | 1.2163 | 343 | 0.0946 |
697
+ | 1.2199 | 344 | 0.2581 |
698
+ | 1.2234 | 345 | 0.1359 |
699
+ | 1.2270 | 346 | 0.0223 |
700
+ | 1.2305 | 347 | 0.055 |
701
+ | 1.2340 | 348 | 0.0591 |
702
+ | 1.2376 | 349 | 0.0286 |
703
+ | 1.2411 | 350 | 0.0128 |
704
+ | 1.2447 | 351 | 0.0676 |
705
+ | 1.2482 | 352 | 0.0744 |
706
+ | 1.2518 | 353 | 0.0208 |
707
+ | 1.2553 | 354 | 0.0877 |
708
+ | 1.2589 | 355 | 0.0759 |
709
+ | 1.2624 | 356 | 0.052 |
710
+ | 1.2660 | 357 | 0.2666 |
711
+ | 1.2695 | 358 | 0.0455 |
712
+ | 1.2730 | 359 | 0.0893 |
713
+ | 1.2766 | 360 | 0.1706 |
714
+ | 1.2801 | 361 | 0.059 |
715
+ | 1.2837 | 362 | 0.049 |
716
+ | 1.2872 | 363 | 0.1249 |
717
+ | 1.2908 | 364 | 0.0229 |
718
+ | 1.2943 | 365 | 0.1088 |
719
+ | 1.2979 | 366 | 0.198 |
720
+ | 1.3014 | 367 | 0.2119 |
721
+ | 1.3050 | 368 | 0.0397 |
722
+ | 1.3085 | 369 | 0.1772 |
723
+ | 1.3121 | 370 | 0.1251 |
724
+ | 1.3156 | 371 | 0.0286 |
725
+ | 1.3191 | 372 | 0.0273 |
726
+ | 1.3227 | 373 | 0.1161 |
727
+ | 1.3262 | 374 | 0.1128 |
728
+ | 1.3298 | 375 | 0.1323 |
729
+ | 1.3333 | 376 | 0.0245 |
730
+ | 1.3369 | 377 | 0.0342 |
731
+ | 1.3404 | 378 | 0.1177 |
732
+ | 1.3440 | 379 | 0.0584 |
733
+ | 1.3475 | 380 | 0.0164 |
734
+ | 1.3511 | 381 | 0.1174 |
735
+ | 1.3546 | 382 | 0.043 |
736
+ | 1.3582 | 383 | 0.0706 |
737
+ | 1.3617 | 384 | 0.0862 |
738
+ | 1.3652 | 385 | 0.1093 |
739
+ | 1.3688 | 386 | 0.0849 |
740
+ | 1.3723 | 387 | 0.0252 |
741
+ | 1.3759 | 388 | 0.0517 |
742
+ | 1.3794 | 389 | 0.0634 |
743
+ | 1.3830 | 390 | 0.0526 |
744
+ | 1.3865 | 391 | 0.1388 |
745
+ | 1.3901 | 392 | 0.0747 |
746
+ | 1.3936 | 393 | 0.0362 |
747
+ | 1.3972 | 394 | 0.1148 |
748
+ | 1.4007 | 395 | 0.0208 |
749
+ | 1.4043 | 396 | 0.1426 |
750
+ | 1.4078 | 397 | 0.1611 |
751
+ | 1.4113 | 398 | 0.0302 |
752
+ | 1.4149 | 399 | 0.0446 |
753
+ | 1.4184 | 400 | 0.0182 |
754
+ | 1.4220 | 401 | 0.089 |
755
+ | 1.4255 | 402 | 0.1423 |
756
+ | 1.4291 | 403 | 0.1599 |
757
+ | 1.4326 | 404 | 0.0438 |
758
+ | 1.4362 | 405 | 0.0103 |
759
+ | 1.4397 | 406 | 0.083 |
760
+ | 1.4433 | 407 | 0.0914 |
761
+ | 1.4468 | 408 | 0.0436 |
762
+ | 1.4504 | 409 | 0.124 |
763
+ | 1.4539 | 410 | 0.0896 |
764
+ | 1.4574 | 411 | 0.256 |
765
+ | 1.4610 | 412 | 0.0061 |
766
+ | 1.4645 | 413 | 0.0529 |
767
+ | 1.4681 | 414 | 0.0851 |
768
+ | 1.4716 | 415 | 0.08 |
769
+ | 1.4752 | 416 | 0.0115 |
770
+ | 1.4787 | 417 | 0.0784 |
771
+ | 1.4823 | 418 | 0.0321 |
772
+ | 1.4858 | 419 | 0.0976 |
773
+ | 1.4894 | 420 | 0.0725 |
774
+ | 1.4929 | 421 | 0.0834 |
775
+ | 1.4965 | 422 | 0.122 |
776
+ | 1.5 | 423 | 0.1294 |
777
+ | 1.5035 | 424 | 0.2754 |
778
+ | 1.5071 | 425 | 0.0884 |
779
+ | 1.5106 | 426 | 0.076 |
780
+ | 1.5142 | 427 | 0.0799 |
781
+ | 1.5177 | 428 | 0.0439 |
782
+ | 1.5213 | 429 | 0.0943 |
783
+ | 1.5248 | 430 | 0.077 |
784
+ | 1.5284 | 431 | 0.0696 |
785
+ | 1.5319 | 432 | 0.0251 |
786
+ | 1.5355 | 433 | 0.1715 |
787
+ | 1.5390 | 434 | 0.0913 |
788
+ | 1.5426 | 435 | 0.0251 |
789
+ | 1.5461 | 436 | 0.0642 |
790
+ | 1.5496 | 437 | 0.0375 |
791
+ | 1.5532 | 438 | 0.0381 |
792
+ | 1.5567 | 439 | 0.0628 |
793
+ | 1.5603 | 440 | 0.095 |
794
+ | 1.5638 | 441 | 0.0441 |
795
+ | 1.5674 | 442 | 0.0496 |
796
+ | 1.5709 | 443 | 0.0531 |
797
+ | 1.5745 | 444 | 0.0304 |
798
+ | 1.5780 | 445 | 0.2032 |
799
+ | 1.5816 | 446 | 0.109 |
800
+ | 1.5851 | 447 | 0.1481 |
801
+ | 1.5887 | 448 | 0.0706 |
802
+ | 1.5922 | 449 | 0.0346 |
803
+ | 1.5957 | 450 | 0.0364 |
804
+ | 1.5993 | 451 | 0.0513 |
805
+ | 1.6028 | 452 | 0.3153 |
806
+ | 1.6064 | 453 | 0.1135 |
807
+ | 1.6099 | 454 | 0.1034 |
808
+ | 1.6135 | 455 | 0.0566 |
809
+ | 1.6170 | 456 | 0.0707 |
810
+ | 1.6206 | 457 | 0.1564 |
811
+ | 1.6241 | 458 | 0.1602 |
812
+ | 1.6277 | 459 | 0.0149 |
813
+ | 1.6312 | 460 | 0.1243 |
814
+ | 1.6348 | 461 | 0.0579 |
815
+ | 1.6383 | 462 | 0.1693 |
816
+ | 1.6418 | 463 | 0.0911 |
817
+ | 1.6454 | 464 | 0.0278 |
818
+ | 1.6489 | 465 | 0.0315 |
819
+ | 1.6525 | 466 | 0.0176 |
820
+ | 1.6560 | 467 | 0.1197 |
821
+ | 1.6596 | 468 | 0.0162 |
822
+ | 1.6631 | 469 | 0.0492 |
823
+ | 1.6667 | 470 | 0.0495 |
824
+ | 1.6702 | 471 | 0.0318 |
825
+ | 1.6738 | 472 | 0.0703 |
826
+ | 1.6773 | 473 | 0.0175 |
827
+ | 1.6809 | 474 | 0.1457 |
828
+ | 1.6844 | 475 | 0.026 |
829
+ | 1.6879 | 476 | 0.067 |
830
+ | 1.6915 | 477 | 0.0657 |
831
+ | 1.6950 | 478 | 0.1421 |
832
+ | 1.6986 | 479 | 0.0341 |
833
+ | 1.7021 | 480 | 0.022 |
834
+ | 1.7057 | 481 | 0.0641 |
835
+ | 1.7092 | 482 | 0.1315 |
836
+ | 1.7128 | 483 | 0.0328 |
837
+ | 1.7163 | 484 | 0.0489 |
838
+ | 1.7199 | 485 | 0.0199 |
839
+ | 1.7234 | 486 | 0.0475 |
840
+ | 1.7270 | 487 | 0.0662 |
841
+ | 1.7305 | 488 | 0.0133 |
842
+ | 1.7340 | 489 | 0.0081 |
843
+ | 1.7376 | 490 | 0.0356 |
844
+ | 1.7411 | 491 | 0.092 |
845
+ | 1.7447 | 492 | 0.0653 |
846
+ | 1.7482 | 493 | 0.0457 |
847
+ | 1.7518 | 494 | 0.0949 |
848
+ | 1.7553 | 495 | 0.0108 |
849
+ | 1.7589 | 496 | 0.0287 |
850
+ | 1.7624 | 497 | 0.1043 |
851
+ | 1.7660 | 498 | 0.0166 |
852
+ | 1.7695 | 499 | 0.0068 |
853
+ | 1.7730 | 500 | 0.1521 |
854
+ | 1.7766 | 501 | 0.0356 |
855
+ | 1.7801 | 502 | 0.0083 |
856
+ | 1.7837 | 503 | 0.1221 |
857
+ | 1.7872 | 504 | 0.046 |
858
+ | 1.7908 | 505 | 0.0339 |
859
+ | 1.7943 | 506 | 0.021 |
860
+ | 1.7979 | 507 | 0.1706 |
861
+ | 1.8014 | 508 | 0.0176 |
862
+ | 1.8050 | 509 | 0.0275 |
863
+ | 1.8085 | 510 | 0.0521 |
864
+ | 1.8121 | 511 | 0.1083 |
865
+ | 1.8156 | 512 | 0.098 |
866
+ | 1.8191 | 513 | 0.0746 |
867
+ | 1.8227 | 514 | 0.0944 |
868
+ | 1.8262 | 515 | 0.075 |
869
+ | 1.8298 | 516 | 0.0997 |
870
+ | 1.8333 | 517 | 0.0416 |
871
+ | 1.8369 | 518 | 0.154 |
872
+ | 1.8404 | 519 | 0.1534 |
873
+ | 1.8440 | 520 | 0.0387 |
874
+ | 1.8475 | 521 | 0.0957 |
875
+ | 1.8511 | 522 | 0.0136 |
876
+ | 1.8546 | 523 | 0.0426 |
877
+ | 1.8582 | 524 | 0.1499 |
878
+ | 1.8617 | 525 | 0.0111 |
879
+ | 1.8652 | 526 | 0.122 |
880
+ | 1.8688 | 527 | 0.2204 |
881
+ | 1.8723 | 528 | 0.1677 |
882
+ | 1.8759 | 529 | 0.0298 |
883
+ | 1.8794 | 530 | 0.0873 |
884
+ | 1.8830 | 531 | 0.0747 |
885
+ | 1.8865 | 532 | 0.0849 |
886
+ | 1.8901 | 533 | 0.0525 |
887
+ | 1.8936 | 534 | 0.0233 |
888
+ | 1.8972 | 535 | 0.0805 |
889
+ | 1.9007 | 536 | 0.0236 |
890
+ | 1.9043 | 537 | 0.142 |
891
+ | 1.9078 | 538 | 0.0585 |
892
+ | 1.9113 | 539 | 0.0271 |
893
+ | 1.9149 | 540 | 0.1606 |
894
+ | 1.9184 | 541 | 0.2148 |
895
+ | 1.9220 | 542 | 0.0568 |
896
+ | 1.9255 | 543 | 0.0248 |
897
+ | 1.9291 | 544 | 0.0878 |
898
+ | 1.9326 | 545 | 0.0044 |
899
+ | 1.9362 | 546 | 0.0354 |
900
+ | 1.9397 | 547 | 0.0638 |
901
+ | 1.9433 | 548 | 0.1875 |
902
+ | 1.9468 | 549 | 0.031 |
903
+ | 1.9504 | 550 | 0.0547 |
904
+ | 1.9539 | 551 | 0.1292 |
905
+ | 1.9574 | 552 | 0.23 |
906
+ | 1.9610 | 553 | 0.0913 |
907
+ | 1.9645 | 554 | 0.0561 |
908
+ | 1.9681 | 555 | 0.0189 |
909
+ | 1.9716 | 556 | 0.0177 |
910
+ | 1.9752 | 557 | 0.0195 |
911
+ | 1.9787 | 558 | 0.1032 |
912
+ | 1.9823 | 559 | 0.1502 |
913
+ | 1.9858 | 560 | 0.0457 |
914
+ | 1.9894 | 561 | 0.0577 |
915
+ | 1.9929 | 562 | 0.1172 |
916
+ | 1.9965 | 563 | 0.0504 |
917
+ | 2.0 | 564 | 0.0374 |
918
+ | 2.0035 | 565 | 0.1079 |
919
+ | 2.0071 | 566 | 0.0609 |
920
+ | 2.0106 | 567 | 0.0366 |
921
+ | 2.0142 | 568 | 0.0674 |
922
+ | 2.0177 | 569 | 0.1084 |
923
+ | 2.0213 | 570 | 0.066 |
924
+ | 2.0248 | 571 | 0.0102 |
925
+ | 2.0284 | 572 | 0.0876 |
926
+ | 2.0319 | 573 | 0.0407 |
927
+ | 2.0355 | 574 | 0.0581 |
928
+ | 2.0390 | 575 | 0.1215 |
929
+ | 2.0426 | 576 | 0.0068 |
930
+ | 2.0461 | 577 | 0.1015 |
931
+ | 2.0496 | 578 | 0.0047 |
932
+ | 2.0532 | 579 | 0.0925 |
933
+ | 2.0567 | 580 | 0.0836 |
934
+ | 2.0603 | 581 | 0.021 |
935
+ | 2.0638 | 582 | 0.0209 |
936
+ | 2.0674 | 583 | 0.0702 |
937
+ | 2.0709 | 584 | 0.0117 |
938
+ | 2.0745 | 585 | 0.0517 |
939
+ | 2.0780 | 586 | 0.061 |
940
+ | 2.0816 | 587 | 0.0207 |
941
+ | 2.0851 | 588 | 0.034 |
942
+ | 2.0887 | 589 | 0.1045 |
943
+ | 2.0922 | 590 | 0.03 |
944
+ | 2.0957 | 591 | 0.0081 |
945
+ | 2.0993 | 592 | 0.0234 |
946
+ | 2.1028 | 593 | 0.073 |
947
+ | 2.1064 | 594 | 0.0074 |
948
+ | 2.1099 | 595 | 0.0655 |
949
+ | 2.1135 | 596 | 0.079 |
950
+ | 2.1170 | 597 | 0.0358 |
951
+ | 2.1206 | 598 | 0.1006 |
952
+ | 2.1241 | 599 | 0.0624 |
953
+ | 2.1277 | 600 | 0.0479 |
954
+ | 2.1312 | 601 | 0.0105 |
955
+ | 2.1348 | 602 | 0.0448 |
956
+ | 2.1383 | 603 | 0.0305 |
957
+ | 2.1418 | 604 | 0.0432 |
958
+ | 2.1454 | 605 | 0.0771 |
959
+ | 2.1489 | 606 | 0.0545 |
960
+ | 2.1525 | 607 | 0.0299 |
961
+ | 2.1560 | 608 | 0.0712 |
962
+ | 2.1596 | 609 | 0.1006 |
963
+ | 2.1631 | 610 | 0.0117 |
964
+ | 2.1667 | 611 | 0.0462 |
965
+ | 2.1702 | 612 | 0.0576 |
966
+ | 2.1738 | 613 | 0.0696 |
967
+ | 2.1773 | 614 | 0.0685 |
968
+ | 2.1809 | 615 | 0.0596 |
969
+ | 2.1844 | 616 | 0.0127 |
970
+ | 2.1879 | 617 | 0.0089 |
971
+ | 2.1915 | 618 | 0.0135 |
972
+ | 2.1950 | 619 | 0.2405 |
973
+ | 2.1986 | 620 | 0.0212 |
974
+ | 2.2021 | 621 | 0.0637 |
975
+ | 2.2057 | 622 | 0.1356 |
976
+ | 2.2092 | 623 | 0.0943 |
977
+ | 2.2128 | 624 | 0.0147 |
978
+ | 2.2163 | 625 | 0.0038 |
979
+ | 2.2199 | 626 | 0.0624 |
980
+ | 2.2234 | 627 | 0.016 |
981
+ | 2.2270 | 628 | 0.032 |
982
+ | 2.2305 | 629 | 0.0154 |
983
+ | 2.2340 | 630 | 0.0724 |
984
+ | 2.2376 | 631 | 0.008 |
985
+ | 2.2411 | 632 | 0.0877 |
986
+ | 2.2447 | 633 | 0.0228 |
987
+ | 2.2482 | 634 | 0.1929 |
988
+ | 2.2518 | 635 | 0.026 |
989
+ | 2.2553 | 636 | 0.0117 |
990
+ | 2.2589 | 637 | 0.0325 |
991
+ | 2.2624 | 638 | 0.0127 |
992
+ | 2.2660 | 639 | 0.0054 |
993
+ | 2.2695 | 640 | 0.0909 |
994
+ | 2.2730 | 641 | 0.0326 |
995
+ | 2.2766 | 642 | 0.0291 |
996
+ | 2.2801 | 643 | 0.0499 |
997
+ | 2.2837 | 644 | 0.0394 |
998
+ | 2.2872 | 645 | 0.0422 |
999
+ | 2.2908 | 646 | 0.0156 |
1000
+ | 2.2943 | 647 | 0.0626 |
1001
+ | 2.2979 | 648 | 0.0143 |
1002
+ | 2.3014 | 649 | 0.0707 |
1003
+ | 2.3050 | 650 | 0.0474 |
1004
+ | 2.3085 | 651 | 0.0387 |
1005
+ | 2.3121 | 652 | 0.104 |
1006
+ | 2.3156 | 653 | 0.0981 |
1007
+ | 2.3191 | 654 | 0.0284 |
1008
+ | 2.3227 | 655 | 0.0123 |
1009
+ | 2.3262 | 656 | 0.1346 |
1010
+ | 2.3298 | 657 | 0.0157 |
1011
+ | 2.3333 | 658 | 0.1276 |
1012
+ | 2.3369 | 659 | 0.0634 |
1013
+ | 2.3404 | 660 | 0.0327 |
1014
+ | 2.3440 | 661 | 0.0633 |
1015
+ | 2.3475 | 662 | 0.0618 |
1016
+ | 2.3511 | 663 | 0.0171 |
1017
+ | 2.3546 | 664 | 0.141 |
1018
+ | 2.3582 | 665 | 0.0626 |
1019
+ | 2.3617 | 666 | 0.0149 |
1020
+ | 2.3652 | 667 | 0.0455 |
1021
+ | 2.3688 | 668 | 0.0507 |
1022
+ | 2.3723 | 669 | 0.0492 |
1023
+ | 2.3759 | 670 | 0.1528 |
1024
+ | 2.3794 | 671 | 0.0484 |
1025
+ | 2.3830 | 672 | 0.0826 |
1026
+ | 2.3865 | 673 | 0.044 |
1027
+ | 2.3901 | 674 | 0.2045 |
1028
+ | 2.3936 | 675 | 0.0083 |
1029
+ | 2.3972 | 676 | 0.0109 |
1030
+ | 2.4007 | 677 | 0.0262 |
1031
+ | 2.4043 | 678 | 0.0965 |
1032
+ | 2.4078 | 679 | 0.1926 |
1033
+ | 2.4113 | 680 | 0.0494 |
1034
+ | 2.4149 | 681 | 0.1212 |
1035
+ | 2.4184 | 682 | 0.0467 |
1036
+ | 2.4220 | 683 | 0.0093 |
1037
+ | 2.4255 | 684 | 0.0662 |
1038
+ | 2.4291 | 685 | 0.0487 |
1039
+ | 2.4326 | 686 | 0.1391 |
1040
+ | 2.4362 | 687 | 0.1416 |
1041
+ | 2.4397 | 688 | 0.1691 |
1042
+ | 2.4433 | 689 | 0.0936 |
1043
+ | 2.4468 | 690 | 0.1812 |
1044
+ | 2.4504 | 691 | 0.0327 |
1045
+ | 2.4539 | 692 | 0.1146 |
1046
+ | 2.4574 | 693 | 0.0711 |
1047
+ | 2.4610 | 694 | 0.0947 |
1048
+ | 2.4645 | 695 | 0.0525 |
1049
+ | 2.4681 | 696 | 0.0223 |
1050
+ | 2.4716 | 697 | 0.0266 |
1051
+ | 2.4752 | 698 | 0.206 |
1052
+ | 2.4787 | 699 | 0.0669 |
1053
+ | 2.4823 | 700 | 0.0421 |
1054
+ | 2.4858 | 701 | 0.0198 |
1055
+ | 2.4894 | 702 | 0.0255 |
1056
+ | 2.4929 | 703 | 0.008 |
1057
+ | 2.4965 | 704 | 0.0183 |
1058
+ | 2.5 | 705 | 0.0498 |
1059
+ | 2.5035 | 706 | 0.0839 |
1060
+ | 2.5071 | 707 | 0.0219 |
1061
+ | 2.5106 | 708 | 0.0977 |
1062
+ | 2.5142 | 709 | 0.0206 |
1063
+ | 2.5177 | 710 | 0.0051 |
1064
+ | 2.5213 | 711 | 0.0199 |
1065
+ | 2.5248 | 712 | 0.0366 |
1066
+ | 2.5284 | 713 | 0.01 |
1067
+ | 2.5319 | 714 | 0.1622 |
1068
+ | 2.5355 | 715 | 0.0452 |
1069
+ | 2.5390 | 716 | 0.0681 |
1070
+ | 2.5426 | 717 | 0.0103 |
1071
+ | 2.5461 | 718 | 0.0059 |
1072
+ | 2.5496 | 719 | 0.0493 |
1073
+ | 2.5532 | 720 | 0.016 |
1074
+ | 2.5567 | 721 | 0.134 |
1075
+ | 2.5603 | 722 | 0.0119 |
1076
+ | 2.5638 | 723 | 0.1173 |
1077
+ | 2.5674 | 724 | 0.2206 |
1078
+ | 2.5709 | 725 | 0.0368 |
1079
+ | 2.5745 | 726 | 0.0176 |
1080
+ | 2.5780 | 727 | 0.0599 |
1081
+ | 2.5816 | 728 | 0.123 |
1082
+ | 2.5851 | 729 | 0.0764 |
1083
+ | 2.5887 | 730 | 0.0695 |
1084
+ | 2.5922 | 731 | 0.0405 |
1085
+ | 2.5957 | 732 | 0.012 |
1086
+ | 2.5993 | 733 | 0.0469 |
1087
+ | 2.6028 | 734 | 0.0142 |
1088
+ | 2.6064 | 735 | 0.1236 |
1089
+ | 2.6099 | 736 | 0.0194 |
1090
+ | 2.6135 | 737 | 0.115 |
1091
+ | 2.6170 | 738 | 0.105 |
1092
+ | 2.6206 | 739 | 0.0937 |
1093
+ | 2.6241 | 740 | 0.1916 |
1094
+ | 2.6277 | 741 | 0.0903 |
1095
+ | 2.6312 | 742 | 0.1579 |
1096
+ | 2.6348 | 743 | 0.0902 |
1097
+ | 2.6383 | 744 | 0.0304 |
1098
+ | 2.6418 | 745 | 0.0881 |
1099
+ | 2.6454 | 746 | 0.0646 |
1100
+ | 2.6489 | 747 | 0.0941 |
1101
+ | 2.6525 | 748 | 0.0204 |
1102
+ | 2.6560 | 749 | 0.1679 |
1103
+ | 2.6596 | 750 | 0.028 |
1104
+ | 2.6631 | 751 | 0.0205 |
1105
+ | 2.6667 | 752 | 0.0307 |
1106
+ | 2.6702 | 753 | 0.0365 |
1107
+ | 2.6738 | 754 | 0.0141 |
1108
+ | 2.6773 | 755 | 0.0212 |
1109
+ | 2.6809 | 756 | 0.0447 |
1110
+ | 2.6844 | 757 | 0.1072 |
1111
+ | 2.6879 | 758 | 0.0332 |
1112
+ | 2.6915 | 759 | 0.0513 |
1113
+ | 2.6950 | 760 | 0.062 |
1114
+ | 2.6986 | 761 | 0.0941 |
1115
+ | 2.7021 | 762 | 0.0201 |
1116
+ | 2.7057 | 763 | 0.2132 |
1117
+ | 2.7092 | 764 | 0.0323 |
1118
+ | 2.7128 | 765 | 0.0654 |
1119
+ | 2.7163 | 766 | 0.059 |
1120
+ | 2.7199 | 767 | 0.1027 |
1121
+ | 2.7234 | 768 | 0.0091 |
1122
+ | 2.7270 | 769 | 0.0585 |
1123
+ | 2.7305 | 770 | 0.0102 |
1124
+ | 2.7340 | 771 | 0.0265 |
1125
+ | 2.7376 | 772 | 0.0403 |
1126
+ | 2.7411 | 773 | 0.0913 |
1127
+ | 2.7447 | 774 | 0.0212 |
1128
+ | 2.7482 | 775 | 0.0423 |
1129
+ | 2.7518 | 776 | 0.083 |
1130
+ | 2.7553 | 777 | 0.0073 |
1131
+ | 2.7589 | 778 | 0.0815 |
1132
+ | 2.7624 | 779 | 0.0786 |
1133
+ | 2.7660 | 780 | 0.1079 |
1134
+ | 2.7695 | 781 | 0.0477 |
1135
+ | 2.7730 | 782 | 0.116 |
1136
+ | 2.7766 | 783 | 0.0523 |
1137
+ | 2.7801 | 784 | 0.049 |
1138
+ | 2.7837 | 785 | 0.0153 |
1139
+ | 2.7872 | 786 | 0.0173 |
1140
+ | 2.7908 | 787 | 0.0656 |
1141
+ | 2.7943 | 788 | 0.0094 |
1142
+ | 2.7979 | 789 | 0.0757 |
1143
+ | 2.8014 | 790 | 0.0924 |
1144
+ | 2.8050 | 791 | 0.0717 |
1145
+ | 2.8085 | 792 | 0.011 |
1146
+ | 2.8121 | 793 | 0.0312 |
1147
+ | 2.8156 | 794 | 0.0188 |
1148
+ | 2.8191 | 795 | 0.0244 |
1149
+ | 2.8227 | 796 | 0.0138 |
1150
+ | 2.8262 | 797 | 0.0956 |
1151
+ | 2.8298 | 798 | 0.0125 |
1152
+ | 2.8333 | 799 | 0.0196 |
1153
+ | 2.8369 | 800 | 0.0766 |
1154
+ | 2.8404 | 801 | 0.0105 |
1155
+ | 2.8440 | 802 | 0.0347 |
1156
+ | 2.8475 | 803 | 0.1152 |
1157
+ | 2.8511 | 804 | 0.0745 |
1158
+ | 2.8546 | 805 | 0.0275 |
1159
+ | 2.8582 | 806 | 0.1096 |
1160
+ | 2.8617 | 807 | 0.0571 |
1161
+ | 2.8652 | 808 | 0.008 |
1162
+ | 2.8688 | 809 | 0.0428 |
1163
+ | 2.8723 | 810 | 0.0639 |
1164
+ | 2.8759 | 811 | 0.1364 |
1165
+ | 2.8794 | 812 | 0.062 |
1166
+ | 2.8830 | 813 | 0.0782 |
1167
+ | 2.8865 | 814 | 0.0311 |
1168
+ | 2.8901 | 815 | 0.1234 |
1169
+ | 2.8936 | 816 | 0.0302 |
1170
+ | 2.8972 | 817 | 0.0984 |
1171
+ | 2.9007 | 818 | 0.0141 |
1172
+ | 2.9043 | 819 | 0.1342 |
1173
+ | 2.9078 | 820 | 0.0115 |
1174
+ | 2.9113 | 821 | 0.0608 |
1175
+ | 2.9149 | 822 | 0.0246 |
1176
+ | 2.9184 | 823 | 0.0388 |
1177
+ | 2.9220 | 824 | 0.0557 |
1178
+ | 2.9255 | 825 | 0.011 |
1179
+ | 2.9291 | 826 | 0.0262 |
1180
+ | 2.9326 | 827 | 0.0655 |
1181
+ | 2.9362 | 828 | 0.0843 |
1182
+ | 2.9397 | 829 | 0.0549 |
1183
+ | 2.9433 | 830 | 0.0791 |
1184
+ | 2.9468 | 831 | 0.0254 |
1185
+ | 2.9504 | 832 | 0.1365 |
1186
+ | 2.9539 | 833 | 0.2078 |
1187
+ | 2.9574 | 834 | 0.0485 |
1188
+ | 2.9610 | 835 | 0.0309 |
1189
+ | 2.9645 | 836 | 0.0974 |
1190
+ | 2.9681 | 837 | 0.004 |
1191
+ | 2.9716 | 838 | 0.1136 |
1192
+ | 2.9752 | 839 | 0.0227 |
1193
+ | 2.9787 | 840 | 0.0458 |
1194
+ | 2.9823 | 841 | 0.016 |
1195
+ | 2.9858 | 842 | 0.1003 |
1196
+ | 2.9894 | 843 | 0.0289 |
1197
+ | 2.9929 | 844 | 0.0702 |
1198
+ | 2.9965 | 845 | 0.055 |
1199
+ | 3.0 | 846 | 0.2404 |
1200
+
1201
+ </details>
1202
+
1203
+ ### Framework Versions
1204
+ - Python: 3.10.14
1205
+ - Sentence Transformers: 5.1.1
1206
+ - Transformers: 4.56.2
1207
+ - PyTorch: 2.8.0+cu128
1208
+ - Accelerate: 1.10.1
1209
+ - Datasets: 4.1.1
1210
+ - Tokenizers: 0.22.1
1211
+
1212
+ ## Citation
1213
+
1214
+ ### BibTeX
1215
+
1216
+ #### Sentence Transformers
1217
+ ```bibtex
1218
+ @inproceedings{reimers-2019-sentence-bert,
1219
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
1220
+ author = "Reimers, Nils and Gurevych, Iryna",
1221
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
1222
+ month = "11",
1223
+ year = "2019",
1224
+ publisher = "Association for Computational Linguistics",
1225
+ url = "https://arxiv.org/abs/1908.10084",
1226
+ }
1227
+ ```
1228
+
1229
+ #### MultipleNegativesRankingLoss
1230
+ ```bibtex
1231
+ @misc{henderson2017efficient,
1232
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
1233
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
1234
+ year={2017},
1235
+ eprint={1705.00652},
1236
+ archivePrefix={arXiv},
1237
+ primaryClass={cs.CL}
1238
+ }
1239
+ ```
1240
+
1241
+ <!--
1242
+ ## Glossary
1243
+
1244
+ *Clearly define terms in order to be accessible across audiences.*
1245
+ -->
1246
+
1247
+ <!--
1248
+ ## Model Card Authors
1249
+
1250
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
1251
+ -->
1252
+
1253
+ <!--
1254
+ ## Model Card Contact
1255
+
1256
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
1257
+ -->
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "dtype": "float32",
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.56.2",
22
+ "type_vocab_size": 2,
23
+ "use_cache": true,
24
+ "vocab_size": 30522
25
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.1",
4
+ "transformers": "4.56.2",
5
+ "pytorch": "2.8.0+cu128"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e9f78ed22994f22ff7deb08500f2080bc93c9a3b7bbbed842a0af4908f8edbd
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 256,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,65 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "max_length": 128,
51
+ "model_max_length": 256,
52
+ "never_split": null,
53
+ "pad_to_multiple_of": null,
54
+ "pad_token": "[PAD]",
55
+ "pad_token_type_id": 0,
56
+ "padding_side": "right",
57
+ "sep_token": "[SEP]",
58
+ "stride": 0,
59
+ "strip_accents": null,
60
+ "tokenize_chinese_chars": true,
61
+ "tokenizer_class": "BertTokenizer",
62
+ "truncation_side": "right",
63
+ "truncation_strategy": "longest_first",
64
+ "unk_token": "[UNK]"
65
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff