|
|
import os |
|
|
|
|
|
import cv2 |
|
|
import imageio |
|
|
import torch |
|
|
|
|
|
import kornia as K |
|
|
import kornia.geometry as KG |
|
|
|
|
|
|
|
|
def load_timg(file_name): |
|
|
"""Loads the image with OpenCV and converts to torch.Tensor.""" |
|
|
assert os.path.isfile(file_name), f"Invalid file {file_name}" |
|
|
|
|
|
img = cv2.imread(file_name, cv2.IMREAD_COLOR) |
|
|
|
|
|
tensor = K.image_to_tensor(img, None).float() / 255. |
|
|
return K.color.bgr_to_rgb(tensor) |
|
|
|
|
|
|
|
|
registrator = KG.ImageRegistrator('similarity') |
|
|
|
|
|
img1 = K.resize(load_timg('/Users/oldufo/datasets/stewart/MR-CT/CT.png'), (400, 600)) |
|
|
img2 = K.resize(load_timg('/Users/oldufo/datasets/stewart/MR-CT/MR.png'), (400, 600)) |
|
|
model, intermediate = registrator.register(img1, img2, output_intermediate_models=True) |
|
|
|
|
|
video_writer = imageio.get_writer('medical_registration.gif', fps=2) |
|
|
|
|
|
timg_dst_first = img1.clone() |
|
|
timg_dst_first[0, 0, :, :] = img2[0, 0, :, :] |
|
|
video_writer.append_data(K.tensor_to_image((timg_dst_first * 255.).byte())) |
|
|
|
|
|
with torch.no_grad(): |
|
|
for m in intermediate: |
|
|
timg_dst = KG.homography_warp(img1, m, img2.shape[-2:]) |
|
|
timg_dst[0, 0, :, :] = img2[0, 0, :, :] |
|
|
video_writer.append_data(K.tensor_to_image((timg_dst_first * 255.).byte())) |
|
|
video_writer.close() |
|
|
|