Safetensors
Qwen-Image-EliGen / README_from_modelscope.md
kelseye's picture
Upload folder using huggingface_hub
65e0c87 verified
metadata
frameworks:
  - Pytorch
license: Apache License 2.0
tasks:
  - text-to-image-synthesis
base_model:
  - Qwen/Qwen-Image
base_model_relation: adapter
new_version: DiffSynth-Studio/Qwen-Image-EliGen-V2

Qwen-Image 精确分区控制模型

模型介绍

本模型是基于 Qwen-Image 训练的精确分区控制模型,模型结构为 LoRA,可以通过输入每个实体的文本和区域条件(蒙版图)来控制每个实体的位置和形状。训练框架基于 DiffSynth-Studio 构建,采用的数据集是 DiffSynth-Studio/EliGenTrainSet

效果展示

实体控制条件 生成图
eligen_example_1_0 eligen_example_1_mask_0
eligen_example_1_0 eligen_example_1_mask_0
eligen_example_1_0 eligen_example_1_mask_0
eligen_example_1_0 eligen_example_1_mask_0
eligen_example_1_0 eligen_example_1_mask_0
eligen_example_1_0 eligen_example_1_mask_0

推理代码

git clone https://github.com/modelscope/DiffSynth-Studio.git  
cd DiffSynth-Studio
pip install -e .
from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig
from modelscope import dataset_snapshot_download, snapshot_download
import torch
from PIL import Image


pipe = QwenImagePipeline.from_pretrained(
    torch_dtype=torch.bfloat16,
    device="cuda",
    model_configs=[
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"),
        ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"),
    ],
    tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"),
)
snapshot_download("DiffSynth-Studio/Qwen-Image-EliGen", local_dir="models/DiffSynth-Studio/Qwen-Image-EliGen", allow_file_pattern="model.safetensors")
pipe.load_lora(pipe.dit, "models/DiffSynth-Studio/Qwen-Image-EliGen/model.safetensors")

global_prompt =  "Qwen-Image-EliGen魔法咖啡厅的宣传海报,主体是两杯魔法咖啡,一杯冒着火焰,一杯冒着冰锥,背景是浅蓝色水雾,海报写着“Qwen-Image-EliGen魔法咖啡厅”、“新品上市”"
entity_prompts = ["一杯红色魔法咖啡,杯中火焰燃烧", "一杯红色魔法咖啡,杯中冰锥环绕", "字:“新品上市”", "字:“Qwen-Image-EliGen魔法咖啡厅”"]

dataset_snapshot_download(dataset_id="DiffSynth-Studio/examples_in_diffsynth", local_dir="./", allow_file_pattern=f"data/examples/eligen/qwen-image/example_6/*.png")
masks = [Image.open(f"./data/examples/eligen/qwen-image/example_6/{i}.png").convert('RGB').resize((1328, 1328)) for i in range(len(entity_prompts))]

image = pipe(
    prompt=global_prompt,
    seed=0,
    eligen_entity_prompts=entity_prompts,
    eligen_entity_masks=masks,
)
image.save("image.jpg")

引用

如果您觉得我们的工作对您有所帮助,欢迎引用我们的成果。

@article{zhang2025eligen,
  title={Eligen: Entity-level controlled image generation with regional attention},
  author={Zhang, Hong and Duan, Zhongjie and Wang, Xingjun and Chen, Yingda and Zhang, Yu},
  journal={arXiv preprint arXiv:2501.01097},
  year={2025}
}