Chengyue Wu
commited on
Commit
·
cd3af22
0
Parent(s):
Initial commit
Browse files- .gitattributes +38 -0
- README.md +151 -0
- added_tokens.json +25 -0
- assets/benchmark_results.png +3 -0
- assets/throughput.png +3 -0
- assets/training_recipe.png +3 -0
- assets/visualization_animation.gif +3 -0
- chat_template.jinja +54 -0
- config.json +65 -0
- configuration.py +98 -0
- generation_config.json +14 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modeling.py +681 -0
- special_tokens_map.json +25 -0
- tokenizer.json +3 -0
- tokenizer_config.json +204 -0
- vocab.json +0 -0
.gitattributes
ADDED
|
@@ -0,0 +1,38 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
+
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
+
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
+
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
+
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
+
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
+
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
+
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
+
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
+
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
+
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
|
@@ -0,0 +1,151 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- Qwen/Qwen2.5-1.5B-Instruct
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# Fast-dLLM v2 (1.5B) — Efficient Block-Diffusion LLM
|
| 10 |
+
|
| 11 |
+
## 📖 Introduction
|
| 12 |
+
|
| 13 |
+
Autoregressive (AR) large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks, yet their **inherent sequential decoding limits inference efficiency**.
|
| 14 |
+
|
| 15 |
+
We present **Fast-dLLM v2** — a carefully designed **block diffusion language model (dLLM)** that efficiently adapts a pretrained AR model (**Qwen2.5-1.5B-Instruct**) into a diffusion-style decoder for **parallel text generation**.
|
| 16 |
+
|
| 17 |
+
Our approach introduces a novel decoding recipe incorporating a complementary attention mask and block diffusion mechanism, which together enable blockwise bidirectional context modeling while preserving the original AR training objectives and performance. To further enhance inference speed, we design a hierarchical caching mechanism: a block-level cache that stores historical context representations and a sub-block level cache that supports efficient parallel decoding within partially generated blocks.
|
| 18 |
+
|
| 19 |
+
### ✨ Key Innovations
|
| 20 |
+
- **Block Diffusion Mechanism + Complementary Attention Mask**
|
| 21 |
+
Enables **blockwise bidirectional context modeling** without sacrificing AR objectives.
|
| 22 |
+
- **Hierarchical Caching**
|
| 23 |
+
- **Block-level cache**: Stores historical context representations across blocks.
|
| 24 |
+
- **Sub-block cache**: Parallel decoding within partially generated blocks.
|
| 25 |
+
- **Token Shift Mechanism**
|
| 26 |
+
Retains autoregressive characteristics while supporting bidirectional context within blocks.
|
| 27 |
+
- **Parallel Decoding Pipeline**
|
| 28 |
+
Achieves up to **2.5× speedup** over standard AR decoding **without compromising quality**.
|
| 29 |
+
|
| 30 |
+
> 🚀 Fast-dLLM v2 uses **only ~1B tokens** for fine-tuning — a **500× reduction** vs. full-attention diffusion LLMs (Dream: 580B tokens) — while **matching or surpassing AR baselines** in accuracy.
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+

|
| 34 |
+
|
| 35 |
+
---
|
| 36 |
+
|
| 37 |
+
## 🛠 Model Overview
|
| 38 |
+
- **Type**: Block Diffusion Language Model (dLLM)
|
| 39 |
+
- **Base Model**: `Qwen/Qwen2.5-1.5B-Instruct`
|
| 40 |
+
- **Architecture**: Transformer w/ RoPE, SwiGLU, RMSNorm, Attention QKV bias, tied embeddings
|
| 41 |
+
- **Params**: 1.54B (non-embedding: 1.31B)
|
| 42 |
+
- **Layers**: 28
|
| 43 |
+
- **Attention Heads**: 12 (Q), 2 (KV, GQA)
|
| 44 |
+
- **Context Window**: 32,768 tokens (generation length: 8,192)
|
| 45 |
+
- **Key Feature**: Parallel **block-wise decoding** + **hierarchical caching**
|
| 46 |
+
|
| 47 |
+
---
|
| 48 |
+
|
| 49 |
+
## 📦 Installation
|
| 50 |
+
You will need `transformers`, `torch`, and our **custom generation function**:
|
| 51 |
+
|
| 52 |
+
```bash
|
| 53 |
+
pip install transformers torch numpy
|
| 54 |
+
```
|
| 55 |
+
|
| 56 |
+
---
|
| 57 |
+
|
| 58 |
+
## 🚀 Quickstart
|
| 59 |
+
|
| 60 |
+
```python
|
| 61 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 62 |
+
|
| 63 |
+
model_name = "Efficient-Large-Model/Fast_dLLM_1.5B"
|
| 64 |
+
|
| 65 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 66 |
+
model_name,
|
| 67 |
+
torch_dtype="auto",
|
| 68 |
+
device_map="auto",
|
| 69 |
+
trust_remote_code=True
|
| 70 |
+
)
|
| 71 |
+
|
| 72 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 73 |
+
|
| 74 |
+
prompt = "Give me a short introduction to large language model."
|
| 75 |
+
messages = [
|
| 76 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 77 |
+
{"role": "user", "content": prompt}
|
| 78 |
+
]
|
| 79 |
+
|
| 80 |
+
text = tokenizer.apply_chat_template(
|
| 81 |
+
messages,
|
| 82 |
+
tokenize=False,
|
| 83 |
+
add_generation_prompt=True
|
| 84 |
+
)
|
| 85 |
+
inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 86 |
+
|
| 87 |
+
# Fast-dLLM v2 parallel decoding
|
| 88 |
+
gen_ids = model.generate(
|
| 89 |
+
inputs["input_ids"],
|
| 90 |
+
tokenizer=tokenizer,
|
| 91 |
+
max_new_tokens=512,
|
| 92 |
+
small_block_size=8,
|
| 93 |
+
threshold=0.9,
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
response = tokenizer.decode(
|
| 97 |
+
gen_ids[0][inputs["input_ids"].shape[1]:],
|
| 98 |
+
skip_special_tokens=True
|
| 99 |
+
)
|
| 100 |
+
print(response)
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
---
|
| 104 |
+
|
| 105 |
+
## 📊 Performance & Benchmarks
|
| 106 |
+
|
| 107 |
+
### ▶ Real-time Throughput
|
| 108 |
+
Fast-dLLM v2 offers **up to 2.54× higher throughput** than Qwen2.5-7B-Instruct, **without loss in quality**.
|
| 109 |
+
|
| 110 |
+

|
| 111 |
+
|
| 112 |
+
---
|
| 113 |
+
|
| 114 |
+
### 🏆 Benchmark Results
|
| 115 |
+
We compare Fast-dLLM v2 against AR baselines and previous diffusion LLMs on diverse tasks:
|
| 116 |
+
HumanEval, MBPP (code), GSM8K, Math (reasoning), IFEval (instruction), MMLU, GPQA (knowledge QA).
|
| 117 |
+
|
| 118 |
+
- **1B group**: Fast-dLLM v2 (1.5B) achieves **best average score: 45.0**.
|
| 119 |
+
- **7B group**: Fast-dLLM v2 (7B) achieves **best average score: 60.3**, surpassing LLaDA and Dream models.
|
| 120 |
+
|
| 121 |
+

|
| 122 |
+
|
| 123 |
+
---
|
| 124 |
+
|
| 125 |
+
## 📜 Citation
|
| 126 |
+
|
| 127 |
+
If you use Fast-dLLM v2 in your research or products, please cite:
|
| 128 |
+
|
| 129 |
+
```bibtex
|
| 130 |
+
@misc{wu2025fastdllmv2efficientblockdiffusion,
|
| 131 |
+
title={Fast-dLLM v2: Efficient Block-Diffusion LLM},
|
| 132 |
+
author={Chengyue Wu and Hao Zhang and Shuchen Xue and Shizhe Diao and Yonggan Fu and Zhijian Liu and Pavlo Molchanov and Ping Luo and Song Han and Enze Xie},
|
| 133 |
+
year={2025},
|
| 134 |
+
eprint={2509.26328},
|
| 135 |
+
archivePrefix={arXiv},
|
| 136 |
+
primaryClass={cs.CL},
|
| 137 |
+
url={https://arxiv.org/abs/2509.26328},
|
| 138 |
+
}
|
| 139 |
+
```
|
| 140 |
+
|
| 141 |
+
---
|
| 142 |
+
|
| 143 |
+
## 📄 License
|
| 144 |
+
Released under **Apache 2.0**, following the base Qwen2.5 license.
|
| 145 |
+
|
| 146 |
+
---
|
| 147 |
+
|
| 148 |
+
## 🔗 Resources
|
| 149 |
+
- 📄 [Paper](https://arxiv.org/abs/2509.26328)
|
| 150 |
+
- 💻 [Code](https://github.com/NVlabs/Fast-dLLM)
|
| 151 |
+
- 🤗 [HuggingFace Model](https://huggingface.co/Efficient-Large-Model/Fast_dLLM_1.5B)
|
added_tokens.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"</tool_call>": 151658,
|
| 3 |
+
"<tool_call>": 151657,
|
| 4 |
+
"<|box_end|>": 151649,
|
| 5 |
+
"<|box_start|>": 151648,
|
| 6 |
+
"<|endoftext|>": 151643,
|
| 7 |
+
"<|file_sep|>": 151664,
|
| 8 |
+
"<|fim_middle|>": 151660,
|
| 9 |
+
"<|fim_pad|>": 151662,
|
| 10 |
+
"<|fim_prefix|>": 151659,
|
| 11 |
+
"<|fim_suffix|>": 151661,
|
| 12 |
+
"<|im_end|>": 151645,
|
| 13 |
+
"<|im_start|>": 151644,
|
| 14 |
+
"<|image_pad|>": 151655,
|
| 15 |
+
"<|object_ref_end|>": 151647,
|
| 16 |
+
"<|object_ref_start|>": 151646,
|
| 17 |
+
"<|quad_end|>": 151651,
|
| 18 |
+
"<|quad_start|>": 151650,
|
| 19 |
+
"<|repo_name|>": 151663,
|
| 20 |
+
"<|video_pad|>": 151656,
|
| 21 |
+
"<|vision_end|>": 151653,
|
| 22 |
+
"<|vision_pad|>": 151654,
|
| 23 |
+
"<|vision_start|>": 151652,
|
| 24 |
+
"|<MASK>|": 151665
|
| 25 |
+
}
|
assets/benchmark_results.png
ADDED
|
Git LFS Details
|
assets/throughput.png
ADDED
|
Git LFS Details
|
assets/training_recipe.png
ADDED
|
Git LFS Details
|
assets/visualization_animation.gif
ADDED
|
Git LFS Details
|
chat_template.jinja
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{%- if tools %}
|
| 2 |
+
{{- '<|im_start|>system\n' }}
|
| 3 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 4 |
+
{{- messages[0]['content'] }}
|
| 5 |
+
{%- else %}
|
| 6 |
+
{{- 'You are a helpful assistant.' }}
|
| 7 |
+
{%- endif %}
|
| 8 |
+
{{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
|
| 9 |
+
{%- for tool in tools %}
|
| 10 |
+
{{- "\n" }}
|
| 11 |
+
{{- tool | tojson }}
|
| 12 |
+
{%- endfor %}
|
| 13 |
+
{{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
|
| 14 |
+
{%- else %}
|
| 15 |
+
{%- if messages[0]['role'] == 'system' %}
|
| 16 |
+
{{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
|
| 17 |
+
{%- else %}
|
| 18 |
+
{{- '<|im_start|>system\nYou are a helpful assistant.<|im_end|>\n' }}
|
| 19 |
+
{%- endif %}
|
| 20 |
+
{%- endif %}
|
| 21 |
+
{%- for message in messages %}
|
| 22 |
+
{%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
|
| 23 |
+
{{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
|
| 24 |
+
{%- elif message.role == "assistant" %}
|
| 25 |
+
{{- '<|im_start|>' + message.role }}
|
| 26 |
+
{%- if message.content %}
|
| 27 |
+
{{- '\n' + message.content }}
|
| 28 |
+
{%- endif %}
|
| 29 |
+
{%- for tool_call in message.tool_calls %}
|
| 30 |
+
{%- if tool_call.function is defined %}
|
| 31 |
+
{%- set tool_call = tool_call.function %}
|
| 32 |
+
{%- endif %}
|
| 33 |
+
{{- '\n<tool_call>\n{"name": "' }}
|
| 34 |
+
{{- tool_call.name }}
|
| 35 |
+
{{- '", "arguments": ' }}
|
| 36 |
+
{{- tool_call.arguments | tojson }}
|
| 37 |
+
{{- '}\n</tool_call>' }}
|
| 38 |
+
{%- endfor %}
|
| 39 |
+
{{- '<|im_end|>\n' }}
|
| 40 |
+
{%- elif message.role == "tool" %}
|
| 41 |
+
{%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
|
| 42 |
+
{{- '<|im_start|>user' }}
|
| 43 |
+
{%- endif %}
|
| 44 |
+
{{- '\n<tool_response>\n' }}
|
| 45 |
+
{{- message.content }}
|
| 46 |
+
{{- '\n</tool_response>' }}
|
| 47 |
+
{%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
|
| 48 |
+
{{- '<|im_end|>\n' }}
|
| 49 |
+
{%- endif %}
|
| 50 |
+
{%- endif %}
|
| 51 |
+
{%- endfor %}
|
| 52 |
+
{%- if add_generation_prompt %}
|
| 53 |
+
{{- '<|im_start|>assistant\n' }}
|
| 54 |
+
{%- endif %}
|
config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"Fast_dLLM_QwenForCausalLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_dropout": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration.Fast_dLLM_QwenConfig",
|
| 8 |
+
"AutoModel": "modeling.Fast_dLLM_QwenModel",
|
| 9 |
+
"AutoModelForCausalLM": "modeling.Fast_dLLM_QwenForCausalLM"
|
| 10 |
+
},
|
| 11 |
+
"bd_size": 32,
|
| 12 |
+
"bos_token_id": 151643,
|
| 13 |
+
"eos_token_id": 151645,
|
| 14 |
+
"hidden_act": "silu",
|
| 15 |
+
"hidden_size": 1536,
|
| 16 |
+
"initializer_range": 0.02,
|
| 17 |
+
"intermediate_size": 8960,
|
| 18 |
+
"layer_types": [
|
| 19 |
+
"full_attention",
|
| 20 |
+
"full_attention",
|
| 21 |
+
"full_attention",
|
| 22 |
+
"full_attention",
|
| 23 |
+
"full_attention",
|
| 24 |
+
"full_attention",
|
| 25 |
+
"full_attention",
|
| 26 |
+
"full_attention",
|
| 27 |
+
"full_attention",
|
| 28 |
+
"full_attention",
|
| 29 |
+
"full_attention",
|
| 30 |
+
"full_attention",
|
| 31 |
+
"full_attention",
|
| 32 |
+
"full_attention",
|
| 33 |
+
"full_attention",
|
| 34 |
+
"full_attention",
|
| 35 |
+
"full_attention",
|
| 36 |
+
"full_attention",
|
| 37 |
+
"full_attention",
|
| 38 |
+
"full_attention",
|
| 39 |
+
"full_attention",
|
| 40 |
+
"full_attention",
|
| 41 |
+
"full_attention",
|
| 42 |
+
"full_attention",
|
| 43 |
+
"full_attention",
|
| 44 |
+
"full_attention",
|
| 45 |
+
"full_attention",
|
| 46 |
+
"full_attention"
|
| 47 |
+
],
|
| 48 |
+
"max_position_embeddings": 32768,
|
| 49 |
+
"max_window_layers": 21,
|
| 50 |
+
"model_type": "Fast_dLLM_Qwen",
|
| 51 |
+
"num_attention_heads": 12,
|
| 52 |
+
"num_hidden_layers": 28,
|
| 53 |
+
"num_key_value_heads": 2,
|
| 54 |
+
"pad_token_id": 151645,
|
| 55 |
+
"rms_norm_eps": 1e-06,
|
| 56 |
+
"rope_scaling": null,
|
| 57 |
+
"rope_theta": 1000000.0,
|
| 58 |
+
"sliding_window": null,
|
| 59 |
+
"tie_word_embeddings": true,
|
| 60 |
+
"torch_dtype": "bfloat16",
|
| 61 |
+
"transformers_version": "4.53.1",
|
| 62 |
+
"use_cache": true,
|
| 63 |
+
"use_sliding_window": false,
|
| 64 |
+
"vocab_size": 151936
|
| 65 |
+
}
|
configuration.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Fast_dLLM_Qwen model configuration"""
|
| 2 |
+
|
| 3 |
+
from transformers.configuration_utils import PretrainedConfig, layer_type_validation
|
| 4 |
+
from transformers.modeling_rope_utils import rope_config_validation
|
| 5 |
+
from transformers.utils import logging
|
| 6 |
+
|
| 7 |
+
|
| 8 |
+
logger = logging.get_logger(__name__)
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
class Fast_dLLM_QwenConfig(PretrainedConfig):
|
| 12 |
+
|
| 13 |
+
model_type = "Fast_dLLM_Qwen"
|
| 14 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 15 |
+
|
| 16 |
+
# Default tensor parallel plan for base model `Fast_dLLM_Qwen`
|
| 17 |
+
base_model_tp_plan = {
|
| 18 |
+
"layers.*.self_attn.q_proj": "colwise",
|
| 19 |
+
"layers.*.self_attn.k_proj": "colwise",
|
| 20 |
+
"layers.*.self_attn.v_proj": "colwise",
|
| 21 |
+
"layers.*.self_attn.o_proj": "rowwise",
|
| 22 |
+
"layers.*.mlp.gate_proj": "colwise",
|
| 23 |
+
"layers.*.mlp.up_proj": "colwise",
|
| 24 |
+
"layers.*.mlp.down_proj": "rowwise",
|
| 25 |
+
}
|
| 26 |
+
base_model_pp_plan = {
|
| 27 |
+
"embed_tokens": (["input_ids"], ["inputs_embeds"]),
|
| 28 |
+
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
|
| 29 |
+
"norm": (["hidden_states"], ["hidden_states"]),
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
vocab_size=151936,
|
| 35 |
+
hidden_size=4096,
|
| 36 |
+
intermediate_size=22016,
|
| 37 |
+
num_hidden_layers=32,
|
| 38 |
+
num_attention_heads=32,
|
| 39 |
+
num_key_value_heads=32,
|
| 40 |
+
hidden_act="silu",
|
| 41 |
+
max_position_embeddings=32768,
|
| 42 |
+
initializer_range=0.02,
|
| 43 |
+
rms_norm_eps=1e-6,
|
| 44 |
+
use_cache=True,
|
| 45 |
+
tie_word_embeddings=False,
|
| 46 |
+
rope_theta=10000.0,
|
| 47 |
+
rope_scaling=None,
|
| 48 |
+
use_sliding_window=False,
|
| 49 |
+
sliding_window=4096,
|
| 50 |
+
max_window_layers=28,
|
| 51 |
+
layer_types=None,
|
| 52 |
+
attention_dropout=0.0,
|
| 53 |
+
bd_size=32,
|
| 54 |
+
**kwargs,
|
| 55 |
+
):
|
| 56 |
+
self.vocab_size = vocab_size
|
| 57 |
+
self.max_position_embeddings = max_position_embeddings
|
| 58 |
+
self.hidden_size = hidden_size
|
| 59 |
+
self.intermediate_size = intermediate_size
|
| 60 |
+
self.num_hidden_layers = num_hidden_layers
|
| 61 |
+
self.num_attention_heads = num_attention_heads
|
| 62 |
+
self.use_sliding_window = use_sliding_window
|
| 63 |
+
self.sliding_window = sliding_window if self.use_sliding_window else None
|
| 64 |
+
self.max_window_layers = max_window_layers
|
| 65 |
+
|
| 66 |
+
# for backward compatibility
|
| 67 |
+
if num_key_value_heads is None:
|
| 68 |
+
num_key_value_heads = num_attention_heads
|
| 69 |
+
|
| 70 |
+
self.num_key_value_heads = num_key_value_heads
|
| 71 |
+
self.hidden_act = hidden_act
|
| 72 |
+
self.initializer_range = initializer_range
|
| 73 |
+
self.rms_norm_eps = rms_norm_eps
|
| 74 |
+
self.use_cache = use_cache
|
| 75 |
+
self.rope_theta = rope_theta
|
| 76 |
+
self.rope_scaling = rope_scaling
|
| 77 |
+
self.attention_dropout = attention_dropout
|
| 78 |
+
self.bd_size = bd_size
|
| 79 |
+
# Validate the correctness of rotary position embeddings parameters
|
| 80 |
+
# BC: if there is a 'type' field, move it to 'rope_type'.
|
| 81 |
+
if self.rope_scaling is not None and "type" in self.rope_scaling:
|
| 82 |
+
self.rope_scaling["rope_type"] = self.rope_scaling["type"]
|
| 83 |
+
rope_config_validation(self)
|
| 84 |
+
|
| 85 |
+
self.layer_types = layer_types
|
| 86 |
+
if self.layer_types is None:
|
| 87 |
+
self.layer_types = [
|
| 88 |
+
"sliding_attention"
|
| 89 |
+
if self.sliding_window is not None and i >= self.max_window_layers
|
| 90 |
+
else "full_attention"
|
| 91 |
+
for i in range(self.num_hidden_layers)
|
| 92 |
+
]
|
| 93 |
+
layer_type_validation(self.layer_types)
|
| 94 |
+
|
| 95 |
+
super().__init__(
|
| 96 |
+
tie_word_embeddings=tie_word_embeddings,
|
| 97 |
+
**kwargs,
|
| 98 |
+
)
|
generation_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token_id": 151643,
|
| 3 |
+
"do_sample": true,
|
| 4 |
+
"eos_token_id": [
|
| 5 |
+
151645,
|
| 6 |
+
151643
|
| 7 |
+
],
|
| 8 |
+
"pad_token_id": 151643,
|
| 9 |
+
"repetition_penalty": 1.1,
|
| 10 |
+
"temperature": 0.7,
|
| 11 |
+
"top_k": 20,
|
| 12 |
+
"top_p": 0.8,
|
| 13 |
+
"transformers_version": "4.53.1"
|
| 14 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8d267bb8b935f2e15148ba1175b67dba70261a696ec931dd0a3b0f27f9f3c434
|
| 3 |
+
size 3087467144
|
modeling.py
ADDED
|
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Callable, Optional, Union
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
|
| 4 |
+
import torch
|
| 5 |
+
from torch import nn
|
| 6 |
+
import torch.nn.functional as F
|
| 7 |
+
from functools import partial
|
| 8 |
+
|
| 9 |
+
from transformers.activations import ACT2FN
|
| 10 |
+
from transformers.cache_utils import Cache, DynamicCache
|
| 11 |
+
from transformers.generation import GenerationMixin
|
| 12 |
+
from transformers.integrations import use_kernel_forward_from_hub
|
| 13 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
|
| 14 |
+
from transformers.modeling_layers import GradientCheckpointingLayer
|
| 15 |
+
from transformers.modeling_outputs import (
|
| 16 |
+
BaseModelOutputWithPast,
|
| 17 |
+
CausalLMOutputWithPast,
|
| 18 |
+
)
|
| 19 |
+
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
|
| 20 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
| 21 |
+
from transformers.processing_utils import Unpack
|
| 22 |
+
from transformers.utils import auto_docstring, can_return_tuple, logging
|
| 23 |
+
from .configuration import Fast_dLLM_QwenConfig
|
| 24 |
+
from torch.nn.attention.flex_attention import flex_attention, create_block_mask
|
| 25 |
+
from einops import rearrange, repeat
|
| 26 |
+
|
| 27 |
+
logger = logging.get_logger(__name__)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
@dataclass
|
| 31 |
+
class CausalLMOutputWithPastAndBlockCache(CausalLMOutputWithPast):
|
| 32 |
+
block_past_key_values: Optional[Cache] = None
|
| 33 |
+
|
| 34 |
+
@dataclass
|
| 35 |
+
class BaseModelOutputWithPastAndBlockCache(BaseModelOutputWithPast):
|
| 36 |
+
block_past_key_values: Optional[Cache] = None
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
def eval_block_diff_mask(q_idx, kv_idx, block_size=None):
|
| 40 |
+
# Compute block indices
|
| 41 |
+
block_q = q_idx // block_size
|
| 42 |
+
block_kv = kv_idx // block_size
|
| 43 |
+
|
| 44 |
+
return block_q >= block_kv
|
| 45 |
+
|
| 46 |
+
class Fast_dLLM_QwenMLP(nn.Module):
|
| 47 |
+
def __init__(self, config):
|
| 48 |
+
super().__init__()
|
| 49 |
+
self.config = config
|
| 50 |
+
self.hidden_size = config.hidden_size
|
| 51 |
+
self.intermediate_size = config.intermediate_size
|
| 52 |
+
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 53 |
+
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
|
| 54 |
+
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
|
| 55 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 56 |
+
|
| 57 |
+
def forward(self, x):
|
| 58 |
+
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
|
| 59 |
+
return down_proj
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
def rotate_half(x):
|
| 63 |
+
"""Rotates half the hidden dims of the input."""
|
| 64 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 65 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 66 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1):
|
| 70 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 71 |
+
|
| 72 |
+
Args:
|
| 73 |
+
q (`torch.Tensor`): The query tensor.
|
| 74 |
+
k (`torch.Tensor`): The key tensor.
|
| 75 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 76 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 77 |
+
position_ids (`torch.Tensor`, *optional*):
|
| 78 |
+
Deprecated and unused.
|
| 79 |
+
unsqueeze_dim (`int`, *optional*, defaults to 1):
|
| 80 |
+
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
|
| 81 |
+
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
|
| 82 |
+
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
|
| 83 |
+
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
|
| 84 |
+
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
|
| 85 |
+
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
|
| 86 |
+
Returns:
|
| 87 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 88 |
+
"""
|
| 89 |
+
cos = cos.unsqueeze(unsqueeze_dim)
|
| 90 |
+
sin = sin.unsqueeze(unsqueeze_dim)
|
| 91 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 92 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 93 |
+
return q_embed, k_embed
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
| 97 |
+
"""
|
| 98 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
| 99 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
| 100 |
+
"""
|
| 101 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
| 102 |
+
if n_rep == 1:
|
| 103 |
+
return hidden_states
|
| 104 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
| 105 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
class Fast_dLLM_QwenAttention(nn.Module):
|
| 109 |
+
"""Multi-headed attention from 'Attention Is All You Need' paper"""
|
| 110 |
+
|
| 111 |
+
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
|
| 112 |
+
super().__init__()
|
| 113 |
+
self.config = config
|
| 114 |
+
self.layer_idx = layer_idx
|
| 115 |
+
self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads)
|
| 116 |
+
self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads
|
| 117 |
+
self.scaling = self.head_dim**-0.5
|
| 118 |
+
self.attention_dropout = config.attention_dropout
|
| 119 |
+
self.is_causal = True
|
| 120 |
+
self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=True)
|
| 121 |
+
self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
| 122 |
+
self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=True)
|
| 123 |
+
self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
|
| 124 |
+
self.sliding_window = config.sliding_window if config.layer_types[layer_idx] == "sliding_attention" else None
|
| 125 |
+
|
| 126 |
+
def forward(
|
| 127 |
+
self,
|
| 128 |
+
hidden_states: torch.Tensor,
|
| 129 |
+
position_embeddings: tuple[torch.Tensor, torch.Tensor],
|
| 130 |
+
attention_mask: Optional[torch.Tensor],
|
| 131 |
+
past_key_value: Optional[Cache] = None,
|
| 132 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 133 |
+
update_past_key_values: Optional[bool] = False,
|
| 134 |
+
block_past_key_values: Optional[Cache] = None,
|
| 135 |
+
replace_position: Optional[int] = None,
|
| 136 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
| 137 |
+
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]:
|
| 138 |
+
input_shape = hidden_states.shape[:-1]
|
| 139 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
| 140 |
+
|
| 141 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 142 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 143 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
| 144 |
+
|
| 145 |
+
cos, sin = position_embeddings
|
| 146 |
+
# query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 147 |
+
if self.training:
|
| 148 |
+
#split q into two parts
|
| 149 |
+
q_1 = query_states[:,:,:query_states.shape[2]//2]
|
| 150 |
+
q_2 = query_states[:,:,query_states.shape[2]//2:]
|
| 151 |
+
#split k into two parts
|
| 152 |
+
k_1 = key_states[:,:,:key_states.shape[2]//2]
|
| 153 |
+
k_2 = key_states[:,:,key_states.shape[2]//2:]
|
| 154 |
+
q_1, k_1 = apply_rotary_pos_emb(q_1, k_1, cos, sin)
|
| 155 |
+
q_2, k_2 = apply_rotary_pos_emb(q_2, k_2, cos, sin)
|
| 156 |
+
query_states = torch.cat((q_1, q_2), dim=-2)
|
| 157 |
+
key_states = torch.cat((k_1, k_2), dim=-2)
|
| 158 |
+
else:
|
| 159 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin)
|
| 160 |
+
|
| 161 |
+
if block_past_key_values is not None:
|
| 162 |
+
if len(block_past_key_values) <= self.layer_idx:
|
| 163 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 164 |
+
key_states, value_states = block_past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 165 |
+
else:
|
| 166 |
+
block_cache_key_states = block_past_key_values[self.layer_idx][0]
|
| 167 |
+
block_cache_value_states = block_past_key_values[self.layer_idx][1]
|
| 168 |
+
|
| 169 |
+
block_cache_key_states[:, :, replace_position:replace_position+key_states.shape[2]] = key_states
|
| 170 |
+
block_cache_value_states[:, :, replace_position:replace_position+value_states.shape[2]] = value_states
|
| 171 |
+
key_states = block_cache_key_states
|
| 172 |
+
value_states = block_cache_value_states
|
| 173 |
+
|
| 174 |
+
if past_key_value is not None:
|
| 175 |
+
# sin and cos are specific to RoPE models; cache_position needed for the static cache
|
| 176 |
+
if update_past_key_values:
|
| 177 |
+
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
| 178 |
+
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
| 179 |
+
elif len(past_key_value) > self.layer_idx:
|
| 180 |
+
key_states = torch.cat((past_key_value[self.layer_idx][0], key_states), dim=-2)
|
| 181 |
+
value_states = torch.cat((past_key_value[self.layer_idx][1], value_states), dim=-2)
|
| 182 |
+
|
| 183 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS["sdpa"]
|
| 184 |
+
|
| 185 |
+
attn_output, attn_weights = attention_interface(
|
| 186 |
+
self,
|
| 187 |
+
query_states,
|
| 188 |
+
key_states,
|
| 189 |
+
value_states,
|
| 190 |
+
attention_mask,
|
| 191 |
+
is_causal=False,
|
| 192 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
| 193 |
+
scaling=self.scaling,
|
| 194 |
+
sliding_window=self.sliding_window, # main diff with Llama
|
| 195 |
+
**kwargs,
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
| 199 |
+
attn_output = self.o_proj(attn_output)
|
| 200 |
+
return attn_output
|
| 201 |
+
|
| 202 |
+
@use_kernel_forward_from_hub("RMSNorm")
|
| 203 |
+
class Fast_dLLM_QwenRMSNorm(nn.Module):
|
| 204 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 205 |
+
"""
|
| 206 |
+
Fast_dLLM_QwenRMSNorm is equivalent to T5LayerNorm
|
| 207 |
+
"""
|
| 208 |
+
super().__init__()
|
| 209 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 210 |
+
self.variance_epsilon = eps
|
| 211 |
+
|
| 212 |
+
def forward(self, hidden_states):
|
| 213 |
+
input_dtype = hidden_states.dtype
|
| 214 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 215 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 216 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 217 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 218 |
+
|
| 219 |
+
def extra_repr(self):
|
| 220 |
+
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
|
| 221 |
+
|
| 222 |
+
|
| 223 |
+
class Fast_dLLM_QwenDecoderLayer(GradientCheckpointingLayer):
|
| 224 |
+
def __init__(self, config: Fast_dLLM_QwenConfig, layer_idx: int):
|
| 225 |
+
super().__init__()
|
| 226 |
+
self.hidden_size = config.hidden_size
|
| 227 |
+
|
| 228 |
+
self.self_attn = Fast_dLLM_QwenAttention(config=config, layer_idx=layer_idx)
|
| 229 |
+
|
| 230 |
+
self.mlp = Fast_dLLM_QwenMLP(config)
|
| 231 |
+
self.input_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 232 |
+
self.post_attention_layernorm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 233 |
+
self.attention_type = config.layer_types[layer_idx]
|
| 234 |
+
|
| 235 |
+
def forward(
|
| 236 |
+
self,
|
| 237 |
+
hidden_states: torch.Tensor,
|
| 238 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 239 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 240 |
+
past_key_value: Optional[Cache] = None,
|
| 241 |
+
use_cache: Optional[bool] = False,
|
| 242 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 243 |
+
position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, # necessary, but kept here for BC
|
| 244 |
+
update_past_key_values: Optional[bool] = False,
|
| 245 |
+
use_block_cache: Optional[bool] = False,
|
| 246 |
+
block_past_key_values: Optional[Cache] = None,
|
| 247 |
+
replace_position: Optional[int] = None,
|
| 248 |
+
**kwargs
|
| 249 |
+
) -> tuple[torch.Tensor]:
|
| 250 |
+
residual = hidden_states
|
| 251 |
+
hidden_states = self.input_layernorm(hidden_states)
|
| 252 |
+
# Self Attention
|
| 253 |
+
hidden_states = self.self_attn(
|
| 254 |
+
hidden_states=hidden_states,
|
| 255 |
+
attention_mask=attention_mask,
|
| 256 |
+
position_ids=position_ids,
|
| 257 |
+
past_key_value=past_key_value,
|
| 258 |
+
use_cache=use_cache,
|
| 259 |
+
cache_position=cache_position,
|
| 260 |
+
position_embeddings=position_embeddings,
|
| 261 |
+
update_past_key_values=update_past_key_values,
|
| 262 |
+
use_block_cache=use_block_cache,
|
| 263 |
+
block_past_key_values=block_past_key_values,
|
| 264 |
+
replace_position=replace_position,
|
| 265 |
+
**kwargs,
|
| 266 |
+
)
|
| 267 |
+
hidden_states = residual + hidden_states
|
| 268 |
+
|
| 269 |
+
# Fully Connected
|
| 270 |
+
residual = hidden_states
|
| 271 |
+
hidden_states = self.post_attention_layernorm(hidden_states)
|
| 272 |
+
hidden_states = self.mlp(hidden_states)
|
| 273 |
+
hidden_states = residual + hidden_states
|
| 274 |
+
return hidden_states
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
class Fast_dLLM_QwenPreTrainedModel(PreTrainedModel):
|
| 279 |
+
config_class = Fast_dLLM_QwenConfig
|
| 280 |
+
base_model_prefix = "model"
|
| 281 |
+
supports_gradient_checkpointing = True
|
| 282 |
+
_no_split_modules = ["Fast_dLLM_QwenDecoderLayer"]
|
| 283 |
+
_skip_keys_device_placement = ["past_key_values"]
|
| 284 |
+
_supports_flash_attn_2 = True
|
| 285 |
+
_supports_sdpa = True
|
| 286 |
+
_supports_flex_attn = True
|
| 287 |
+
_supports_cache_class = True
|
| 288 |
+
_supports_quantized_cache = True
|
| 289 |
+
_supports_static_cache = True
|
| 290 |
+
_supports_attention_backend = True
|
| 291 |
+
_can_record_outputs = {
|
| 292 |
+
"hidden_states": Fast_dLLM_QwenDecoderLayer,
|
| 293 |
+
"attentions": Fast_dLLM_QwenAttention,
|
| 294 |
+
}
|
| 295 |
+
|
| 296 |
+
def _init_weights(self, module):
|
| 297 |
+
std = self.config.initializer_range
|
| 298 |
+
if isinstance(module, nn.Linear):
|
| 299 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 300 |
+
if module.bias is not None:
|
| 301 |
+
module.bias.data.zero_()
|
| 302 |
+
elif isinstance(module, nn.Embedding):
|
| 303 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
| 304 |
+
if module.padding_idx is not None:
|
| 305 |
+
module.weight.data[module.padding_idx].zero_()
|
| 306 |
+
elif isinstance(module, Fast_dLLM_QwenRMSNorm):
|
| 307 |
+
module.weight.data.fill_(1.0)
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
class Fast_dLLM_QwenRotaryEmbedding(nn.Module):
|
| 311 |
+
def __init__(self, config: Fast_dLLM_QwenConfig, device=None):
|
| 312 |
+
super().__init__()
|
| 313 |
+
# BC: "rope_type" was originally "type"
|
| 314 |
+
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict):
|
| 315 |
+
self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type"))
|
| 316 |
+
else:
|
| 317 |
+
self.rope_type = "default"
|
| 318 |
+
self.max_seq_len_cached = config.max_position_embeddings
|
| 319 |
+
self.original_max_seq_len = config.max_position_embeddings
|
| 320 |
+
|
| 321 |
+
self.config = config
|
| 322 |
+
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
|
| 323 |
+
|
| 324 |
+
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
|
| 325 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 326 |
+
self.original_inv_freq = self.inv_freq
|
| 327 |
+
|
| 328 |
+
@torch.no_grad()
|
| 329 |
+
@dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope)
|
| 330 |
+
def forward(self, x, position_ids):
|
| 331 |
+
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
|
| 332 |
+
position_ids_expanded = position_ids[:, None, :].float()
|
| 333 |
+
|
| 334 |
+
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
|
| 335 |
+
with torch.autocast(device_type=device_type, enabled=False): # Force float32
|
| 336 |
+
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
|
| 337 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 338 |
+
cos = emb.cos() * self.attention_scaling
|
| 339 |
+
sin = emb.sin() * self.attention_scaling
|
| 340 |
+
|
| 341 |
+
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
|
| 345 |
+
class Fast_dLLM_QwenModel(Fast_dLLM_QwenPreTrainedModel):
|
| 346 |
+
def __init__(self, config: Fast_dLLM_QwenConfig):
|
| 347 |
+
super().__init__(config)
|
| 348 |
+
self.padding_idx = config.pad_token_id
|
| 349 |
+
self.vocab_size = config.vocab_size
|
| 350 |
+
|
| 351 |
+
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
|
| 352 |
+
self.layers = nn.ModuleList(
|
| 353 |
+
[Fast_dLLM_QwenDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
|
| 354 |
+
)
|
| 355 |
+
self.norm = Fast_dLLM_QwenRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
|
| 356 |
+
self.rotary_emb = Fast_dLLM_QwenRotaryEmbedding(config=config)
|
| 357 |
+
self.gradient_checkpointing = True
|
| 358 |
+
|
| 359 |
+
# Initialize weights and apply final processing
|
| 360 |
+
self.post_init()
|
| 361 |
+
|
| 362 |
+
def get_input_embeddings(self):
|
| 363 |
+
return self.embed_tokens
|
| 364 |
+
|
| 365 |
+
def set_input_embeddings(self, value):
|
| 366 |
+
self.embed_tokens = value
|
| 367 |
+
|
| 368 |
+
|
| 369 |
+
def eval_mask(self, seqlen, block_size, cache_seq_len):
|
| 370 |
+
q_indices = torch.arange(seqlen) + cache_seq_len
|
| 371 |
+
k_indices = torch.arange(seqlen + cache_seq_len)
|
| 372 |
+
mask = eval_block_diff_mask(
|
| 373 |
+
q_idx=q_indices[:, None],
|
| 374 |
+
kv_idx=k_indices[None, :],
|
| 375 |
+
block_size=block_size
|
| 376 |
+
)
|
| 377 |
+
return mask
|
| 378 |
+
|
| 379 |
+
def forward(
|
| 380 |
+
self,
|
| 381 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 382 |
+
labels: Optional[torch.LongTensor] = None,
|
| 383 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 384 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 385 |
+
past_key_values: Optional[Cache] = None,
|
| 386 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 387 |
+
use_cache: Optional[bool] = None,
|
| 388 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 389 |
+
update_past_key_values: Optional[bool] = False,
|
| 390 |
+
block_size: Optional[int] = 32,
|
| 391 |
+
use_block_cache: Optional[bool] = False,
|
| 392 |
+
block_past_key_values: Optional[Cache] = None,
|
| 393 |
+
replace_position: Optional[int] = None,
|
| 394 |
+
**kwargs
|
| 395 |
+
) -> BaseModelOutputWithPast:
|
| 396 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
| 397 |
+
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
|
| 398 |
+
|
| 399 |
+
if inputs_embeds is None:
|
| 400 |
+
inputs_embeds = self.embed_tokens(input_ids)
|
| 401 |
+
|
| 402 |
+
if use_cache and past_key_values is None:
|
| 403 |
+
past_key_values = DynamicCache()
|
| 404 |
+
|
| 405 |
+
if use_block_cache and block_past_key_values is None:
|
| 406 |
+
block_past_key_values = DynamicCache()
|
| 407 |
+
|
| 408 |
+
if cache_position is None:
|
| 409 |
+
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
|
| 410 |
+
if use_block_cache:
|
| 411 |
+
block_start_position = past_seen_tokens+replace_position if replace_position is not None else past_seen_tokens
|
| 412 |
+
cache_position = torch.arange(
|
| 413 |
+
block_start_position, block_start_position + inputs_embeds.shape[1], device=inputs_embeds.device
|
| 414 |
+
)
|
| 415 |
+
else:
|
| 416 |
+
cache_position = torch.arange(
|
| 417 |
+
past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1] if not self.training else inputs_embeds.shape[1]//2, device=inputs_embeds.device
|
| 418 |
+
)
|
| 419 |
+
|
| 420 |
+
if position_ids is None:
|
| 421 |
+
position_ids = cache_position.unsqueeze(0)
|
| 422 |
+
|
| 423 |
+
if use_block_cache and block_past_key_values.get_seq_length() != 0:
|
| 424 |
+
attention_mask = None
|
| 425 |
+
else:
|
| 426 |
+
attention_mask = self.eval_mask(input_ids.shape[1], block_size, past_key_values.get_seq_length() if past_key_values is not None else 0).to(device=inputs_embeds.device)
|
| 427 |
+
|
| 428 |
+
hidden_states = inputs_embeds
|
| 429 |
+
|
| 430 |
+
# create position embeddings to be shared across the decoder layers
|
| 431 |
+
position_embeddings = self.rotary_emb(hidden_states, position_ids)
|
| 432 |
+
|
| 433 |
+
for decoder_layer in self.layers[: self.config.num_hidden_layers]:
|
| 434 |
+
hidden_states = decoder_layer(
|
| 435 |
+
hidden_states,
|
| 436 |
+
attention_mask=attention_mask,
|
| 437 |
+
position_ids=position_ids,
|
| 438 |
+
past_key_value=past_key_values,
|
| 439 |
+
use_cache=use_cache,
|
| 440 |
+
cache_position=cache_position,
|
| 441 |
+
position_embeddings=position_embeddings,
|
| 442 |
+
update_past_key_values=update_past_key_values,
|
| 443 |
+
use_block_cache=use_block_cache,
|
| 444 |
+
block_past_key_values=block_past_key_values,
|
| 445 |
+
replace_position=replace_position,
|
| 446 |
+
**kwargs,
|
| 447 |
+
)
|
| 448 |
+
|
| 449 |
+
hidden_states = self.norm(hidden_states)
|
| 450 |
+
return BaseModelOutputWithPastAndBlockCache(
|
| 451 |
+
last_hidden_state=hidden_states,
|
| 452 |
+
past_key_values=past_key_values if use_cache else None,
|
| 453 |
+
block_past_key_values=block_past_key_values if use_block_cache else None,
|
| 454 |
+
)
|
| 455 |
+
|
| 456 |
+
|
| 457 |
+
class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
|
| 458 |
+
_tied_weights_keys = ["lm_head.weight"]
|
| 459 |
+
_tp_plan = {"lm_head": "colwise_rep"}
|
| 460 |
+
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])}
|
| 461 |
+
|
| 462 |
+
def __init__(self, config):
|
| 463 |
+
super().__init__(config)
|
| 464 |
+
self.model = Fast_dLLM_QwenModel(config)
|
| 465 |
+
self.vocab_size = config.vocab_size
|
| 466 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
| 467 |
+
|
| 468 |
+
# Initialize weights and apply final processing
|
| 469 |
+
self.post_init()
|
| 470 |
+
|
| 471 |
+
def get_input_embeddings(self):
|
| 472 |
+
return self.model.embed_tokens
|
| 473 |
+
|
| 474 |
+
def set_input_embeddings(self, value):
|
| 475 |
+
self.model.embed_tokens = value
|
| 476 |
+
|
| 477 |
+
def get_output_embeddings(self):
|
| 478 |
+
return self.lm_head
|
| 479 |
+
|
| 480 |
+
def set_output_embeddings(self, new_embeddings):
|
| 481 |
+
self.lm_head = new_embeddings
|
| 482 |
+
|
| 483 |
+
def set_decoder(self, decoder):
|
| 484 |
+
self.model = decoder
|
| 485 |
+
|
| 486 |
+
def get_decoder(self):
|
| 487 |
+
return self.model
|
| 488 |
+
|
| 489 |
+
@can_return_tuple
|
| 490 |
+
def forward(
|
| 491 |
+
self,
|
| 492 |
+
input_ids: Optional[torch.LongTensor] = None,
|
| 493 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 494 |
+
position_ids: Optional[torch.LongTensor] = None,
|
| 495 |
+
past_key_values: Optional[Cache] = None,
|
| 496 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
| 497 |
+
labels: Optional[torch.LongTensor] = None,
|
| 498 |
+
use_cache: Optional[bool] = None,
|
| 499 |
+
cache_position: Optional[torch.LongTensor] = None,
|
| 500 |
+
logits_to_keep: Union[int, torch.Tensor] = 0,
|
| 501 |
+
update_past_key_values: Optional[bool] = False,
|
| 502 |
+
block_size: Optional[int] = 32,
|
| 503 |
+
use_block_cache: Optional[bool] = False,
|
| 504 |
+
block_past_key_values: Optional[Cache] = None,
|
| 505 |
+
replace_position: Optional[int] = None,
|
| 506 |
+
**kwargs
|
| 507 |
+
) -> CausalLMOutputWithPastAndBlockCache:
|
| 508 |
+
|
| 509 |
+
outputs: BaseModelOutputWithPastAndBlockCache = self.model(
|
| 510 |
+
input_ids=input_ids,
|
| 511 |
+
labels=labels,
|
| 512 |
+
attention_mask=attention_mask,
|
| 513 |
+
position_ids=position_ids,
|
| 514 |
+
past_key_values=past_key_values,
|
| 515 |
+
inputs_embeds=inputs_embeds,
|
| 516 |
+
use_cache=use_cache,
|
| 517 |
+
cache_position=cache_position,
|
| 518 |
+
update_past_key_values=update_past_key_values,
|
| 519 |
+
block_size=block_size,
|
| 520 |
+
use_block_cache=use_block_cache,
|
| 521 |
+
block_past_key_values=block_past_key_values,
|
| 522 |
+
replace_position=replace_position,
|
| 523 |
+
**kwargs,
|
| 524 |
+
)
|
| 525 |
+
|
| 526 |
+
hidden_states = outputs.last_hidden_state
|
| 527 |
+
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
|
| 528 |
+
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
|
| 529 |
+
logits = self.lm_head(hidden_states[:, slice_indices, :])
|
| 530 |
+
|
| 531 |
+
loss = None
|
| 532 |
+
if labels is not None:
|
| 533 |
+
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
|
| 534 |
+
|
| 535 |
+
return CausalLMOutputWithPastAndBlockCache(
|
| 536 |
+
loss=loss,
|
| 537 |
+
logits=logits,
|
| 538 |
+
past_key_values=outputs.past_key_values,
|
| 539 |
+
hidden_states=outputs.hidden_states,
|
| 540 |
+
attentions=outputs.attentions,
|
| 541 |
+
block_past_key_values=outputs.block_past_key_values,
|
| 542 |
+
)
|
| 543 |
+
|
| 544 |
+
@torch.no_grad()
|
| 545 |
+
def generate(
|
| 546 |
+
self,
|
| 547 |
+
input_ids,
|
| 548 |
+
max_new_tokens,
|
| 549 |
+
mask_id=151665,
|
| 550 |
+
threshold=1,
|
| 551 |
+
small_block_size=8,
|
| 552 |
+
block_size=32,
|
| 553 |
+
stop_token=151645,
|
| 554 |
+
stopping_criteria=None,
|
| 555 |
+
top_p=0.95,
|
| 556 |
+
temperature=0,
|
| 557 |
+
use_block_cache=False,
|
| 558 |
+
block_cache_refresh_interval=16,
|
| 559 |
+
**kwargs
|
| 560 |
+
):
|
| 561 |
+
num_blocks = max_new_tokens // block_size
|
| 562 |
+
original_input_length = input_ids.shape[1]
|
| 563 |
+
|
| 564 |
+
if input_ids.shape[1] > block_size:
|
| 565 |
+
output = self.forward(input_ids=input_ids[:, :(input_ids.shape[1] // block_size * block_size)], use_cache=True, update_past_key_values=True, block_size=block_size)
|
| 566 |
+
logits, past_key_values = output.logits, output.past_key_values
|
| 567 |
+
if input_ids.shape[1] % block_size == 0:
|
| 568 |
+
next_token = logits[:, -1:, :].argmax(dim=-1)
|
| 569 |
+
input_ids = torch.cat([input_ids, next_token], dim=1)
|
| 570 |
+
else:
|
| 571 |
+
past_key_values = None
|
| 572 |
+
|
| 573 |
+
num_small_blocks = block_size // small_block_size
|
| 574 |
+
|
| 575 |
+
for block_idx in range(num_blocks):
|
| 576 |
+
if stop_token in input_ids[:, original_input_length:]:
|
| 577 |
+
break
|
| 578 |
+
prompt_length = input_ids.shape[1]
|
| 579 |
+
# Initialize x_init with mask_id
|
| 580 |
+
x_init = mask_id * torch.ones((input_ids.shape[0], block_size-prompt_length%block_size), device=self.device, dtype=torch.long)
|
| 581 |
+
x_init = torch.cat([input_ids, x_init], dim=1)
|
| 582 |
+
|
| 583 |
+
x_t = x_init.clone()
|
| 584 |
+
step = 0
|
| 585 |
+
block_past_key_values = None
|
| 586 |
+
while True:
|
| 587 |
+
if stop_token in x_t[:, prompt_length:]:
|
| 588 |
+
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
|
| 589 |
+
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
|
| 590 |
+
break
|
| 591 |
+
mask_idx = (x_t[:, -block_size:] == mask_id)
|
| 592 |
+
# Decode a complete block, update cache, and generate the next token
|
| 593 |
+
if mask_idx.sum() == 0:
|
| 594 |
+
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=True, block_size=block_size)
|
| 595 |
+
logits, past_key_values = output.logits, output.past_key_values
|
| 596 |
+
next_token = logits[:, -1:, :].argmax(dim=-1)
|
| 597 |
+
x_t = torch.cat([x_t, next_token], dim=1)
|
| 598 |
+
break
|
| 599 |
+
for small_block_idx in range(num_small_blocks):
|
| 600 |
+
small_block_start_idx = small_block_idx * small_block_size
|
| 601 |
+
small_block_end_idx = small_block_start_idx + small_block_size
|
| 602 |
+
|
| 603 |
+
start = -block_size + small_block_start_idx
|
| 604 |
+
end = None if block_size == small_block_end_idx else -block_size + small_block_end_idx
|
| 605 |
+
while True:
|
| 606 |
+
mask_idx = (x_t[:, -block_size:] == mask_id)
|
| 607 |
+
if mask_idx[:, start:end].sum() == 0:
|
| 608 |
+
break
|
| 609 |
+
if stop_token in x_t[:, prompt_length:]:
|
| 610 |
+
stop_token_idx = (x_t[:, prompt_length:] == stop_token).nonzero()[0][1]
|
| 611 |
+
if (x_t[:, prompt_length:prompt_length+stop_token_idx] == mask_id).sum() == 0:
|
| 612 |
+
break
|
| 613 |
+
|
| 614 |
+
if use_block_cache:
|
| 615 |
+
if step % block_cache_refresh_interval == 0 or (x_t[:, -block_size+small_block_start_idx] == mask_id).any():
|
| 616 |
+
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True)
|
| 617 |
+
logits, block_past_key_values = output.logits, output.block_past_key_values
|
| 618 |
+
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
|
| 619 |
+
logits = logits[:, start:end]
|
| 620 |
+
else:
|
| 621 |
+
logits = self.forward(input_ids=x_t[:,start:end], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True, block_past_key_values=block_past_key_values, replace_position=small_block_start_idx).logits
|
| 622 |
+
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
|
| 623 |
+
else:
|
| 624 |
+
logits = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False).logits
|
| 625 |
+
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
|
| 626 |
+
logits = logits[:, start:end]
|
| 627 |
+
|
| 628 |
+
|
| 629 |
+
x_1, p_1t = self.sample_with_top_p(logits, top_p=top_p, temperature=temperature)
|
| 630 |
+
# Select tokens with probability greater than threshold from p_1t
|
| 631 |
+
x1_p = torch.squeeze(torch.gather(p_1t, dim=-1, index=torch.unsqueeze(x_1, -1)), -1)
|
| 632 |
+
x1_p = torch.where(mask_idx[:, start:end], x1_p, -torch.inf)
|
| 633 |
+
|
| 634 |
+
unmask_idx = (x1_p > threshold)
|
| 635 |
+
max_prob_idx = x1_p.argmax(dim=-1)
|
| 636 |
+
unmask_idx[torch.arange(x_1.shape[0]), max_prob_idx] = True
|
| 637 |
+
unmask_idx = unmask_idx & mask_idx[:, start:end]
|
| 638 |
+
|
| 639 |
+
x_t[:, start:end][unmask_idx] = x_1[unmask_idx]
|
| 640 |
+
|
| 641 |
+
step += 1
|
| 642 |
+
input_ids = x_t
|
| 643 |
+
# Truncate stop_token
|
| 644 |
+
if stop_token in input_ids[:, original_input_length:]:
|
| 645 |
+
stop_token_idx = (input_ids[:, original_input_length:] == stop_token).nonzero()[0][1]
|
| 646 |
+
input_ids = input_ids[:, :stop_token_idx+original_input_length+1]
|
| 647 |
+
return input_ids
|
| 648 |
+
|
| 649 |
+
def sample_with_top_p(self, logits, top_p=0.95, temperature=1.0):
|
| 650 |
+
# Calculate probabilities
|
| 651 |
+
if temperature > 0:
|
| 652 |
+
scaled_logits = logits / temperature
|
| 653 |
+
else:
|
| 654 |
+
p_1t = torch.softmax(logits, dim=-1)
|
| 655 |
+
x_1 = p_1t.argmax(dim=-1)
|
| 656 |
+
return x_1, p_1t
|
| 657 |
+
|
| 658 |
+
probs = F.softmax(scaled_logits, dim=-1)
|
| 659 |
+
|
| 660 |
+
sorted_probs, sorted_indices = torch.sort(probs, descending=True)
|
| 661 |
+
cumulative_probs = torch.cumsum(sorted_probs, dim=-1)
|
| 662 |
+
|
| 663 |
+
sorted_indices_to_remove = cumulative_probs > top_p
|
| 664 |
+
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
|
| 665 |
+
sorted_indices_to_remove[..., 0] = 0
|
| 666 |
+
|
| 667 |
+
indices_to_remove = torch.zeros_like(probs, dtype=torch.bool).scatter_(
|
| 668 |
+
dim=-1, index=sorted_indices, src=sorted_indices_to_remove
|
| 669 |
+
)
|
| 670 |
+
|
| 671 |
+
probs[indices_to_remove] = 0
|
| 672 |
+
|
| 673 |
+
# Renormalize so that the probabilities of remaining tokens sum to 1
|
| 674 |
+
# Add a small epsilon value to prevent division by zero
|
| 675 |
+
probs_sum = torch.sum(probs, dim=-1, keepdim=True)
|
| 676 |
+
normalized_probs = probs / probs_sum
|
| 677 |
+
|
| 678 |
+
p_1t = normalized_probs
|
| 679 |
+
x_1 = torch.multinomial(p_1t[0], num_samples=1).unsqueeze(0).squeeze(-1)
|
| 680 |
+
|
| 681 |
+
return x_1, p_1t
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,25 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
{
|
| 4 |
+
"content": "|<MASK>|",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false
|
| 9 |
+
}
|
| 10 |
+
],
|
| 11 |
+
"eos_token": {
|
| 12 |
+
"content": "<|im_end|>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false
|
| 17 |
+
},
|
| 18 |
+
"pad_token": {
|
| 19 |
+
"content": "<|endoftext|>",
|
| 20 |
+
"lstrip": false,
|
| 21 |
+
"normalized": false,
|
| 22 |
+
"rstrip": false,
|
| 23 |
+
"single_word": false
|
| 24 |
+
}
|
| 25 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb2105b66192c5a532e2a098dc899df86eca233b4faa48461211e4312c8b3568
|
| 3 |
+
size 11422081
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,204 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_bos_token": false,
|
| 3 |
+
"add_prefix_space": false,
|
| 4 |
+
"added_tokens_decoder": {
|
| 5 |
+
"151643": {
|
| 6 |
+
"content": "<|endoftext|>",
|
| 7 |
+
"lstrip": false,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false,
|
| 11 |
+
"special": true
|
| 12 |
+
},
|
| 13 |
+
"151644": {
|
| 14 |
+
"content": "<|im_start|>",
|
| 15 |
+
"lstrip": false,
|
| 16 |
+
"normalized": false,
|
| 17 |
+
"rstrip": false,
|
| 18 |
+
"single_word": false,
|
| 19 |
+
"special": true
|
| 20 |
+
},
|
| 21 |
+
"151645": {
|
| 22 |
+
"content": "<|im_end|>",
|
| 23 |
+
"lstrip": false,
|
| 24 |
+
"normalized": false,
|
| 25 |
+
"rstrip": false,
|
| 26 |
+
"single_word": false,
|
| 27 |
+
"special": true
|
| 28 |
+
},
|
| 29 |
+
"151646": {
|
| 30 |
+
"content": "<|object_ref_start|>",
|
| 31 |
+
"lstrip": false,
|
| 32 |
+
"normalized": false,
|
| 33 |
+
"rstrip": false,
|
| 34 |
+
"single_word": false,
|
| 35 |
+
"special": true
|
| 36 |
+
},
|
| 37 |
+
"151647": {
|
| 38 |
+
"content": "<|object_ref_end|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false,
|
| 43 |
+
"special": true
|
| 44 |
+
},
|
| 45 |
+
"151648": {
|
| 46 |
+
"content": "<|box_start|>",
|
| 47 |
+
"lstrip": false,
|
| 48 |
+
"normalized": false,
|
| 49 |
+
"rstrip": false,
|
| 50 |
+
"single_word": false,
|
| 51 |
+
"special": true
|
| 52 |
+
},
|
| 53 |
+
"151649": {
|
| 54 |
+
"content": "<|box_end|>",
|
| 55 |
+
"lstrip": false,
|
| 56 |
+
"normalized": false,
|
| 57 |
+
"rstrip": false,
|
| 58 |
+
"single_word": false,
|
| 59 |
+
"special": true
|
| 60 |
+
},
|
| 61 |
+
"151650": {
|
| 62 |
+
"content": "<|quad_start|>",
|
| 63 |
+
"lstrip": false,
|
| 64 |
+
"normalized": false,
|
| 65 |
+
"rstrip": false,
|
| 66 |
+
"single_word": false,
|
| 67 |
+
"special": true
|
| 68 |
+
},
|
| 69 |
+
"151651": {
|
| 70 |
+
"content": "<|quad_end|>",
|
| 71 |
+
"lstrip": false,
|
| 72 |
+
"normalized": false,
|
| 73 |
+
"rstrip": false,
|
| 74 |
+
"single_word": false,
|
| 75 |
+
"special": true
|
| 76 |
+
},
|
| 77 |
+
"151652": {
|
| 78 |
+
"content": "<|vision_start|>",
|
| 79 |
+
"lstrip": false,
|
| 80 |
+
"normalized": false,
|
| 81 |
+
"rstrip": false,
|
| 82 |
+
"single_word": false,
|
| 83 |
+
"special": true
|
| 84 |
+
},
|
| 85 |
+
"151653": {
|
| 86 |
+
"content": "<|vision_end|>",
|
| 87 |
+
"lstrip": false,
|
| 88 |
+
"normalized": false,
|
| 89 |
+
"rstrip": false,
|
| 90 |
+
"single_word": false,
|
| 91 |
+
"special": true
|
| 92 |
+
},
|
| 93 |
+
"151654": {
|
| 94 |
+
"content": "<|vision_pad|>",
|
| 95 |
+
"lstrip": false,
|
| 96 |
+
"normalized": false,
|
| 97 |
+
"rstrip": false,
|
| 98 |
+
"single_word": false,
|
| 99 |
+
"special": true
|
| 100 |
+
},
|
| 101 |
+
"151655": {
|
| 102 |
+
"content": "<|image_pad|>",
|
| 103 |
+
"lstrip": false,
|
| 104 |
+
"normalized": false,
|
| 105 |
+
"rstrip": false,
|
| 106 |
+
"single_word": false,
|
| 107 |
+
"special": true
|
| 108 |
+
},
|
| 109 |
+
"151656": {
|
| 110 |
+
"content": "<|video_pad|>",
|
| 111 |
+
"lstrip": false,
|
| 112 |
+
"normalized": false,
|
| 113 |
+
"rstrip": false,
|
| 114 |
+
"single_word": false,
|
| 115 |
+
"special": true
|
| 116 |
+
},
|
| 117 |
+
"151657": {
|
| 118 |
+
"content": "<tool_call>",
|
| 119 |
+
"lstrip": false,
|
| 120 |
+
"normalized": false,
|
| 121 |
+
"rstrip": false,
|
| 122 |
+
"single_word": false,
|
| 123 |
+
"special": false
|
| 124 |
+
},
|
| 125 |
+
"151658": {
|
| 126 |
+
"content": "</tool_call>",
|
| 127 |
+
"lstrip": false,
|
| 128 |
+
"normalized": false,
|
| 129 |
+
"rstrip": false,
|
| 130 |
+
"single_word": false,
|
| 131 |
+
"special": false
|
| 132 |
+
},
|
| 133 |
+
"151659": {
|
| 134 |
+
"content": "<|fim_prefix|>",
|
| 135 |
+
"lstrip": false,
|
| 136 |
+
"normalized": false,
|
| 137 |
+
"rstrip": false,
|
| 138 |
+
"single_word": false,
|
| 139 |
+
"special": false
|
| 140 |
+
},
|
| 141 |
+
"151660": {
|
| 142 |
+
"content": "<|fim_middle|>",
|
| 143 |
+
"lstrip": false,
|
| 144 |
+
"normalized": false,
|
| 145 |
+
"rstrip": false,
|
| 146 |
+
"single_word": false,
|
| 147 |
+
"special": false
|
| 148 |
+
},
|
| 149 |
+
"151661": {
|
| 150 |
+
"content": "<|fim_suffix|>",
|
| 151 |
+
"lstrip": false,
|
| 152 |
+
"normalized": false,
|
| 153 |
+
"rstrip": false,
|
| 154 |
+
"single_word": false,
|
| 155 |
+
"special": false
|
| 156 |
+
},
|
| 157 |
+
"151662": {
|
| 158 |
+
"content": "<|fim_pad|>",
|
| 159 |
+
"lstrip": false,
|
| 160 |
+
"normalized": false,
|
| 161 |
+
"rstrip": false,
|
| 162 |
+
"single_word": false,
|
| 163 |
+
"special": false
|
| 164 |
+
},
|
| 165 |
+
"151663": {
|
| 166 |
+
"content": "<|repo_name|>",
|
| 167 |
+
"lstrip": false,
|
| 168 |
+
"normalized": false,
|
| 169 |
+
"rstrip": false,
|
| 170 |
+
"single_word": false,
|
| 171 |
+
"special": false
|
| 172 |
+
},
|
| 173 |
+
"151664": {
|
| 174 |
+
"content": "<|file_sep|>",
|
| 175 |
+
"lstrip": false,
|
| 176 |
+
"normalized": false,
|
| 177 |
+
"rstrip": false,
|
| 178 |
+
"single_word": false,
|
| 179 |
+
"special": false
|
| 180 |
+
},
|
| 181 |
+
"151665": {
|
| 182 |
+
"content": "|<MASK>|",
|
| 183 |
+
"lstrip": false,
|
| 184 |
+
"normalized": false,
|
| 185 |
+
"rstrip": false,
|
| 186 |
+
"single_word": false,
|
| 187 |
+
"special": true
|
| 188 |
+
}
|
| 189 |
+
},
|
| 190 |
+
"additional_special_tokens": [
|
| 191 |
+
"|<MASK>|"
|
| 192 |
+
],
|
| 193 |
+
"bos_token": null,
|
| 194 |
+
"clean_up_tokenization_spaces": false,
|
| 195 |
+
"eos_token": "<|im_end|>",
|
| 196 |
+
"errors": "replace",
|
| 197 |
+
"extra_special_tokens": {},
|
| 198 |
+
"model_max_length": 131072,
|
| 199 |
+
"pad_token": "<|endoftext|>",
|
| 200 |
+
"padding_side": "right",
|
| 201 |
+
"split_special_tokens": false,
|
| 202 |
+
"tokenizer_class": "Qwen2Tokenizer",
|
| 203 |
+
"unk_token": null
|
| 204 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|