Chengyue Wu
commited on
Commit
Β·
19930b4
1
Parent(s):
5040112
update with LFS support
Browse files- .gitattributes +2 -0
- README.md +148 -3
- assets/benchmark_results.png +3 -0
- assets/throughput.png +3 -0
- assets/training_recipe.png +3 -0
- assets/visualization_animation.gif +3 -0
- modeling.py +1 -4
.gitattributes
CHANGED
|
@@ -34,3 +34,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
*.gif filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
*.png filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,148 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- Qwen/Qwen2.5-7B-Instruct
|
| 7 |
+
---
|
| 8 |
+
|
| 9 |
+
# Fast-dLLM v2 (7B) β Efficient Block-Diffusion LLM
|
| 10 |
+
|
| 11 |
+
## π Introduction
|
| 12 |
+
|
| 13 |
+
Autoregressive (AR) large language models (LLMs) have achieved remarkable performance across a wide range of natural language tasks, yet their **inherent sequential decoding limits inference efficiency**.
|
| 14 |
+
|
| 15 |
+
We present **Fast-dLLM v2** β a carefully designed **block diffusion language model (dLLM)** that efficiently adapts a pretrained AR model (**Qwen2.5-7B-Instruct**) into a diffusion-style decoder for **parallel text generation**.
|
| 16 |
+
|
| 17 |
+
### β¨ Key Innovations
|
| 18 |
+
- **Block Diffusion Mechanism + Complementary Attention Mask**
|
| 19 |
+
Enables **blockwise bidirectional context modeling** without sacrificing AR objectives.
|
| 20 |
+
- **Hierarchical Caching**
|
| 21 |
+
- **Block-level cache**: Stores historical context representations across blocks.
|
| 22 |
+
- **Sub-block cache**: Parallel decoding within partially generated blocks.
|
| 23 |
+
- **Token Shift Mechanism**
|
| 24 |
+
Retains autoregressive characteristics while supporting bidirectional context within blocks.
|
| 25 |
+
- **Parallel Decoding Pipeline**
|
| 26 |
+
Achieves up to **2.5Γ speedup** over standard AR decoding **without compromising quality**.
|
| 27 |
+
|
| 28 |
+
> π Fast-dLLM v2 uses **only ~1B tokens** for fine-tuning β a **500Γ reduction** vs. full-attention diffusion LLMs (Dream: 580B tokens) β while **matching or surpassing AR baselines** in accuracy.
|
| 29 |
+
|
| 30 |
+

|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## π Model Overview
|
| 35 |
+
- **Type**: Block Diffusion Language Model (dLLM)
|
| 36 |
+
- **Base Model**: `Qwen/Qwen2.5-7B-Instruct`
|
| 37 |
+
- **Architecture**: Transformer w/ RoPE, SwiGLU activation, RMSNorm, Attention QKV bias
|
| 38 |
+
- **Params**: ~7B
|
| 39 |
+
- **Layers**: 28
|
| 40 |
+
- **Attention Heads**: 28 (Q), 4 (KV, GQA)
|
| 41 |
+
- **Block Diffusion Size**: 32 tokens
|
| 42 |
+
- **Key Feature**: Parallel **block-wise decoding** + **hierarchical caching (block-level & sub-block)**
|
| 43 |
+
|
| 44 |
+
---
|
| 45 |
+
|
| 46 |
+
## π¦ Installation
|
| 47 |
+
You will need `transformers`, `torch`, and our **custom generation function**:
|
| 48 |
+
|
| 49 |
+
```bash
|
| 50 |
+
pip install transformers torch numpy
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
## π Quickstart
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 59 |
+
|
| 60 |
+
model_name = "Efficient-Large-Model/Fast_dLLM_7B"
|
| 61 |
+
|
| 62 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 63 |
+
model_name,
|
| 64 |
+
torch_dtype="auto",
|
| 65 |
+
device_map="auto",
|
| 66 |
+
trust_remote_code=True
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 70 |
+
|
| 71 |
+
prompt = "Give me a short introduction to large language model."
|
| 72 |
+
messages = [
|
| 73 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 74 |
+
{"role": "user", "content": prompt}
|
| 75 |
+
]
|
| 76 |
+
|
| 77 |
+
text = tokenizer.apply_chat_template(
|
| 78 |
+
messages,
|
| 79 |
+
tokenize=False,
|
| 80 |
+
add_generation_prompt=True
|
| 81 |
+
)
|
| 82 |
+
inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 83 |
+
|
| 84 |
+
# Fast-dLLM v2 parallel decoding
|
| 85 |
+
gen_ids = model.generate(
|
| 86 |
+
inputs["input_ids"],
|
| 87 |
+
tokenizer=tokenizer,
|
| 88 |
+
max_new_tokens=512,
|
| 89 |
+
small_block_size=8,
|
| 90 |
+
threshold=0.9,
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
response = tokenizer.decode(
|
| 94 |
+
gen_ids[0][inputs["input_ids"].shape[1]:],
|
| 95 |
+
skip_special_tokens=True
|
| 96 |
+
)
|
| 97 |
+
print(response)
|
| 98 |
+
```
|
| 99 |
+
|
| 100 |
+
---
|
| 101 |
+
|
| 102 |
+
## π Performance & Benchmarks
|
| 103 |
+
|
| 104 |
+
### βΆ Real-time Throughput
|
| 105 |
+
Fast-dLLM v2 offers **up to 2.54Γ higher throughput** than Qwen2.5-7B-Instruct, **without loss in quality**.
|
| 106 |
+
|
| 107 |
+

|
| 108 |
+
|
| 109 |
+
---
|
| 110 |
+
|
| 111 |
+
### π Benchmark Results
|
| 112 |
+
We compare Fast-dLLM v2 against AR baselines and previous diffusion LLMs on diverse tasks:
|
| 113 |
+
HumanEval, MBPP (code), GSM8K, Math (reasoning), IFEval (instruction), MMLU, GPQA (knowledge QA).
|
| 114 |
+
|
| 115 |
+
- **1B group**: Fast-dLLM v2 (7B) achieves **best average score: 45.0**.
|
| 116 |
+
- **7B group**: Fast-dLLM v2 (7B) achieves **best average score: 60.3**, surpassing LLaDA and Dream models.
|
| 117 |
+
|
| 118 |
+

|
| 119 |
+
|
| 120 |
+
---
|
| 121 |
+
|
| 122 |
+
## π Citation
|
| 123 |
+
|
| 124 |
+
If you use Fast-dLLM v2 in your research or products, please cite:
|
| 125 |
+
|
| 126 |
+
```bibtex
|
| 127 |
+
@misc{wu2025fastdllmv2efficientblockdiffusion,
|
| 128 |
+
title={Fast-dLLM v2: Efficient Block-Diffusion LLM},
|
| 129 |
+
author={Chengyue Wu and Hao Zhang and Shuchen Xue and Shizhe Diao and Yonggan Fu and Zhijian Liu and Pavlo Molchanov and Ping Luo and Song Han and Enze Xie},
|
| 130 |
+
year={2025},
|
| 131 |
+
eprint={2509.26328},
|
| 132 |
+
archivePrefix={arXiv},
|
| 133 |
+
primaryClass={cs.CL},
|
| 134 |
+
url={https://arxiv.org/abs/2509.26328},
|
| 135 |
+
}
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
---
|
| 139 |
+
|
| 140 |
+
## π License
|
| 141 |
+
Released under **Apache 2.0**, following the base Qwen2.5 license.
|
| 142 |
+
|
| 143 |
+
---
|
| 144 |
+
|
| 145 |
+
## π Resources
|
| 146 |
+
- π [Paper](https://arxiv.org/abs/2509.26328)
|
| 147 |
+
- π» [Code](https://github.com/NVlabs/Fast-dLLM)
|
| 148 |
+
- π€ [HuggingFace Model](https://huggingface.co/Efficient-Large-Model/Fast_dLLM_7B)
|
assets/benchmark_results.png
ADDED
|
Git LFS Details
|
assets/throughput.png
ADDED
|
Git LFS Details
|
assets/training_recipe.png
ADDED
|
Git LFS Details
|
assets/visualization_animation.gif
ADDED
|
Git LFS Details
|
modeling.py
CHANGED
|
@@ -555,7 +555,6 @@ class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
|
|
| 555 |
top_p=0.95,
|
| 556 |
temperature=0,
|
| 557 |
use_block_cache=False,
|
| 558 |
-
block_cache_refresh_interval=16,
|
| 559 |
**kwargs
|
| 560 |
):
|
| 561 |
num_blocks = max_new_tokens // block_size
|
|
@@ -581,7 +580,6 @@ class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
|
|
| 581 |
x_init = torch.cat([input_ids, x_init], dim=1)
|
| 582 |
|
| 583 |
x_t = x_init.clone()
|
| 584 |
-
step = 0
|
| 585 |
block_past_key_values = None
|
| 586 |
while True:
|
| 587 |
if stop_token in x_t[:, prompt_length:]:
|
|
@@ -612,7 +610,7 @@ class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
|
|
| 612 |
break
|
| 613 |
|
| 614 |
if use_block_cache:
|
| 615 |
-
if
|
| 616 |
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True)
|
| 617 |
logits, block_past_key_values = output.logits, output.block_past_key_values
|
| 618 |
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
|
|
@@ -638,7 +636,6 @@ class Fast_dLLM_QwenForCausalLM(Fast_dLLM_QwenPreTrainedModel, GenerationMixin):
|
|
| 638 |
|
| 639 |
x_t[:, start:end][unmask_idx] = x_1[unmask_idx]
|
| 640 |
|
| 641 |
-
step += 1
|
| 642 |
input_ids = x_t
|
| 643 |
# Truncate stop_token
|
| 644 |
if stop_token in input_ids[:, original_input_length:]:
|
|
|
|
| 555 |
top_p=0.95,
|
| 556 |
temperature=0,
|
| 557 |
use_block_cache=False,
|
|
|
|
| 558 |
**kwargs
|
| 559 |
):
|
| 560 |
num_blocks = max_new_tokens // block_size
|
|
|
|
| 580 |
x_init = torch.cat([input_ids, x_init], dim=1)
|
| 581 |
|
| 582 |
x_t = x_init.clone()
|
|
|
|
| 583 |
block_past_key_values = None
|
| 584 |
while True:
|
| 585 |
if stop_token in x_t[:, prompt_length:]:
|
|
|
|
| 610 |
break
|
| 611 |
|
| 612 |
if use_block_cache:
|
| 613 |
+
if block_past_key_values is None or (x_t[:, -block_size+small_block_start_idx] == mask_id).any():
|
| 614 |
output = self.forward(input_ids=x_t[:, -block_size:], use_cache=True, past_key_values=past_key_values, update_past_key_values=False, use_block_cache=True)
|
| 615 |
logits, block_past_key_values = output.logits, output.block_past_key_values
|
| 616 |
logits = torch.cat([logits[:, :1, :], logits[:, :-1, :]], dim=1)
|
|
|
|
| 636 |
|
| 637 |
x_t[:, start:end][unmask_idx] = x_1[unmask_idx]
|
| 638 |
|
|
|
|
| 639 |
input_ids = x_t
|
| 640 |
# Truncate stop_token
|
| 641 |
if stop_token in input_ids[:, original_input_length:]:
|