|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from transformers.configuration_utils import PretrainedConfig |
|
|
from transformers.modeling_rope_utils import rope_config_validation |
|
|
|
|
|
|
|
|
class ApertusConfig(PretrainedConfig): |
|
|
r""" |
|
|
This is the configuration class to store the configuration of a [`ApertusModel`]. It is used to instantiate a Apertus |
|
|
model according to the specified arguments, defining the model architecture. Instantiating a configuration with the |
|
|
defaults will yield a similar configuration to that of the Apertus-8B. |
|
|
e.g. [swiss-ai/Apertus-8B](https://huggingface.co/swiss-ai/Apertus-8B) |
|
|
|
|
|
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the |
|
|
documentation from [`PretrainedConfig`] for more information. |
|
|
|
|
|
|
|
|
Args: |
|
|
vocab_size (`int`, *optional*, defaults to 131072): |
|
|
Vocabulary size of the Apertus model. Defines the number of different tokens that can be represented by the |
|
|
`inputs_ids` passed when calling [`ApertusModel`] |
|
|
hidden_size (`int`, *optional*, defaults to 4096): |
|
|
Dimension of the hidden representations. |
|
|
intermediate_size (`int`, *optional*, defaults to 14336): |
|
|
Dimension of the MLP representations. |
|
|
num_hidden_layers (`int`, *optional*, defaults to 32): |
|
|
Number of hidden layers in the Transformer decoder. |
|
|
num_attention_heads (`int`, *optional*, defaults to 32): |
|
|
Number of attention heads for each attention layer in the Transformer decoder. |
|
|
num_key_value_heads (`int`, *optional*): |
|
|
This is the number of key_value heads that should be used to implement Grouped Query Attention. If |
|
|
`num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if |
|
|
`num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When |
|
|
converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed |
|
|
by meanpooling all the original heads within that group. For more details, check out [this |
|
|
paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to |
|
|
`num_attention_heads`. |
|
|
hidden_act (`str` or `function`, *optional*, defaults to `"xielu"`): |
|
|
The non-linear activation function (function or string) in the decoder. |
|
|
max_position_embeddings (`int`, *optional*, defaults to 65536): |
|
|
The maximum sequence length that this model might ever be used with. Apertus supports up to 65536 tokens. |
|
|
initializer_range (`float`, *optional*, defaults to 0.02): |
|
|
The standard deviation of the truncated_normal_initializer for initializing all weight matrices. |
|
|
rms_norm_eps (`float`, *optional*, defaults to 1e-05): |
|
|
The epsilon used by the rms normalization layers. |
|
|
use_cache (`bool`, *optional*, defaults to `True`): |
|
|
Whether or not the model should return the last key/values attentions (not used by all models). Only |
|
|
relevant if `config.is_decoder=True`. |
|
|
pad_token_id (`int`, *optional*, defaults to 3): |
|
|
Padding token id. |
|
|
bos_token_id (`int`, *optional*, defaults to 1): |
|
|
Beginning of stream token id. |
|
|
eos_token_id (`int`, *optional*, defaults to 2): |
|
|
End of stream token id. |
|
|
tie_word_embeddings (`bool`, *optional*, defaults to `False`): |
|
|
Whether to tie weight embeddings |
|
|
rope_theta (`float`, *optional*, defaults to 12000000.0): |
|
|
The base period of the RoPE embeddings. |
|
|
rope_scaling (`Dict`, *optional*): |
|
|
Dictionary containing the scaling configuration for the RoPE embeddings. NOTE: if you apply new rope type |
|
|
and you expect the model to work on longer `max_position_embeddings`, we recommend you to update this value |
|
|
accordingly. |
|
|
Expected contents: |
|
|
`rope_type` (`str`): |
|
|
The sub-variant of RoPE to use. Can be one of ['default', 'linear', 'dynamic', 'yarn', 'longrope', |
|
|
'llama3'], with 'default' being the original RoPE implementation. |
|
|
`factor` (`float`, *optional*): |
|
|
Used with all rope types except 'default'. The scaling factor to apply to the RoPE embeddings. In |
|
|
most scaling types, a `factor` of x will enable the model to handle sequences of length x * |
|
|
original maximum pre-trained length. |
|
|
`original_max_position_embeddings` (`int`, *optional*): |
|
|
Used with 'dynamic', 'longrope' and 'llama3'. The original max position embeddings used during |
|
|
pretraining. |
|
|
`attention_factor` (`float`, *optional*): |
|
|
Used with 'yarn' and 'longrope'. The scaling factor to be applied on the attention |
|
|
computation. If unspecified, it defaults to value recommended by the implementation, using the |
|
|
`factor` field to infer the suggested value. |
|
|
`beta_fast` (`float`, *optional*): |
|
|
Only used with 'yarn'. Parameter to set the boundary for extrapolation (only) in the linear |
|
|
ramp function. If unspecified, it defaults to 32. |
|
|
`beta_slow` (`float`, *optional*): |
|
|
Only used with 'yarn'. Parameter to set the boundary for interpolation (only) in the linear |
|
|
ramp function. If unspecified, it defaults to 1. |
|
|
`short_factor` (`list[float]`, *optional*): |
|
|
Only used with 'longrope'. The scaling factor to be applied to short contexts (< |
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
|
size divided by the number of attention heads divided by 2 |
|
|
`long_factor` (`list[float]`, *optional*): |
|
|
Only used with 'longrope'. The scaling factor to be applied to long contexts (< |
|
|
`original_max_position_embeddings`). Must be a list of numbers with the same length as the hidden |
|
|
size divided by the number of attention heads divided by 2 |
|
|
`low_freq_factor` (`float`, *optional*): |
|
|
Only used with 'llama3'. Scaling factor applied to low frequency components of the RoPE |
|
|
`high_freq_factor` (`float`, *optional*): |
|
|
Only used with 'llama3'. Scaling factor applied to high frequency components of the RoPE |
|
|
attention_bias (`bool`, *optional*, defaults to `False`): |
|
|
Whether to use a bias in the query, key, value and output projection layers during self-attention. |
|
|
attention_dropout (`float`, *optional*, defaults to 0.0): |
|
|
The dropout ratio for the attention probabilities. |
|
|
|
|
|
```python |
|
|
>>> from transformers import ApertusModel, ApertusConfig |
|
|
|
|
|
>>> # Initializing a Apertus-8B style configuration |
|
|
>>> configuration = ApertusConfig() |
|
|
|
|
|
>>> # Initializing a model from the Apertus-8B style configuration |
|
|
>>> model = ApertusModel(configuration) |
|
|
|
|
|
>>> # Accessing the model configuration |
|
|
>>> configuration = model.config |
|
|
```""" |
|
|
|
|
|
model_type = "apertus" |
|
|
keys_to_ignore_at_inference = ["past_key_values"] |
|
|
base_model_tp_plan = { |
|
|
"layers.*.self_attn.q_proj": "colwise_rep", |
|
|
"layers.*.self_attn.k_proj": "colwise_rep", |
|
|
"layers.*.self_attn.v_proj": "colwise_rep", |
|
|
"layers.*.self_attn.o_proj": "rowwise_rep", |
|
|
"layers.*.mlp.up_proj": "colwise", |
|
|
"layers.*.mlp.down_proj": "rowwise", |
|
|
"layers.*.mlp.gate_proj": "colwise", |
|
|
} |
|
|
base_model_pp_plan = { |
|
|
"embed_tokens": (["input_ids"], ["inputs_embeds"]), |
|
|
"layers": (["hidden_states", "attention_mask"], ["hidden_states"]), |
|
|
"norm": (["hidden_states"], ["hidden_states"]), |
|
|
} |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=131072, |
|
|
hidden_size=4096, |
|
|
intermediate_size=14336, |
|
|
num_hidden_layers=32, |
|
|
num_attention_heads=32, |
|
|
num_key_value_heads=None, |
|
|
hidden_act="xielu", |
|
|
max_position_embeddings=65536, |
|
|
initializer_range=0.02, |
|
|
rms_norm_eps=1e-5, |
|
|
use_cache=True, |
|
|
pad_token_id=3, |
|
|
bos_token_id=1, |
|
|
eos_token_id=2, |
|
|
tie_word_embeddings=False, |
|
|
rope_theta=12000000.0, |
|
|
rope_scaling={ |
|
|
"rope_type": "llama3", |
|
|
"factor": 8.0, |
|
|
"original_max_position_embeddings": 8192, |
|
|
"low_freq_factor": 1.0, |
|
|
"high_freq_factor": 4.0, |
|
|
}, |
|
|
attention_bias=False, |
|
|
attention_dropout=0.0, |
|
|
patches=["liger", "cce"], |
|
|
**kwargs, |
|
|
): |
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
|
|
|
|
|
|
if num_key_value_heads is None: |
|
|
num_key_value_heads = num_attention_heads |
|
|
|
|
|
self.num_key_value_heads = num_key_value_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.attention_bias = attention_bias |
|
|
self.attention_dropout = attention_dropout |
|
|
|
|
|
|
|
|
if self.rope_scaling is not None and "type" in self.rope_scaling: |
|
|
self.rope_scaling["rope_type"] = self.rope_scaling["type"] |
|
|
rope_config_validation(self) |
|
|
|
|
|
self.patches = patches |
|
|
|
|
|
|
|
|
__all__ = ["ApertusConfig"] |