Add new SparseEncoder model
Browse files- README.md +368 -0
- config_sentence_transformers.json +14 -0
- document_0_MLMTransformer/config.json +40 -0
- document_0_MLMTransformer/configuration.py +145 -0
- document_0_MLMTransformer/model.safetensors +3 -0
- document_0_MLMTransformer/modeling.py +1418 -0
- document_0_MLMTransformer/sentence_bert_config.json +4 -0
- document_0_MLMTransformer/special_tokens_map.json +37 -0
- document_0_MLMTransformer/tokenizer.json +0 -0
- document_0_MLMTransformer/tokenizer_config.json +63 -0
- document_0_MLMTransformer/vocab.txt +0 -0
- document_1_SpladePooling/config.json +5 -0
- modules.json +8 -0
- query_0_SparseStaticEmbedding/config.json +3 -0
- query_0_SparseStaticEmbedding/model.safetensors +3 -0
- query_0_SparseStaticEmbedding/special_tokens_map.json +37 -0
- query_0_SparseStaticEmbedding/tokenizer.json +0 -0
- query_0_SparseStaticEmbedding/tokenizer_config.json +63 -0
- query_0_SparseStaticEmbedding/vocab.txt +0 -0
- router_config.json +20 -0
README.md
ADDED
|
@@ -0,0 +1,368 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- sentence-transformers
|
| 4 |
+
- sparse-encoder
|
| 5 |
+
- sparse
|
| 6 |
+
- asymmetric
|
| 7 |
+
- inference-free
|
| 8 |
+
- splade
|
| 9 |
+
- generated_from_trainer
|
| 10 |
+
- dataset_size:2
|
| 11 |
+
- loss:SpladeLoss
|
| 12 |
+
- loss:SparseMultipleNegativesRankingLoss
|
| 13 |
+
- loss:FlopsLoss
|
| 14 |
+
base_model: opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte
|
| 15 |
+
pipeline_tag: feature-extraction
|
| 16 |
+
library_name: sentence-transformers
|
| 17 |
+
---
|
| 18 |
+
|
| 19 |
+
# Asymmetric Inference-free SPLADE Sparse Encoder
|
| 20 |
+
|
| 21 |
+
This is a [Asymmetric Inference-free SPLADE Sparse Encoder](https://www.sbert.net/docs/sparse_encoder/usage/usage.html) model finetuned from [opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte) using the [sentence-transformers](https://www.SBERT.net) library. It maps sentences & paragraphs to a 30522-dimensional sparse vector space and can be used for semantic search and sparse retrieval.
|
| 22 |
+
## Model Details
|
| 23 |
+
|
| 24 |
+
### Model Description
|
| 25 |
+
- **Model Type:** Asymmetric Inference-free SPLADE Sparse Encoder
|
| 26 |
+
- **Base model:** [opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte](https://huggingface.co/opensearch-project/opensearch-neural-sparse-encoding-doc-v3-gte) <!-- at revision 1646fef40807937e8e130c66d327a26421c408d5 -->
|
| 27 |
+
- **Maximum Sequence Length:** 8192 tokens
|
| 28 |
+
- **Output Dimensionality:** 30522 dimensions
|
| 29 |
+
- **Similarity Function:** Dot Product
|
| 30 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 31 |
+
<!-- - **Language:** Unknown -->
|
| 32 |
+
<!-- - **License:** Unknown -->
|
| 33 |
+
|
| 34 |
+
### Model Sources
|
| 35 |
+
|
| 36 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 37 |
+
- **Documentation:** [Sparse Encoder Documentation](https://www.sbert.net/docs/sparse_encoder/usage/usage.html)
|
| 38 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 39 |
+
- **Hugging Face:** [Sparse Encoders on Hugging Face](https://huggingface.co/models?library=sentence-transformers&other=sparse-encoder)
|
| 40 |
+
|
| 41 |
+
### Full Model Architecture
|
| 42 |
+
|
| 43 |
+
```
|
| 44 |
+
SparseEncoder(
|
| 45 |
+
(0): Router(
|
| 46 |
+
(sub_modules): ModuleDict(
|
| 47 |
+
(query): Sequential(
|
| 48 |
+
(0): SparseStaticEmbedding({'frozen': False}, dim=30522, tokenizer=DistilBertTokenizerFast)
|
| 49 |
+
)
|
| 50 |
+
(document): Sequential(
|
| 51 |
+
(0): MLMTransformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewForMaskedLM'})
|
| 52 |
+
(1): SpladePooling({'pooling_strategy': 'max', 'activation_function': 'log1p_relu', 'word_embedding_dimension': 30522})
|
| 53 |
+
)
|
| 54 |
+
)
|
| 55 |
+
)
|
| 56 |
+
)
|
| 57 |
+
```
|
| 58 |
+
|
| 59 |
+
## Usage
|
| 60 |
+
|
| 61 |
+
### Direct Usage (Sentence Transformers)
|
| 62 |
+
|
| 63 |
+
First install the Sentence Transformers library:
|
| 64 |
+
|
| 65 |
+
```bash
|
| 66 |
+
pip install -U sentence-transformers
|
| 67 |
+
```
|
| 68 |
+
|
| 69 |
+
Then you can load this model and run inference.
|
| 70 |
+
```python
|
| 71 |
+
from sentence_transformers import SparseEncoder
|
| 72 |
+
|
| 73 |
+
# Download from the 🤗 Hub
|
| 74 |
+
model = SparseEncoder("Frinkleko/opensearch-project_opensearch-neural-sparse-encoding-doc-v3-gte-limit-samples-2")
|
| 75 |
+
# Run inference
|
| 76 |
+
queries = [
|
| 77 |
+
"Which planet is known as the Red Planet?",
|
| 78 |
+
]
|
| 79 |
+
documents = [
|
| 80 |
+
"Venus is often called Earth's twin because of its similar size and proximity.",
|
| 81 |
+
'Mars, known for its reddish appearance, is often referred to as the Red Planet.',
|
| 82 |
+
'Saturn, famous for its rings, is sometimes mistaken for the Red Planet.',
|
| 83 |
+
]
|
| 84 |
+
query_embeddings = model.encode_query(queries)
|
| 85 |
+
document_embeddings = model.encode_document(documents)
|
| 86 |
+
print(query_embeddings.shape, document_embeddings.shape)
|
| 87 |
+
# [1, 30522] [3, 30522]
|
| 88 |
+
|
| 89 |
+
# Get the similarity scores for the embeddings
|
| 90 |
+
similarities = model.similarity(query_embeddings, document_embeddings)
|
| 91 |
+
print(similarities)
|
| 92 |
+
# tensor([[ 6.8167, 15.0012, 13.5434]])
|
| 93 |
+
```
|
| 94 |
+
|
| 95 |
+
<!--
|
| 96 |
+
### Direct Usage (Transformers)
|
| 97 |
+
|
| 98 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 99 |
+
|
| 100 |
+
</details>
|
| 101 |
+
-->
|
| 102 |
+
|
| 103 |
+
<!--
|
| 104 |
+
### Downstream Usage (Sentence Transformers)
|
| 105 |
+
|
| 106 |
+
You can finetune this model on your own dataset.
|
| 107 |
+
|
| 108 |
+
<details><summary>Click to expand</summary>
|
| 109 |
+
|
| 110 |
+
</details>
|
| 111 |
+
-->
|
| 112 |
+
|
| 113 |
+
<!--
|
| 114 |
+
### Out-of-Scope Use
|
| 115 |
+
|
| 116 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 117 |
+
-->
|
| 118 |
+
|
| 119 |
+
<!--
|
| 120 |
+
## Bias, Risks and Limitations
|
| 121 |
+
|
| 122 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 123 |
+
-->
|
| 124 |
+
|
| 125 |
+
<!--
|
| 126 |
+
### Recommendations
|
| 127 |
+
|
| 128 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 129 |
+
-->
|
| 130 |
+
|
| 131 |
+
## Training Details
|
| 132 |
+
|
| 133 |
+
### Training Dataset
|
| 134 |
+
|
| 135 |
+
#### Unnamed Dataset
|
| 136 |
+
|
| 137 |
+
* Size: 2 training samples
|
| 138 |
+
* Columns: <code>query</code> and <code>document</code>
|
| 139 |
+
* Approximate statistics based on the first 2 samples:
|
| 140 |
+
| | query | document |
|
| 141 |
+
|:--------|:-------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
|
| 142 |
+
| type | string | string |
|
| 143 |
+
| details | <ul><li>min: 7 tokens</li><li>mean: 7.5 tokens</li><li>max: 8 tokens</li></ul> | <ul><li>min: 41 tokens</li><li>mean: 43.0 tokens</li><li>max: 45 tokens</li></ul> |
|
| 144 |
+
* Samples:
|
| 145 |
+
| query | document |
|
| 146 |
+
|:-----------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 147 |
+
| <code>Who likes Sunflowers?</code> | <code> Rasmus Logan likes Dark Chocolate, Documentary Series, Washing Machines, Softball, Sunflowers, Gregorian chants, Za'atar, Abacuses, Dolphins, Root Beer Floats, Cumin, Coconut Flour.</code> |
|
| 148 |
+
| <code>Who likes Shaved Ice?</code> | <code> Abdulkarem Boyer likes Stag Beetles, Acacia Trees, Olives, Landscape Photography, Neoclassicism, Guinea Pigs, Mentoring, Parsley, Chemistry, Vases, Shaved Ice.</code> |
|
| 149 |
+
* Loss: [<code>SpladeLoss</code>](https://sbert.net/docs/package_reference/sparse_encoder/losses.html#spladeloss) with these parameters:
|
| 150 |
+
```json
|
| 151 |
+
{
|
| 152 |
+
"loss": "SparseMultipleNegativesRankingLoss(scale=1.0, similarity_fct='dot_score', gather_across_devices=False)",
|
| 153 |
+
"document_regularizer_weight": 3e-05,
|
| 154 |
+
"query_regularizer_weight": 5e-05
|
| 155 |
+
}
|
| 156 |
+
```
|
| 157 |
+
|
| 158 |
+
### Training Hyperparameters
|
| 159 |
+
#### Non-Default Hyperparameters
|
| 160 |
+
|
| 161 |
+
- `per_device_train_batch_size`: 1
|
| 162 |
+
- `num_train_epochs`: 40
|
| 163 |
+
- `warmup_ratio`: 0.1
|
| 164 |
+
- `batch_sampler`: no_duplicates
|
| 165 |
+
- `router_mapping`: {'query': 'query', 'document': 'document'}
|
| 166 |
+
|
| 167 |
+
#### All Hyperparameters
|
| 168 |
+
<details><summary>Click to expand</summary>
|
| 169 |
+
|
| 170 |
+
- `overwrite_output_dir`: False
|
| 171 |
+
- `do_predict`: False
|
| 172 |
+
- `eval_strategy`: no
|
| 173 |
+
- `prediction_loss_only`: True
|
| 174 |
+
- `per_device_train_batch_size`: 1
|
| 175 |
+
- `per_device_eval_batch_size`: 8
|
| 176 |
+
- `per_gpu_train_batch_size`: None
|
| 177 |
+
- `per_gpu_eval_batch_size`: None
|
| 178 |
+
- `gradient_accumulation_steps`: 1
|
| 179 |
+
- `eval_accumulation_steps`: None
|
| 180 |
+
- `torch_empty_cache_steps`: None
|
| 181 |
+
- `learning_rate`: 5e-05
|
| 182 |
+
- `weight_decay`: 0.0
|
| 183 |
+
- `adam_beta1`: 0.9
|
| 184 |
+
- `adam_beta2`: 0.999
|
| 185 |
+
- `adam_epsilon`: 1e-08
|
| 186 |
+
- `max_grad_norm`: 1.0
|
| 187 |
+
- `num_train_epochs`: 40
|
| 188 |
+
- `max_steps`: -1
|
| 189 |
+
- `lr_scheduler_type`: linear
|
| 190 |
+
- `lr_scheduler_kwargs`: {}
|
| 191 |
+
- `warmup_ratio`: 0.1
|
| 192 |
+
- `warmup_steps`: 0
|
| 193 |
+
- `log_level`: passive
|
| 194 |
+
- `log_level_replica`: warning
|
| 195 |
+
- `log_on_each_node`: True
|
| 196 |
+
- `logging_nan_inf_filter`: True
|
| 197 |
+
- `save_safetensors`: True
|
| 198 |
+
- `save_on_each_node`: False
|
| 199 |
+
- `save_only_model`: False
|
| 200 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 201 |
+
- `no_cuda`: False
|
| 202 |
+
- `use_cpu`: False
|
| 203 |
+
- `use_mps_device`: False
|
| 204 |
+
- `seed`: 42
|
| 205 |
+
- `data_seed`: None
|
| 206 |
+
- `jit_mode_eval`: False
|
| 207 |
+
- `use_ipex`: False
|
| 208 |
+
- `bf16`: False
|
| 209 |
+
- `fp16`: False
|
| 210 |
+
- `fp16_opt_level`: O1
|
| 211 |
+
- `half_precision_backend`: auto
|
| 212 |
+
- `bf16_full_eval`: False
|
| 213 |
+
- `fp16_full_eval`: False
|
| 214 |
+
- `tf32`: None
|
| 215 |
+
- `local_rank`: 0
|
| 216 |
+
- `ddp_backend`: None
|
| 217 |
+
- `tpu_num_cores`: None
|
| 218 |
+
- `tpu_metrics_debug`: False
|
| 219 |
+
- `debug`: []
|
| 220 |
+
- `dataloader_drop_last`: False
|
| 221 |
+
- `dataloader_num_workers`: 0
|
| 222 |
+
- `dataloader_prefetch_factor`: None
|
| 223 |
+
- `past_index`: -1
|
| 224 |
+
- `disable_tqdm`: False
|
| 225 |
+
- `remove_unused_columns`: True
|
| 226 |
+
- `label_names`: None
|
| 227 |
+
- `load_best_model_at_end`: False
|
| 228 |
+
- `ignore_data_skip`: False
|
| 229 |
+
- `fsdp`: []
|
| 230 |
+
- `fsdp_min_num_params`: 0
|
| 231 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 232 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 233 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 234 |
+
- `parallelism_config`: None
|
| 235 |
+
- `deepspeed`: None
|
| 236 |
+
- `label_smoothing_factor`: 0.0
|
| 237 |
+
- `optim`: adamw_torch_fused
|
| 238 |
+
- `optim_args`: None
|
| 239 |
+
- `adafactor`: False
|
| 240 |
+
- `group_by_length`: False
|
| 241 |
+
- `length_column_name`: length
|
| 242 |
+
- `ddp_find_unused_parameters`: None
|
| 243 |
+
- `ddp_bucket_cap_mb`: None
|
| 244 |
+
- `ddp_broadcast_buffers`: False
|
| 245 |
+
- `dataloader_pin_memory`: True
|
| 246 |
+
- `dataloader_persistent_workers`: False
|
| 247 |
+
- `skip_memory_metrics`: True
|
| 248 |
+
- `use_legacy_prediction_loop`: False
|
| 249 |
+
- `push_to_hub`: False
|
| 250 |
+
- `resume_from_checkpoint`: None
|
| 251 |
+
- `hub_model_id`: None
|
| 252 |
+
- `hub_strategy`: every_save
|
| 253 |
+
- `hub_private_repo`: None
|
| 254 |
+
- `hub_always_push`: False
|
| 255 |
+
- `hub_revision`: None
|
| 256 |
+
- `gradient_checkpointing`: False
|
| 257 |
+
- `gradient_checkpointing_kwargs`: None
|
| 258 |
+
- `include_inputs_for_metrics`: False
|
| 259 |
+
- `include_for_metrics`: []
|
| 260 |
+
- `eval_do_concat_batches`: True
|
| 261 |
+
- `fp16_backend`: auto
|
| 262 |
+
- `push_to_hub_model_id`: None
|
| 263 |
+
- `push_to_hub_organization`: None
|
| 264 |
+
- `mp_parameters`:
|
| 265 |
+
- `auto_find_batch_size`: False
|
| 266 |
+
- `full_determinism`: False
|
| 267 |
+
- `torchdynamo`: None
|
| 268 |
+
- `ray_scope`: last
|
| 269 |
+
- `ddp_timeout`: 1800
|
| 270 |
+
- `torch_compile`: False
|
| 271 |
+
- `torch_compile_backend`: None
|
| 272 |
+
- `torch_compile_mode`: None
|
| 273 |
+
- `include_tokens_per_second`: False
|
| 274 |
+
- `include_num_input_tokens_seen`: False
|
| 275 |
+
- `neftune_noise_alpha`: None
|
| 276 |
+
- `optim_target_modules`: None
|
| 277 |
+
- `batch_eval_metrics`: False
|
| 278 |
+
- `eval_on_start`: False
|
| 279 |
+
- `use_liger_kernel`: False
|
| 280 |
+
- `liger_kernel_config`: None
|
| 281 |
+
- `eval_use_gather_object`: False
|
| 282 |
+
- `average_tokens_across_devices`: False
|
| 283 |
+
- `prompts`: None
|
| 284 |
+
- `batch_sampler`: no_duplicates
|
| 285 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 286 |
+
- `router_mapping`: {'query': 'query', 'document': 'document'}
|
| 287 |
+
- `learning_rate_mapping`: {}
|
| 288 |
+
|
| 289 |
+
</details>
|
| 290 |
+
|
| 291 |
+
### Framework Versions
|
| 292 |
+
- Python: 3.12.9
|
| 293 |
+
- Sentence Transformers: 5.1.0
|
| 294 |
+
- Transformers: 4.56.0
|
| 295 |
+
- PyTorch: 2.8.0+cu128
|
| 296 |
+
- Accelerate: 1.10.1
|
| 297 |
+
- Datasets: 4.0.0
|
| 298 |
+
- Tokenizers: 0.22.0
|
| 299 |
+
|
| 300 |
+
## Citation
|
| 301 |
+
|
| 302 |
+
### BibTeX
|
| 303 |
+
|
| 304 |
+
#### Sentence Transformers
|
| 305 |
+
```bibtex
|
| 306 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 307 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 308 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 309 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 310 |
+
month = "11",
|
| 311 |
+
year = "2019",
|
| 312 |
+
publisher = "Association for Computational Linguistics",
|
| 313 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 314 |
+
}
|
| 315 |
+
```
|
| 316 |
+
|
| 317 |
+
#### SpladeLoss
|
| 318 |
+
```bibtex
|
| 319 |
+
@misc{formal2022distillationhardnegativesampling,
|
| 320 |
+
title={From Distillation to Hard Negative Sampling: Making Sparse Neural IR Models More Effective},
|
| 321 |
+
author={Thibault Formal and Carlos Lassance and Benjamin Piwowarski and Stéphane Clinchant},
|
| 322 |
+
year={2022},
|
| 323 |
+
eprint={2205.04733},
|
| 324 |
+
archivePrefix={arXiv},
|
| 325 |
+
primaryClass={cs.IR},
|
| 326 |
+
url={https://arxiv.org/abs/2205.04733},
|
| 327 |
+
}
|
| 328 |
+
```
|
| 329 |
+
|
| 330 |
+
#### SparseMultipleNegativesRankingLoss
|
| 331 |
+
```bibtex
|
| 332 |
+
@misc{henderson2017efficient,
|
| 333 |
+
title={Efficient Natural Language Response Suggestion for Smart Reply},
|
| 334 |
+
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
|
| 335 |
+
year={2017},
|
| 336 |
+
eprint={1705.00652},
|
| 337 |
+
archivePrefix={arXiv},
|
| 338 |
+
primaryClass={cs.CL}
|
| 339 |
+
}
|
| 340 |
+
```
|
| 341 |
+
|
| 342 |
+
#### FlopsLoss
|
| 343 |
+
```bibtex
|
| 344 |
+
@article{paria2020minimizing,
|
| 345 |
+
title={Minimizing flops to learn efficient sparse representations},
|
| 346 |
+
author={Paria, Biswajit and Yeh, Chih-Kuan and Yen, Ian EH and Xu, Ning and Ravikumar, Pradeep and P{'o}czos, Barnab{'a}s},
|
| 347 |
+
journal={arXiv preprint arXiv:2004.05665},
|
| 348 |
+
year={2020}
|
| 349 |
+
}
|
| 350 |
+
```
|
| 351 |
+
|
| 352 |
+
<!--
|
| 353 |
+
## Glossary
|
| 354 |
+
|
| 355 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 356 |
+
-->
|
| 357 |
+
|
| 358 |
+
<!--
|
| 359 |
+
## Model Card Authors
|
| 360 |
+
|
| 361 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 362 |
+
-->
|
| 363 |
+
|
| 364 |
+
<!--
|
| 365 |
+
## Model Card Contact
|
| 366 |
+
|
| 367 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 368 |
+
-->
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SparseEncoder",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.1.0",
|
| 5 |
+
"transformers": "4.56.0",
|
| 6 |
+
"pytorch": "2.8.0+cu128"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "dot"
|
| 14 |
+
}
|
document_0_MLMTransformer/config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"NewForMaskedLM"
|
| 4 |
+
],
|
| 5 |
+
"attention_probs_dropout_prob": 0.0,
|
| 6 |
+
"auto_map": {
|
| 7 |
+
"AutoConfig": "configuration.NewConfig",
|
| 8 |
+
"AutoModel": "Alibaba-NLP/new-impl--modeling.NewModel",
|
| 9 |
+
"AutoModelForMaskedLM": "modeling.NewForMaskedLM",
|
| 10 |
+
"AutoModelForMultipleChoice": "Alibaba-NLP/new-impl--modeling.NewForMultipleChoice",
|
| 11 |
+
"AutoModelForQuestionAnswering": "Alibaba-NLP/new-impl--modeling.NewForQuestionAnswering",
|
| 12 |
+
"AutoModelForSequenceClassification": "Alibaba-NLP/new-impl--modeling.NewForSequenceClassification",
|
| 13 |
+
"AutoModelForTokenClassification": "Alibaba-NLP/new-impl--modeling.NewForTokenClassification"
|
| 14 |
+
},
|
| 15 |
+
"classifier_dropout": 0.1,
|
| 16 |
+
"dtype": "float32",
|
| 17 |
+
"hidden_act": "gelu",
|
| 18 |
+
"hidden_dropout_prob": 0.1,
|
| 19 |
+
"hidden_size": 768,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"intermediate_size": 3072,
|
| 22 |
+
"layer_norm_eps": 1e-12,
|
| 23 |
+
"layer_norm_type": "layer_norm",
|
| 24 |
+
"logn_attention_clip1": false,
|
| 25 |
+
"logn_attention_scale": false,
|
| 26 |
+
"max_position_embeddings": 8192,
|
| 27 |
+
"model_type": "new",
|
| 28 |
+
"num_attention_heads": 12,
|
| 29 |
+
"num_hidden_layers": 12,
|
| 30 |
+
"pack_qkv": true,
|
| 31 |
+
"pad_token_id": 0,
|
| 32 |
+
"position_embedding_type": "rope",
|
| 33 |
+
"rope_scaling": null,
|
| 34 |
+
"rope_theta": 500000,
|
| 35 |
+
"transformers_version": "4.56.0",
|
| 36 |
+
"type_vocab_size": 0,
|
| 37 |
+
"unpad_inputs": false,
|
| 38 |
+
"use_memory_efficient_attention": false,
|
| 39 |
+
"vocab_size": 30522
|
| 40 |
+
}
|
document_0_MLMTransformer/configuration.py
ADDED
|
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
""" NEW model configuration"""
|
| 17 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 18 |
+
from transformers.utils import logging
|
| 19 |
+
|
| 20 |
+
logger = logging.get_logger(__name__)
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class NewConfig(PretrainedConfig):
|
| 24 |
+
r"""
|
| 25 |
+
This is the configuration class to store the configuration of a [`NewModel`] or a [`TFNewModel`]. It is used to
|
| 26 |
+
instantiate a NEW model according to the specified arguments, defining the model architecture. Instantiating a
|
| 27 |
+
configuration with the defaults will yield a similar configuration to that of the NEW
|
| 28 |
+
[izhx/new-base-en](https://huggingface.co/izhx/new-base-en) architecture.
|
| 29 |
+
|
| 30 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
| 31 |
+
documentation from [`PretrainedConfig`] for more information.
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
Args:
|
| 35 |
+
vocab_size (`int`, *optional*, defaults to 30522):
|
| 36 |
+
Vocabulary size of the NEW model. Defines the number of different tokens that can be represented by the
|
| 37 |
+
`inputs_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
| 38 |
+
hidden_size (`int`, *optional*, defaults to 768):
|
| 39 |
+
Dimensionality of the encoder layers and the pooler layer.
|
| 40 |
+
num_hidden_layers (`int`, *optional*, defaults to 12):
|
| 41 |
+
Number of hidden layers in the Transformer encoder.
|
| 42 |
+
num_attention_heads (`int`, *optional*, defaults to 12):
|
| 43 |
+
Number of attention heads for each attention layer in the Transformer encoder.
|
| 44 |
+
intermediate_size (`int`, *optional*, defaults to 3072):
|
| 45 |
+
Dimensionality of the "intermediate" (often named feed-forward) layer in the Transformer encoder.
|
| 46 |
+
hidden_act (`str` or `Callable`, *optional*, defaults to `"gelu"`):
|
| 47 |
+
The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
|
| 48 |
+
`"relu"`, `"silu"` and `"gelu_new"` are supported.
|
| 49 |
+
hidden_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 50 |
+
The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
|
| 51 |
+
attention_probs_dropout_prob (`float`, *optional*, defaults to 0.1):
|
| 52 |
+
The dropout ratio for the attention probabilities.
|
| 53 |
+
max_position_embeddings (`int`, *optional*, defaults to 512):
|
| 54 |
+
The maximum sequence length that this model might ever be used with. Typically set this to something large
|
| 55 |
+
just in case (e.g., 512 or 1024 or 2048).
|
| 56 |
+
type_vocab_size (`int`, *optional*, defaults to 2):
|
| 57 |
+
The vocabulary size of the `token_type_ids` passed when calling [`NewModel`] or [`TFNewModel`].
|
| 58 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
| 59 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
| 60 |
+
layer_norm_eps (`float`, *optional*, defaults to 1e-12):
|
| 61 |
+
The epsilon used by the layer normalization layers.
|
| 62 |
+
position_embedding_type (`str`, *optional*, defaults to `"rope"`):
|
| 63 |
+
Type of position embedding. Choose one of `"absolute"`, `"rope"`.
|
| 64 |
+
rope_theta (`float`, *optional*, defaults to 10000.0):
|
| 65 |
+
The base period of the RoPE embeddings.
|
| 66 |
+
rope_scaling (`Dict`, *optional*):
|
| 67 |
+
Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
|
| 68 |
+
strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
|
| 69 |
+
`{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
|
| 70 |
+
`max_position_embeddings` to the expected new maximum. See the following thread for more information on how
|
| 71 |
+
these scaling strategies behave:
|
| 72 |
+
https://www.reddit.com/r/LocalLLaMA/comments/14mrgpr/dynamically_scaled_rope_further_increases/. This is an
|
| 73 |
+
experimental feature, subject to breaking API changes in future versions.
|
| 74 |
+
classifier_dropout (`float`, *optional*):
|
| 75 |
+
The dropout ratio for the classification head.
|
| 76 |
+
|
| 77 |
+
Examples:
|
| 78 |
+
|
| 79 |
+
```python
|
| 80 |
+
>>> from transformers import NewConfig, NewModel
|
| 81 |
+
|
| 82 |
+
>>> # Initializing a NEW izhx/new-base-en style configuration
|
| 83 |
+
>>> configuration = NewConfig()
|
| 84 |
+
|
| 85 |
+
>>> # Initializing a model (with random weights) from the izhx/new-base-en style configuration
|
| 86 |
+
>>> model = NewModel(configuration)
|
| 87 |
+
|
| 88 |
+
>>> # Accessing the model configuration
|
| 89 |
+
>>> configuration = model.config
|
| 90 |
+
```"""
|
| 91 |
+
|
| 92 |
+
model_type = "new"
|
| 93 |
+
|
| 94 |
+
def __init__(
|
| 95 |
+
self,
|
| 96 |
+
vocab_size=30528,
|
| 97 |
+
hidden_size=768,
|
| 98 |
+
num_hidden_layers=12,
|
| 99 |
+
num_attention_heads=12,
|
| 100 |
+
intermediate_size=3072,
|
| 101 |
+
hidden_act="gelu",
|
| 102 |
+
hidden_dropout_prob=0.1,
|
| 103 |
+
attention_probs_dropout_prob=0.0,
|
| 104 |
+
max_position_embeddings=2048,
|
| 105 |
+
type_vocab_size=1,
|
| 106 |
+
initializer_range=0.02,
|
| 107 |
+
layer_norm_type='layer_norm',
|
| 108 |
+
layer_norm_eps=1e-12,
|
| 109 |
+
# pad_token_id=0,
|
| 110 |
+
position_embedding_type="rope",
|
| 111 |
+
rope_theta=10000.0,
|
| 112 |
+
rope_scaling=None,
|
| 113 |
+
classifier_dropout=None,
|
| 114 |
+
pack_qkv=True,
|
| 115 |
+
unpad_inputs=False,
|
| 116 |
+
use_memory_efficient_attention=False,
|
| 117 |
+
logn_attention_scale=False,
|
| 118 |
+
logn_attention_clip1=False,
|
| 119 |
+
**kwargs,
|
| 120 |
+
):
|
| 121 |
+
super().__init__(**kwargs)
|
| 122 |
+
|
| 123 |
+
self.vocab_size = vocab_size
|
| 124 |
+
self.hidden_size = hidden_size
|
| 125 |
+
self.num_hidden_layers = num_hidden_layers
|
| 126 |
+
self.num_attention_heads = num_attention_heads
|
| 127 |
+
self.hidden_act = hidden_act
|
| 128 |
+
self.intermediate_size = intermediate_size
|
| 129 |
+
self.hidden_dropout_prob = hidden_dropout_prob
|
| 130 |
+
self.attention_probs_dropout_prob = attention_probs_dropout_prob
|
| 131 |
+
self.max_position_embeddings = max_position_embeddings
|
| 132 |
+
self.type_vocab_size = type_vocab_size
|
| 133 |
+
self.initializer_range = initializer_range
|
| 134 |
+
self.layer_norm_type = layer_norm_type
|
| 135 |
+
self.layer_norm_eps = layer_norm_eps
|
| 136 |
+
self.position_embedding_type = position_embedding_type
|
| 137 |
+
self.rope_theta = rope_theta
|
| 138 |
+
self.rope_scaling = rope_scaling
|
| 139 |
+
self.classifier_dropout = classifier_dropout
|
| 140 |
+
|
| 141 |
+
self.pack_qkv = pack_qkv
|
| 142 |
+
self.unpad_inputs = unpad_inputs
|
| 143 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
| 144 |
+
self.logn_attention_scale = logn_attention_scale
|
| 145 |
+
self.logn_attention_clip1 = logn_attention_clip1
|
document_0_MLMTransformer/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:1e9e520aa409c75548ba3cef4cb1dc440ffc0443ec609ae3352ca8d8f70d7077
|
| 3 |
+
size 549592272
|
document_0_MLMTransformer/modeling.py
ADDED
|
@@ -0,0 +1,1418 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2024 The GTE Team Authors and Alibaba Group.
|
| 3 |
+
# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved.
|
| 4 |
+
#
|
| 5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
# you may not use this file except in compliance with the License.
|
| 7 |
+
# You may obtain a copy of the License at
|
| 8 |
+
#
|
| 9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 10 |
+
#
|
| 11 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 14 |
+
# See the License for the specific language governing permissions and
|
| 15 |
+
# limitations under the License.
|
| 16 |
+
"""PyTorch NEW model."""
|
| 17 |
+
|
| 18 |
+
import math
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
from typing import List, Optional, Tuple, Union
|
| 21 |
+
|
| 22 |
+
import torch
|
| 23 |
+
import torch.utils.checkpoint
|
| 24 |
+
from torch import nn
|
| 25 |
+
|
| 26 |
+
from transformers.activations import ACT2FN
|
| 27 |
+
from transformers.modeling_outputs import (
|
| 28 |
+
BaseModelOutput,
|
| 29 |
+
BaseModelOutputWithPooling,
|
| 30 |
+
MaskedLMOutput,
|
| 31 |
+
MultipleChoiceModelOutput,
|
| 32 |
+
QuestionAnsweringModelOutput,
|
| 33 |
+
SequenceClassifierOutput,
|
| 34 |
+
ModelOutput,
|
| 35 |
+
)
|
| 36 |
+
from transformers.modeling_utils import PreTrainedModel
|
| 37 |
+
from transformers.utils import logging
|
| 38 |
+
|
| 39 |
+
try:
|
| 40 |
+
import xformers.ops as xops
|
| 41 |
+
except ImportError as e:
|
| 42 |
+
xops = None
|
| 43 |
+
|
| 44 |
+
from .configuration import NewConfig
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__)
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
# Adapted from https://github.com/HazyResearch/flash-attention/blob/main/flash_attn/bert_padding.py
|
| 51 |
+
# Which was adapted from https://github.com/mlcommons/training_results_v1.1/blob/main/NVIDIA/benchmarks/bert/implementations/pytorch/padding.py
|
| 52 |
+
class IndexFirstAxis(torch.autograd.Function):
|
| 53 |
+
@staticmethod
|
| 54 |
+
def forward(ctx, input, indices):
|
| 55 |
+
ctx.save_for_backward(indices)
|
| 56 |
+
assert input.ndim >= 2
|
| 57 |
+
ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:]
|
| 58 |
+
second_dim = other_shape.numel()
|
| 59 |
+
# TD [2022-03-04] For some reason torch.gather is a bit faster than indexing.
|
| 60 |
+
# return input[indices]
|
| 61 |
+
# return torch.gather(
|
| 62 |
+
# rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim)
|
| 63 |
+
# ).reshape(-1, *other_shape)
|
| 64 |
+
return torch.gather(
|
| 65 |
+
input.view(ctx.first_axis_dim, second_dim),
|
| 66 |
+
0,
|
| 67 |
+
indices.unsqueeze(-1).expand(indices.size(0), second_dim)
|
| 68 |
+
).reshape(-1, *other_shape)
|
| 69 |
+
|
| 70 |
+
@staticmethod
|
| 71 |
+
def backward(ctx, grad_output):
|
| 72 |
+
(indices,) = ctx.saved_tensors
|
| 73 |
+
assert grad_output.ndim >= 2
|
| 74 |
+
other_shape = grad_output.shape[1:]
|
| 75 |
+
# grad_output = rearrange(grad_output, "b ... -> b (...)")
|
| 76 |
+
grad_output = grad_output.view(grad_output.size(0), other_shape.numel())
|
| 77 |
+
grad_input = torch.zeros(
|
| 78 |
+
[ctx.first_axis_dim, grad_output.shape[1]],
|
| 79 |
+
device=grad_output.device,
|
| 80 |
+
dtype=grad_output.dtype,
|
| 81 |
+
)
|
| 82 |
+
# TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing.
|
| 83 |
+
# grad_input[indices] = grad_output
|
| 84 |
+
# grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output)
|
| 85 |
+
grad_input.scatter_(
|
| 86 |
+
0, indices.unsqueeze(-1).expand(indices.size(0), grad_output.size(1)), grad_output
|
| 87 |
+
)
|
| 88 |
+
return grad_input.reshape(ctx.first_axis_dim, *other_shape), None
|
| 89 |
+
|
| 90 |
+
|
| 91 |
+
index_first_axis = IndexFirstAxis.apply
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def unpad_input(hidden_states, attention_mask=None, indices=None):
|
| 95 |
+
"""
|
| 96 |
+
Arguments:
|
| 97 |
+
hidden_states: (batch, seqlen, ...)
|
| 98 |
+
attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid.
|
| 99 |
+
indices: (total_nnz), the indices of non-masked tokens from the flattened input sequence.
|
| 100 |
+
Return:
|
| 101 |
+
hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
| 102 |
+
"""
|
| 103 |
+
if indices is None:
|
| 104 |
+
assert attention_mask is not None
|
| 105 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 106 |
+
|
| 107 |
+
# TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the
|
| 108 |
+
# bool mask, then call nonzero to get the indices, then index with those. The indices is @dim
|
| 109 |
+
# times larger than it needs to be, wasting memory. It's faster and more memory-efficient to
|
| 110 |
+
# index with integer indices. Moreover, torch's index is a bit slower than it needs to be,
|
| 111 |
+
# so we write custom forward and backward to make it a bit faster.
|
| 112 |
+
hidden_states = hidden_states.view(-1, *hidden_states.shape[2:])
|
| 113 |
+
return index_first_axis(hidden_states, indices)
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
class IndexPutFirstAxis(torch.autograd.Function):
|
| 117 |
+
@staticmethod
|
| 118 |
+
def forward(
|
| 119 |
+
ctx,
|
| 120 |
+
values: torch.Tensor,
|
| 121 |
+
indices: torch.Tensor,
|
| 122 |
+
first_axis_dim
|
| 123 |
+
) -> torch.Tensor:
|
| 124 |
+
ctx.save_for_backward(indices)
|
| 125 |
+
assert indices.ndim == 1
|
| 126 |
+
assert values.ndim >= 2
|
| 127 |
+
output = torch.zeros(
|
| 128 |
+
first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype
|
| 129 |
+
)
|
| 130 |
+
output[indices] = values
|
| 131 |
+
return output
|
| 132 |
+
|
| 133 |
+
@staticmethod
|
| 134 |
+
def backward(ctx, grad_output: torch.Tensor) -> Tuple[torch.Tensor, None, None]:
|
| 135 |
+
indices, = ctx.saved_tensors
|
| 136 |
+
grad_values = grad_output[indices]
|
| 137 |
+
return grad_values, None, None
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
index_put_first_axis = IndexPutFirstAxis.apply
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def pad_input(inputs: torch.Tensor, indices: torch.Tensor, batch: int, seqlen: int) -> torch.Tensor:
|
| 144 |
+
"""Add padding to sequences.
|
| 145 |
+
|
| 146 |
+
Arguments:
|
| 147 |
+
inputs: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask.
|
| 148 |
+
indices: (total_nnz), `indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()`
|
| 149 |
+
batch: int batch_size
|
| 150 |
+
seqlen: int max sequence length
|
| 151 |
+
|
| 152 |
+
Returns:
|
| 153 |
+
inputs: (batch, seqlen, ...)
|
| 154 |
+
"""
|
| 155 |
+
output = index_put_first_axis(inputs, indices, batch * seqlen)
|
| 156 |
+
return output.view(batch, seqlen, *inputs.shape[1:])
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
def rotate_half(x):
|
| 160 |
+
"""Rotates half the hidden dims of the input."""
|
| 161 |
+
x1 = x[..., : x.shape[-1] // 2]
|
| 162 |
+
x2 = x[..., x.shape[-1] // 2 :]
|
| 163 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 164 |
+
|
| 165 |
+
|
| 166 |
+
def apply_rotary_pos_emb(q, k, cos, sin):
|
| 167 |
+
"""Applies Rotary Position Embedding to the query and key tensors.
|
| 168 |
+
|
| 169 |
+
Args:
|
| 170 |
+
q (`torch.Tensor`): The query tensor.
|
| 171 |
+
k (`torch.Tensor`): The key tensor.
|
| 172 |
+
cos (`torch.Tensor`): The cosine part of the rotary embedding.
|
| 173 |
+
sin (`torch.Tensor`): The sine part of the rotary embedding.
|
| 174 |
+
Returns:
|
| 175 |
+
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
|
| 176 |
+
"""
|
| 177 |
+
cos, sin = cos.to(q.dtype), sin.to(q.dtype)
|
| 178 |
+
q_embed = (q * cos) + (rotate_half(q) * sin)
|
| 179 |
+
k_embed = (k * cos) + (rotate_half(k) * sin)
|
| 180 |
+
return q_embed, k_embed
|
| 181 |
+
|
| 182 |
+
|
| 183 |
+
class RotaryEmbedding(torch.nn.Module):
|
| 184 |
+
def __init__(self, dim, max_position_embeddings=512, base=10000.0, device=None):
|
| 185 |
+
super().__init__()
|
| 186 |
+
|
| 187 |
+
self.dim = dim
|
| 188 |
+
self.max_position_embeddings = max_position_embeddings
|
| 189 |
+
self.base = base
|
| 190 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 191 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 192 |
+
|
| 193 |
+
# Build here to make `torch.jit.trace` work.
|
| 194 |
+
self._set_cos_sin_cache(
|
| 195 |
+
seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 196 |
+
)
|
| 197 |
+
|
| 198 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 199 |
+
self.max_seq_len_cached = seq_len
|
| 200 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
| 201 |
+
|
| 202 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 203 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 204 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 205 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 206 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 207 |
+
|
| 208 |
+
def forward(self, x, seq_len=None):
|
| 209 |
+
# x: [bs, num_attention_heads, seq_len, head_size]
|
| 210 |
+
if seq_len > self.max_seq_len_cached:
|
| 211 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
|
| 212 |
+
|
| 213 |
+
return (
|
| 214 |
+
self.cos_cached[:seq_len, ...].to(dtype=x.dtype),
|
| 215 |
+
self.sin_cached[:seq_len, ...].to(dtype=x.dtype),
|
| 216 |
+
)
|
| 217 |
+
|
| 218 |
+
|
| 219 |
+
class NTKScalingRotaryEmbedding(RotaryEmbedding):
|
| 220 |
+
"""RotaryEmbedding extended with fixed and mixed NTK scaling. https://kexue.fm/archives/9706 """
|
| 221 |
+
|
| 222 |
+
def __init__(self, dim, max_position_embeddings=512, base=10000, device=None, scaling_factor=1.0, mixed_b=None):
|
| 223 |
+
self.scaling_factor = scaling_factor
|
| 224 |
+
self.mixed_b = mixed_b
|
| 225 |
+
super().__init__(dim, max_position_embeddings, base, device)
|
| 226 |
+
max_position_embeddings = max_position_embeddings * self.scaling_factor
|
| 227 |
+
self._set_cos_sin_cache(max_position_embeddings, self.inv_freq.device, torch.get_default_dtype())
|
| 228 |
+
|
| 229 |
+
def _set_cos_sin_cache(self, seq_len, device, dtype):
|
| 230 |
+
self.max_seq_len_cached = seq_len
|
| 231 |
+
|
| 232 |
+
if seq_len > self.max_position_embeddings:
|
| 233 |
+
base = self.base * (self.scaling_factor if self.mixed_b is None else 1)
|
| 234 |
+
inv_freq = 1.0 / (base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim))
|
| 235 |
+
|
| 236 |
+
if self.mixed_b is None:
|
| 237 |
+
inv_freq = inv_freq / self.scaling_factor ** (2 / self.dim) # (6)
|
| 238 |
+
else:
|
| 239 |
+
a = torch.tensor(self.scaling_factor).log() / (self.dim / 2) ** self.mixed_b # (13)
|
| 240 |
+
lambda_1_m = (a * torch.arange(1, self.dim // 2 + 1).float().to(device) ** self.mixed_b).exp() # (12)
|
| 241 |
+
inv_freq = inv_freq / lambda_1_m # (10)
|
| 242 |
+
|
| 243 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 244 |
+
|
| 245 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.float32)
|
| 246 |
+
|
| 247 |
+
freqs = torch.einsum("i,j->ij", t, self.inv_freq)
|
| 248 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 249 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 250 |
+
self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
|
| 251 |
+
self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
|
| 252 |
+
|
| 253 |
+
|
| 254 |
+
class RMSNorm(nn.Module):
|
| 255 |
+
def __init__(self, hidden_size, eps=1e-6):
|
| 256 |
+
"""
|
| 257 |
+
RMSNorm is equivalent to T5LayerNorm
|
| 258 |
+
"""
|
| 259 |
+
super().__init__()
|
| 260 |
+
self.weight = nn.Parameter(torch.ones(hidden_size))
|
| 261 |
+
self.variance_epsilon = eps
|
| 262 |
+
|
| 263 |
+
def forward(self, hidden_states):
|
| 264 |
+
input_dtype = hidden_states.dtype
|
| 265 |
+
hidden_states = hidden_states.to(torch.float32)
|
| 266 |
+
variance = hidden_states.pow(2).mean(-1, keepdim=True)
|
| 267 |
+
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
|
| 268 |
+
return self.weight * hidden_states.to(input_dtype)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
LAYER_NORM = {
|
| 272 |
+
'layer_norm': nn.LayerNorm,
|
| 273 |
+
'rms_norm': RMSNorm
|
| 274 |
+
}
|
| 275 |
+
|
| 276 |
+
|
| 277 |
+
class NewEmbeddings(nn.Module):
|
| 278 |
+
"""
|
| 279 |
+
Embedding and Unpadding.
|
| 280 |
+
"""
|
| 281 |
+
|
| 282 |
+
def __init__(self, config: NewConfig):
|
| 283 |
+
super().__init__()
|
| 284 |
+
self.padding_idx = config.pad_token_id
|
| 285 |
+
self.word_embeddings = nn.Embedding(
|
| 286 |
+
config.vocab_size, config.hidden_size, padding_idx=self.padding_idx
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
self.position_embedding_type = config.position_embedding_type
|
| 290 |
+
if self.position_embedding_type == 'absolute':
|
| 291 |
+
self.position_embeddings = nn.Embedding(
|
| 292 |
+
config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx
|
| 293 |
+
)
|
| 294 |
+
elif self.position_embedding_type == 'rope':
|
| 295 |
+
self._init_rope(config)
|
| 296 |
+
else:
|
| 297 |
+
raise ValueError
|
| 298 |
+
|
| 299 |
+
self.type_vocab_size = config.type_vocab_size
|
| 300 |
+
if self.type_vocab_size > 0:
|
| 301 |
+
self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
|
| 302 |
+
|
| 303 |
+
# self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
|
| 304 |
+
# any TensorFlow checkpoint file
|
| 305 |
+
self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 306 |
+
self.dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 307 |
+
# position_ids is contiguous in memory and excluded when serialized
|
| 308 |
+
self.register_buffer(
|
| 309 |
+
"position_ids", torch.arange(config.max_position_embeddings), persistent=False
|
| 310 |
+
)
|
| 311 |
+
|
| 312 |
+
def _init_rope(self, config):
|
| 313 |
+
kwargs = dict(
|
| 314 |
+
dim=int(config.hidden_size / config.num_attention_heads),
|
| 315 |
+
max_position_embeddings=config.max_position_embeddings,
|
| 316 |
+
base=config.rope_theta
|
| 317 |
+
)
|
| 318 |
+
if config.rope_scaling is None:
|
| 319 |
+
self.rotary_emb = RotaryEmbedding(**kwargs)
|
| 320 |
+
else:
|
| 321 |
+
kwargs.update(scaling_factor=config.rope_scaling["factor"])
|
| 322 |
+
scaling_type = config.rope_scaling["type"]
|
| 323 |
+
if scaling_type == 'ntk':
|
| 324 |
+
kwargs.update(mixed_b=config.rope_scaling.get('mixed_b', None))
|
| 325 |
+
self.rotary_emb = NTKScalingRotaryEmbedding(**kwargs)
|
| 326 |
+
# elif scaling_type == "linear":
|
| 327 |
+
# self.rotary_emb = LinearScalingRotaryEmbedding(**kwargs)
|
| 328 |
+
# elif scaling_type == "dynamic":
|
| 329 |
+
# self.rotary_emb = DynamicNTKScalingRotaryEmbedding(**kwargs)
|
| 330 |
+
else:
|
| 331 |
+
raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
|
| 332 |
+
|
| 333 |
+
def forward(
|
| 334 |
+
self,
|
| 335 |
+
unpad_inputs: bool,
|
| 336 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 337 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 338 |
+
length: Optional[List[int]] = None,
|
| 339 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 340 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 341 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 342 |
+
) -> Tuple[torch.Tensor, torch.Tensor, Optional[Tuple], Optional[List[int]]]:
|
| 343 |
+
"""
|
| 344 |
+
"""
|
| 345 |
+
if inputs_embeds is None:
|
| 346 |
+
device, input_shape = input_ids.device, input_ids.shape
|
| 347 |
+
else:
|
| 348 |
+
device, input_shape = inputs_embeds.device, inputs_embeds.shape[:2]
|
| 349 |
+
batch_size, seq_length = input_shape
|
| 350 |
+
|
| 351 |
+
# Set attention_mask if it's None
|
| 352 |
+
if attention_mask is None:
|
| 353 |
+
attention_mask = torch.ones(input_shape, device=device)
|
| 354 |
+
if length is not None:
|
| 355 |
+
for i, l in enumerate(length):
|
| 356 |
+
attention_mask[i, l:] = 0
|
| 357 |
+
|
| 358 |
+
# Set attention_mask_bool for unpadding
|
| 359 |
+
if unpad_inputs:
|
| 360 |
+
attention_mask_bool = attention_mask.bool()
|
| 361 |
+
if length is None:
|
| 362 |
+
length = attention_mask.sum(-1).tolist()
|
| 363 |
+
|
| 364 |
+
# Get word embeddings
|
| 365 |
+
if inputs_embeds is None:
|
| 366 |
+
if unpad_inputs:
|
| 367 |
+
input_ids = input_ids[attention_mask_bool].unsqueeze(0)
|
| 368 |
+
inputs_embeds = self.word_embeddings(input_ids)
|
| 369 |
+
else:
|
| 370 |
+
if unpad_inputs:
|
| 371 |
+
inputs_embeds = inputs_embeds[attention_mask_bool].unsqueeze(0)
|
| 372 |
+
embeddings = inputs_embeds
|
| 373 |
+
|
| 374 |
+
# Set and unpad position_ids
|
| 375 |
+
if position_ids is None:
|
| 376 |
+
if seq_length > self.position_ids.size(0):
|
| 377 |
+
self.register_buffer(
|
| 378 |
+
"position_ids", torch.arange(seq_length, device=embeddings.device), persistent=False
|
| 379 |
+
)
|
| 380 |
+
if unpad_inputs:
|
| 381 |
+
# [1, cumsum_seq_len]
|
| 382 |
+
position_ids = torch.cat([self.position_ids[:l] for l in length]).unsqueeze(0)
|
| 383 |
+
else:
|
| 384 |
+
# [bs, seq_len]
|
| 385 |
+
position_ids = self.position_ids[:seq_length].expand(batch_size, -1)
|
| 386 |
+
elif unpad_inputs:
|
| 387 |
+
position_ids = position_ids[attention_mask_bool].unsqueeze(0) # [1, cumsum_seq_len]
|
| 388 |
+
|
| 389 |
+
# Compute rotary embedding
|
| 390 |
+
if self.position_embedding_type == 'rope':
|
| 391 |
+
rope_cos, rope_sin = self.rotary_emb(inputs_embeds, seq_len=seq_length)
|
| 392 |
+
rope_cos = rope_cos[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
|
| 393 |
+
rope_sin = rope_sin[position_ids].unsqueeze(2) # [bs, seq_len, 1, dim]
|
| 394 |
+
rope_embeds = rope_cos, rope_sin
|
| 395 |
+
else:
|
| 396 |
+
rope_embeds = None
|
| 397 |
+
|
| 398 |
+
if self.type_vocab_size > 0:
|
| 399 |
+
if token_type_ids is None:
|
| 400 |
+
token_type_ids = position_ids.mul(0)
|
| 401 |
+
else:
|
| 402 |
+
if self.type_vocab_size < 2:
|
| 403 |
+
token_type_ids.mul_(0)
|
| 404 |
+
if unpad_inputs:
|
| 405 |
+
token_type_ids = token_type_ids[attention_mask_bool].unsqueeze(0)
|
| 406 |
+
|
| 407 |
+
token_type_embeddings = self.token_type_embeddings(token_type_ids)
|
| 408 |
+
embeddings = embeddings + token_type_embeddings
|
| 409 |
+
|
| 410 |
+
# BERT position
|
| 411 |
+
if self.position_embedding_type == "absolute":
|
| 412 |
+
position_embeddings = self.position_embeddings(position_ids)
|
| 413 |
+
embeddings = embeddings + position_embeddings
|
| 414 |
+
|
| 415 |
+
embeddings = self.LayerNorm(embeddings)
|
| 416 |
+
embeddings = self.dropout(embeddings)
|
| 417 |
+
|
| 418 |
+
return embeddings, attention_mask, rope_embeds, length
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
class NewAttention(nn.Module):
|
| 422 |
+
def __init__(self, config: NewConfig, pack_qkv=None, use_memory_efficient_attention=None):
|
| 423 |
+
super().__init__()
|
| 424 |
+
self.config = config
|
| 425 |
+
if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
|
| 426 |
+
raise ValueError(
|
| 427 |
+
f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention "
|
| 428 |
+
f"heads ({config.num_attention_heads})"
|
| 429 |
+
)
|
| 430 |
+
|
| 431 |
+
self.hidden_size = config.hidden_size
|
| 432 |
+
self.num_attention_heads = config.num_attention_heads
|
| 433 |
+
self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
|
| 434 |
+
self.all_head_size = self.num_attention_heads * self.attention_head_size
|
| 435 |
+
|
| 436 |
+
if pack_qkv is None:
|
| 437 |
+
pack_qkv = config.pack_qkv
|
| 438 |
+
self.pack_qkv = pack_qkv
|
| 439 |
+
|
| 440 |
+
if self.pack_qkv:
|
| 441 |
+
self.qkv_proj = nn.Linear(config.hidden_size, self.all_head_size * 3, bias=True)
|
| 442 |
+
else:
|
| 443 |
+
self.q_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 444 |
+
self.k_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 445 |
+
self.v_proj = nn.Linear(config.hidden_size, self.all_head_size, bias=True)
|
| 446 |
+
|
| 447 |
+
self.dropout = nn.Dropout(config.attention_probs_dropout_prob)
|
| 448 |
+
self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=True)
|
| 449 |
+
|
| 450 |
+
if use_memory_efficient_attention is None:
|
| 451 |
+
use_memory_efficient_attention = self.config.use_memory_efficient_attention
|
| 452 |
+
self.use_memory_efficient_attention = use_memory_efficient_attention
|
| 453 |
+
self.memory_efficient_attention = None if xops is None else xops.memory_efficient_attention
|
| 454 |
+
if self.use_memory_efficient_attention:
|
| 455 |
+
assert self.memory_efficient_attention is not None, 'please install xformers'
|
| 456 |
+
|
| 457 |
+
def forward(
|
| 458 |
+
self,
|
| 459 |
+
hidden_states: torch.Tensor,
|
| 460 |
+
attention_bias: torch.FloatTensor,
|
| 461 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
| 462 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
| 463 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
| 464 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 465 |
+
output_attentions: Optional[bool] = False,
|
| 466 |
+
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
| 467 |
+
) -> Tuple[torch.Tensor, ...]:
|
| 468 |
+
shape_hd = (self.num_attention_heads, self.attention_head_size)
|
| 469 |
+
# qkv
|
| 470 |
+
if self.pack_qkv and qkv_inputs is None:
|
| 471 |
+
qkv_pack = self.qkv_proj(hidden_states).split(self.all_head_size, dim=-1)
|
| 472 |
+
else:
|
| 473 |
+
if qkv_inputs is None:
|
| 474 |
+
qkv_inputs = (hidden_states, hidden_states, hidden_states)
|
| 475 |
+
qkv_pack = [
|
| 476 |
+
getattr(self, n + '_proj')(s) for s, n in zip(qkv_inputs, 'qkv')
|
| 477 |
+
]
|
| 478 |
+
query_states, key_states, value_states = [t.view(t.shape[:-1] + shape_hd) for t in qkv_pack]
|
| 479 |
+
|
| 480 |
+
if self.config.position_embedding_type == 'rope':
|
| 481 |
+
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, *rope_embeds)
|
| 482 |
+
|
| 483 |
+
dtype = query_states.dtype
|
| 484 |
+
|
| 485 |
+
if self.config.logn_attention_scale and attention_scale is not None:
|
| 486 |
+
# https://kexue.fm/archives/8823
|
| 487 |
+
query_states = query_states * attention_scale.to(dtype)
|
| 488 |
+
|
| 489 |
+
if padding_inputs is not None:
|
| 490 |
+
query_states = pad_input(query_states.squeeze(), *padding_inputs)
|
| 491 |
+
key_states = pad_input(key_states.squeeze(), *padding_inputs)
|
| 492 |
+
value_states = pad_input(value_states.squeeze(), *padding_inputs)
|
| 493 |
+
|
| 494 |
+
if self.use_memory_efficient_attention:
|
| 495 |
+
assert self.memory_efficient_attention is not None, "xformers is not loaded"
|
| 496 |
+
assert output_attentions is False, "memory_efficient_attention do not output attentions"
|
| 497 |
+
assert head_mask is None, "Not support yet"
|
| 498 |
+
attention_probs = None
|
| 499 |
+
if torch.is_tensor(attention_bias):
|
| 500 |
+
attention_bias = attention_bias.to(dtype)
|
| 501 |
+
context_layer = self.memory_efficient_attention(
|
| 502 |
+
query_states,
|
| 503 |
+
key_states,
|
| 504 |
+
value_states,
|
| 505 |
+
attn_bias=attention_bias,
|
| 506 |
+
p=self.dropout.p
|
| 507 |
+
)
|
| 508 |
+
else:
|
| 509 |
+
if output_attentions and isinstance(self, NewSdpaAttention):
|
| 510 |
+
raise RuntimeError("SDPA do not output attentions")
|
| 511 |
+
context_layer, attention_probs = self._attention(
|
| 512 |
+
query_states, key_states, value_states, attention_bias, head_mask
|
| 513 |
+
)
|
| 514 |
+
|
| 515 |
+
if padding_inputs is not None:
|
| 516 |
+
context_layer = unpad_input(context_layer, indices=padding_inputs[0])
|
| 517 |
+
|
| 518 |
+
new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
|
| 519 |
+
context_layer = context_layer.view(new_context_layer_shape)
|
| 520 |
+
|
| 521 |
+
# output proj
|
| 522 |
+
attn_output = self.o_proj(context_layer)
|
| 523 |
+
|
| 524 |
+
# add attentions if we output them
|
| 525 |
+
outputs = (attn_output, attention_probs) if output_attentions else (attn_output,)
|
| 526 |
+
return outputs
|
| 527 |
+
|
| 528 |
+
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
| 529 |
+
"""
|
| 530 |
+
Args:
|
| 531 |
+
q/k/v: (B, L, n_head, head_dim),
|
| 532 |
+
Returns:
|
| 533 |
+
attn_output: (B L, n_head, head_dim)
|
| 534 |
+
"""
|
| 535 |
+
query_states = query_states.transpose(1, 2)
|
| 536 |
+
key_states = key_states.transpose(1, 2)
|
| 537 |
+
value_states = value_states.transpose(1, 2)
|
| 538 |
+
# Take the dot product between "query" and "key" to get the raw attention scores.
|
| 539 |
+
attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2))
|
| 540 |
+
|
| 541 |
+
attention_scores = attention_scores / math.sqrt(self.attention_head_size)
|
| 542 |
+
if attention_bias is not None:
|
| 543 |
+
# Apply the attention mask is (precomputed for all layers in BertModel forward() function)
|
| 544 |
+
attention_scores = attention_scores + attention_bias
|
| 545 |
+
|
| 546 |
+
# Normalize the attention scores to probabilities.
|
| 547 |
+
attention_probs = nn.functional.softmax(attention_scores, dim=-1)
|
| 548 |
+
|
| 549 |
+
# This is actually dropping out entire tokens to attend to, which might
|
| 550 |
+
# seem a bit unusual, but is taken from the original Transformer paper.
|
| 551 |
+
if self.dropout.p > 0:
|
| 552 |
+
attention_probs = self.dropout(attention_probs)
|
| 553 |
+
|
| 554 |
+
# Mask heads if we want to
|
| 555 |
+
if head_mask is not None:
|
| 556 |
+
attention_probs = attention_probs * head_mask
|
| 557 |
+
|
| 558 |
+
context_layer = torch.matmul(attention_probs, value_states)
|
| 559 |
+
|
| 560 |
+
context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
|
| 561 |
+
return context_layer, attention_probs
|
| 562 |
+
|
| 563 |
+
|
| 564 |
+
class NewSdpaAttention(NewAttention):
|
| 565 |
+
"""
|
| 566 |
+
New attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
|
| 567 |
+
`NewAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
|
| 568 |
+
SDPA API.
|
| 569 |
+
"""
|
| 570 |
+
def __init__(self, config: NewConfig, **kwargs):
|
| 571 |
+
super().__init__(config, **kwargs)
|
| 572 |
+
# torch.backends.cuda.enable_mem_efficient_sdp(False)
|
| 573 |
+
# logger.warning(
|
| 574 |
+
# "Disable memory efficient attention kernel for `NewSdpaAttention`, you can set "
|
| 575 |
+
# "`use_memory_efficient_attention=True` if it expected to use."
|
| 576 |
+
# )
|
| 577 |
+
|
| 578 |
+
def _attention(self, query_states, key_states, value_states, attention_bias, head_mask):
|
| 579 |
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
| 580 |
+
query_states.transpose(1, 2),
|
| 581 |
+
key_states.transpose(1, 2),
|
| 582 |
+
value_states.transpose(1, 2),
|
| 583 |
+
attn_mask=attention_bias,
|
| 584 |
+
dropout_p=self.dropout.p if self.training else 0.0,
|
| 585 |
+
)
|
| 586 |
+
attn_output = attn_output.permute(0, 2, 1, 3).contiguous()
|
| 587 |
+
return attn_output, None
|
| 588 |
+
|
| 589 |
+
|
| 590 |
+
NEW_ATTENTION_CLASSES = {
|
| 591 |
+
"eager": NewAttention,
|
| 592 |
+
# "flash_attention_2": , # TODO
|
| 593 |
+
"sdpa": NewSdpaAttention,
|
| 594 |
+
}
|
| 595 |
+
|
| 596 |
+
|
| 597 |
+
class NewGatedMLP(nn.Module):
|
| 598 |
+
"""
|
| 599 |
+
GLU Variants Improve Transformer.
|
| 600 |
+
"""
|
| 601 |
+
|
| 602 |
+
def __init__(self, config: NewConfig):
|
| 603 |
+
super().__init__()
|
| 604 |
+
self.intermediate_size = config.intermediate_size
|
| 605 |
+
self.up_gate_proj = nn.Linear(config.hidden_size, self.intermediate_size * 2, bias=False)
|
| 606 |
+
self.down_proj = nn.Linear(self.intermediate_size, config.hidden_size, bias=True)
|
| 607 |
+
self.act_fn = ACT2FN[config.hidden_act]
|
| 608 |
+
if config.hidden_dropout_prob > 0:
|
| 609 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 610 |
+
else:
|
| 611 |
+
self.hidden_dropout = None
|
| 612 |
+
|
| 613 |
+
def forward(self, hidden_states):
|
| 614 |
+
up_gate = self.up_gate_proj(hidden_states)
|
| 615 |
+
up_states, gate = torch.split(up_gate, self.intermediate_size, dim=-1)
|
| 616 |
+
gate = self.act_fn(gate)
|
| 617 |
+
gated_states = gate * up_states
|
| 618 |
+
if self.hidden_dropout is not None:
|
| 619 |
+
gated_states = self.hidden_dropout(gated_states)
|
| 620 |
+
down_states = self.down_proj(gated_states)
|
| 621 |
+
return down_states
|
| 622 |
+
|
| 623 |
+
|
| 624 |
+
class NewLayer(nn.Module):
|
| 625 |
+
def __init__(
|
| 626 |
+
self,
|
| 627 |
+
config: NewConfig,
|
| 628 |
+
pack_qkv=None,
|
| 629 |
+
use_memory_efficient_attention=None,
|
| 630 |
+
attn_implementation=None
|
| 631 |
+
):
|
| 632 |
+
super().__init__()
|
| 633 |
+
if attn_implementation is None:
|
| 634 |
+
attn_implementation = config._attn_implementation
|
| 635 |
+
if use_memory_efficient_attention is None:
|
| 636 |
+
use_memory_efficient_attention = config.use_memory_efficient_attention
|
| 637 |
+
if use_memory_efficient_attention:
|
| 638 |
+
if attn_implementation != 'eager':
|
| 639 |
+
logger.warning_once(f"Override {attn_implementation=} to 'eager' as {use_memory_efficient_attention=}")
|
| 640 |
+
attn_implementation = 'eager' # Since it will be SDPA by default for torch>=2.1.1
|
| 641 |
+
self.attention = NEW_ATTENTION_CLASSES[attn_implementation](
|
| 642 |
+
config, pack_qkv=pack_qkv, use_memory_efficient_attention=use_memory_efficient_attention
|
| 643 |
+
)
|
| 644 |
+
self.mlp = NewGatedMLP(config)
|
| 645 |
+
|
| 646 |
+
ln_class = LAYER_NORM[config.layer_norm_type]
|
| 647 |
+
self.attn_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
|
| 648 |
+
self.mlp_ln = ln_class(config.hidden_size, eps=config.layer_norm_eps)
|
| 649 |
+
|
| 650 |
+
if config.hidden_dropout_prob > 0:
|
| 651 |
+
self.hidden_dropout = nn.Dropout(config.hidden_dropout_prob)
|
| 652 |
+
else:
|
| 653 |
+
self.hidden_dropout = None
|
| 654 |
+
|
| 655 |
+
def forward(
|
| 656 |
+
self,
|
| 657 |
+
hidden_states: torch.Tensor,
|
| 658 |
+
attention_bias: torch.FloatTensor,
|
| 659 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
| 660 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
| 661 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
| 662 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
| 663 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 664 |
+
output_attentions: Optional[bool] = False,
|
| 665 |
+
qkv_inputs: Optional[Tuple] = None, # For RetroMAE
|
| 666 |
+
) -> Tuple[torch.Tensor, ...]:
|
| 667 |
+
# Multi head self attention
|
| 668 |
+
residual = hidden_states if qkv_inputs is None else qkv_inputs[0]
|
| 669 |
+
attention_outputs = self.attention(
|
| 670 |
+
hidden_states,
|
| 671 |
+
attention_bias,
|
| 672 |
+
rope_embeds,
|
| 673 |
+
padding_inputs,
|
| 674 |
+
attention_scale,
|
| 675 |
+
head_mask,
|
| 676 |
+
output_attentions=output_attentions,
|
| 677 |
+
qkv_inputs=qkv_inputs,
|
| 678 |
+
)
|
| 679 |
+
hidden_states = attention_outputs[0]
|
| 680 |
+
if self.hidden_dropout is not None:
|
| 681 |
+
hidden_states = self.hidden_dropout(hidden_states)
|
| 682 |
+
hidden_states = residual + hidden_states
|
| 683 |
+
|
| 684 |
+
# In pretraining, after the attention of last layer, we only need the masked tokens.
|
| 685 |
+
if subset_indices is not None:
|
| 686 |
+
hidden_states = hidden_states[subset_indices]
|
| 687 |
+
|
| 688 |
+
hidden_states = self.attn_ln(hidden_states)
|
| 689 |
+
|
| 690 |
+
# Fully Connected
|
| 691 |
+
residual = hidden_states
|
| 692 |
+
hidden_states = self.mlp(hidden_states)
|
| 693 |
+
if self.hidden_dropout is not None:
|
| 694 |
+
hidden_states = self.hidden_dropout(hidden_states)
|
| 695 |
+
hidden_states = residual + hidden_states
|
| 696 |
+
hidden_states = self.mlp_ln(hidden_states)
|
| 697 |
+
|
| 698 |
+
# add self attentions if we output attention weights
|
| 699 |
+
outputs = (hidden_states,) + attention_outputs[1:]
|
| 700 |
+
return outputs
|
| 701 |
+
|
| 702 |
+
|
| 703 |
+
class NewEncoder(nn.Module):
|
| 704 |
+
def __init__(self, config):
|
| 705 |
+
super().__init__()
|
| 706 |
+
self.config = config
|
| 707 |
+
self.layer = nn.ModuleList([NewLayer(config) for _ in range(config.num_hidden_layers)])
|
| 708 |
+
self.gradient_checkpointing = False
|
| 709 |
+
|
| 710 |
+
def forward(
|
| 711 |
+
self,
|
| 712 |
+
hidden_states: torch.Tensor,
|
| 713 |
+
attention_bias: Optional[torch.FloatTensor] = None,
|
| 714 |
+
rope_embeds: Optional[Tuple[torch.FloatTensor, torch.FloatTensor]] = None,
|
| 715 |
+
padding_inputs: Optional[Tuple] = None, # indices, batch, seqlen
|
| 716 |
+
attention_scale: Optional[torch.FloatTensor] = None,
|
| 717 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
| 718 |
+
head_mask: Optional[torch.FloatTensor] = None,
|
| 719 |
+
output_attentions: Optional[bool] = False,
|
| 720 |
+
output_hidden_states: Optional[bool] = False,
|
| 721 |
+
return_dict: Optional[bool] = True,
|
| 722 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutput]:
|
| 723 |
+
all_hidden_states = () if output_hidden_states else None
|
| 724 |
+
all_self_attentions = () if output_attentions else None
|
| 725 |
+
|
| 726 |
+
for i, layer_module in enumerate(self.layer):
|
| 727 |
+
if output_hidden_states:
|
| 728 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 729 |
+
|
| 730 |
+
if i >= len(self.layer) - 1:
|
| 731 |
+
layer_subset_indices = subset_indices
|
| 732 |
+
else:
|
| 733 |
+
layer_subset_indices = None
|
| 734 |
+
|
| 735 |
+
layer_head_mask = head_mask[i] if head_mask is not None else None
|
| 736 |
+
|
| 737 |
+
if self.gradient_checkpointing and self.training:
|
| 738 |
+
layer_outputs = self._gradient_checkpointing_func(
|
| 739 |
+
layer_module.__call__,
|
| 740 |
+
hidden_states,
|
| 741 |
+
attention_bias,
|
| 742 |
+
rope_embeds,
|
| 743 |
+
padding_inputs,
|
| 744 |
+
attention_scale,
|
| 745 |
+
layer_subset_indices,
|
| 746 |
+
layer_head_mask,
|
| 747 |
+
)
|
| 748 |
+
else:
|
| 749 |
+
layer_outputs = layer_module(
|
| 750 |
+
hidden_states,
|
| 751 |
+
attention_bias,
|
| 752 |
+
rope_embeds,
|
| 753 |
+
padding_inputs,
|
| 754 |
+
attention_scale,
|
| 755 |
+
layer_subset_indices,
|
| 756 |
+
layer_head_mask,
|
| 757 |
+
output_attentions,
|
| 758 |
+
)
|
| 759 |
+
|
| 760 |
+
hidden_states = layer_outputs[0]
|
| 761 |
+
if output_attentions:
|
| 762 |
+
all_self_attentions = all_self_attentions + (layer_outputs[1],)
|
| 763 |
+
|
| 764 |
+
if output_hidden_states:
|
| 765 |
+
all_hidden_states = all_hidden_states + (hidden_states,)
|
| 766 |
+
|
| 767 |
+
if not return_dict:
|
| 768 |
+
return tuple(
|
| 769 |
+
v
|
| 770 |
+
for v in [
|
| 771 |
+
hidden_states,
|
| 772 |
+
all_hidden_states,
|
| 773 |
+
all_self_attentions,
|
| 774 |
+
]
|
| 775 |
+
if v is not None
|
| 776 |
+
)
|
| 777 |
+
return BaseModelOutput(
|
| 778 |
+
last_hidden_state=hidden_states,
|
| 779 |
+
hidden_states=all_hidden_states,
|
| 780 |
+
attentions=all_self_attentions,
|
| 781 |
+
)
|
| 782 |
+
|
| 783 |
+
|
| 784 |
+
# Copied from transformers.models.bert.modeling_bert.BertPooler with Bert->New
|
| 785 |
+
class NewPooler(nn.Module):
|
| 786 |
+
def __init__(self, config):
|
| 787 |
+
super().__init__()
|
| 788 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 789 |
+
self.activation = nn.Tanh()
|
| 790 |
+
|
| 791 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 792 |
+
# We "pool" the model by simply taking the hidden state corresponding
|
| 793 |
+
# to the first token.
|
| 794 |
+
first_token_tensor = hidden_states[:, 0]
|
| 795 |
+
pooled_output = self.dense(first_token_tensor)
|
| 796 |
+
pooled_output = self.activation(pooled_output)
|
| 797 |
+
return pooled_output
|
| 798 |
+
|
| 799 |
+
|
| 800 |
+
class NewPreTrainedModel(PreTrainedModel):
|
| 801 |
+
"""
|
| 802 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 803 |
+
models.
|
| 804 |
+
"""
|
| 805 |
+
|
| 806 |
+
config_class = NewConfig
|
| 807 |
+
base_model_prefix = "new"
|
| 808 |
+
supports_gradient_checkpointing = True
|
| 809 |
+
_supports_sdpa = True
|
| 810 |
+
|
| 811 |
+
def _init_weights(self, module):
|
| 812 |
+
"""Initialize the weights"""
|
| 813 |
+
if isinstance(module, nn.Linear):
|
| 814 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
| 815 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
| 816 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 817 |
+
if module.bias is not None:
|
| 818 |
+
module.bias.data.zero_()
|
| 819 |
+
elif isinstance(module, nn.Embedding):
|
| 820 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
| 821 |
+
if module.padding_idx is not None:
|
| 822 |
+
module.weight.data[module.padding_idx].zero_()
|
| 823 |
+
elif isinstance(module, nn.LayerNorm):
|
| 824 |
+
module.bias.data.zero_()
|
| 825 |
+
module.weight.data.fill_(1.0)
|
| 826 |
+
|
| 827 |
+
|
| 828 |
+
class NewModel(NewPreTrainedModel):
|
| 829 |
+
"""
|
| 830 |
+
The bare New Model transformer outputting raw hidden-states without any specific head on top.
|
| 831 |
+
"""
|
| 832 |
+
|
| 833 |
+
def __init__(self, config: NewConfig, add_pooling_layer=False):
|
| 834 |
+
super().__init__(config)
|
| 835 |
+
self.config = config
|
| 836 |
+
|
| 837 |
+
self.embeddings = NewEmbeddings(config)
|
| 838 |
+
self.encoder = NewEncoder(config)
|
| 839 |
+
|
| 840 |
+
self.pooler = NewPooler(config) if add_pooling_layer else None
|
| 841 |
+
|
| 842 |
+
# Initialize weights and apply final processing
|
| 843 |
+
self.post_init()
|
| 844 |
+
|
| 845 |
+
def get_input_embeddings(self):
|
| 846 |
+
return self.embeddings.word_embeddings
|
| 847 |
+
|
| 848 |
+
def set_input_embeddings(self, value):
|
| 849 |
+
self.embeddings.word_embeddings = value
|
| 850 |
+
|
| 851 |
+
def forward(
|
| 852 |
+
self,
|
| 853 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 854 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 855 |
+
length: Optional[List[int]] = None,
|
| 856 |
+
subset_indices: Optional[torch.LongTensor] = None,
|
| 857 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 858 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 859 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 860 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 861 |
+
output_attentions: Optional[bool] = None,
|
| 862 |
+
output_hidden_states: Optional[bool] = None,
|
| 863 |
+
return_dict: Optional[bool] = None,
|
| 864 |
+
unpad_inputs: Optional[bool] = None,
|
| 865 |
+
) -> Union[Tuple[torch.Tensor], BaseModelOutputWithPooling]:
|
| 866 |
+
r"""
|
| 867 |
+
length (`list` of length `batch_size`, *optional*):
|
| 868 |
+
If is `None`, return padded `last_hidden_state`.
|
| 869 |
+
subset_indices ():
|
| 870 |
+
pass
|
| 871 |
+
unpad_inputs (`bool`, *optional*):
|
| 872 |
+
pass
|
| 873 |
+
"""
|
| 874 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
| 875 |
+
output_hidden_states = (
|
| 876 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 877 |
+
)
|
| 878 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 879 |
+
unpad_inputs = unpad_inputs if unpad_inputs is not None else self.config.unpad_inputs
|
| 880 |
+
output_padded = length is None
|
| 881 |
+
|
| 882 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 883 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 884 |
+
elif input_ids is not None:
|
| 885 |
+
self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask)
|
| 886 |
+
input_shape = input_ids.size()
|
| 887 |
+
elif inputs_embeds is not None:
|
| 888 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 889 |
+
else:
|
| 890 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 891 |
+
|
| 892 |
+
# TODO: not used
|
| 893 |
+
# # Prepare head mask if needed
|
| 894 |
+
# # 1.0 in head_mask indicate we keep the head
|
| 895 |
+
# # attention_probs has shape bsz x n_heads x N x N
|
| 896 |
+
# # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
|
| 897 |
+
# # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
|
| 898 |
+
# head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
|
| 899 |
+
|
| 900 |
+
# Get embeddings, may unpad them
|
| 901 |
+
(embedding_output, attention_mask, rope_embeds, length) = self.embeddings(
|
| 902 |
+
unpad_inputs,
|
| 903 |
+
input_ids=input_ids,
|
| 904 |
+
attention_mask=attention_mask,
|
| 905 |
+
length=length,
|
| 906 |
+
token_type_ids=token_type_ids,
|
| 907 |
+
position_ids=position_ids,
|
| 908 |
+
inputs_embeds=inputs_embeds
|
| 909 |
+
)
|
| 910 |
+
|
| 911 |
+
batch_size, seq_length = input_shape
|
| 912 |
+
if unpad_inputs and self.config.use_memory_efficient_attention:
|
| 913 |
+
attention_bias = xops.fmha.attn_bias.BlockDiagonalMask.from_seqlens(length)
|
| 914 |
+
else:
|
| 915 |
+
# We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
|
| 916 |
+
# ourselves in which case we just need to make it broadcastable to all heads.
|
| 917 |
+
attention_bias = self.get_extended_attention_mask(attention_mask, input_shape)
|
| 918 |
+
if self.config.use_memory_efficient_attention:
|
| 919 |
+
# Invalid shape for attention bias: torch.Size([48, 1, 1, 512]) (expected (48, 12, 512, 512))
|
| 920 |
+
attention_bias = attention_bias.expand(-1, self.config.num_attention_heads, seq_length, -1)
|
| 921 |
+
|
| 922 |
+
padding_inputs = None
|
| 923 |
+
if unpad_inputs and (output_padded or not self.config.use_memory_efficient_attention):
|
| 924 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 925 |
+
if not self.config.use_memory_efficient_attention:
|
| 926 |
+
padding_inputs = (indices, *input_shape)
|
| 927 |
+
|
| 928 |
+
attention_scale = None
|
| 929 |
+
if self.config.logn_attention_scale:
|
| 930 |
+
logger.warning_once("TODO: logn_attention_scale")
|
| 931 |
+
# # attention scale log_512(input_len)
|
| 932 |
+
# attention_scale = attention_mask.sum(1).log() / torch.tensor(self.config.max_position_embeddings).log()
|
| 933 |
+
# # inference-time logn scale need clip 1
|
| 934 |
+
# if self.config.logn_attention_clip1:
|
| 935 |
+
# attention_scale.clip_(1)
|
| 936 |
+
# attention_scale = attention_scale[:, None, None, None]
|
| 937 |
+
# else:
|
| 938 |
+
# attention_scale = None
|
| 939 |
+
|
| 940 |
+
encoder_outputs = self.encoder(
|
| 941 |
+
embedding_output,
|
| 942 |
+
attention_bias=attention_bias,
|
| 943 |
+
rope_embeds=rope_embeds,
|
| 944 |
+
padding_inputs=padding_inputs,
|
| 945 |
+
attention_scale=attention_scale,
|
| 946 |
+
subset_indices=subset_indices,
|
| 947 |
+
head_mask=head_mask,
|
| 948 |
+
output_attentions=output_attentions,
|
| 949 |
+
output_hidden_states=output_hidden_states,
|
| 950 |
+
return_dict=return_dict,
|
| 951 |
+
)
|
| 952 |
+
sequence_output = encoder_outputs[0]
|
| 953 |
+
if unpad_inputs and output_padded:
|
| 954 |
+
sequence_output = pad_input(
|
| 955 |
+
sequence_output.squeeze(), indices, batch_size, seq_length
|
| 956 |
+
)
|
| 957 |
+
|
| 958 |
+
pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
|
| 959 |
+
|
| 960 |
+
if not return_dict:
|
| 961 |
+
return (sequence_output, pooled_output) + encoder_outputs[1:]
|
| 962 |
+
|
| 963 |
+
return BaseModelOutputWithPooling(
|
| 964 |
+
last_hidden_state=sequence_output,
|
| 965 |
+
pooler_output=pooled_output,
|
| 966 |
+
hidden_states=encoder_outputs.hidden_states,
|
| 967 |
+
attentions=encoder_outputs.attentions,
|
| 968 |
+
)
|
| 969 |
+
|
| 970 |
+
|
| 971 |
+
class NewLMPredictionHead(nn.Module):
|
| 972 |
+
def __init__(self, config):
|
| 973 |
+
super().__init__()
|
| 974 |
+
self.dense = nn.Linear(config.hidden_size, config.hidden_size)
|
| 975 |
+
self.transform_act_fn = ACT2FN[config.hidden_act]
|
| 976 |
+
self.norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
|
| 977 |
+
|
| 978 |
+
# The output weights are the same as the input embeddings, but there is
|
| 979 |
+
# an output-only bias for each token.
|
| 980 |
+
self.decoder = nn.Linear(config.hidden_size, config.vocab_size)
|
| 981 |
+
|
| 982 |
+
def forward(self, hidden_states):
|
| 983 |
+
hidden_states = self.dense(hidden_states)
|
| 984 |
+
hidden_states = self.transform_act_fn(hidden_states)
|
| 985 |
+
hidden_states = self.norm(hidden_states)
|
| 986 |
+
hidden_states = self.decoder(hidden_states)
|
| 987 |
+
return hidden_states
|
| 988 |
+
|
| 989 |
+
|
| 990 |
+
class NewForMaskedLM(NewPreTrainedModel):
|
| 991 |
+
_tied_weights_keys = ["lm_head.decoder.bias", "lm_head.decoder.weight"]
|
| 992 |
+
|
| 993 |
+
def __init__(self, config: NewConfig):
|
| 994 |
+
super().__init__(config)
|
| 995 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
| 996 |
+
self.lm_head = NewLMPredictionHead(config)
|
| 997 |
+
self.loss_fct = nn.CrossEntropyLoss()
|
| 998 |
+
|
| 999 |
+
# Initialize weights and apply final processing
|
| 1000 |
+
self.post_init()
|
| 1001 |
+
|
| 1002 |
+
def get_output_embeddings(self):
|
| 1003 |
+
return self.lm_head.decoder
|
| 1004 |
+
|
| 1005 |
+
def set_output_embeddings(self, new_embeddings):
|
| 1006 |
+
self.lm_head.decoder = new_embeddings
|
| 1007 |
+
|
| 1008 |
+
def forward(
|
| 1009 |
+
self,
|
| 1010 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1011 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1012 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1013 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1014 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1015 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1016 |
+
labels: Optional[torch.Tensor] = None,
|
| 1017 |
+
output_attentions: Optional[bool] = None,
|
| 1018 |
+
output_hidden_states: Optional[bool] = None,
|
| 1019 |
+
return_dict: Optional[bool] = None,
|
| 1020 |
+
unpad_inputs: Optional[bool] = None,
|
| 1021 |
+
) -> Union[Tuple[torch.Tensor], MaskedLMOutput]:
|
| 1022 |
+
r"""
|
| 1023 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1024 |
+
Labels for computing the masked language modeling loss. Indices should be in `[-100, 0, ...,
|
| 1025 |
+
config.vocab_size]` (see `input_ids` docstring) Tokens with indices set to `-100` are ignored (masked), the
|
| 1026 |
+
loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`
|
| 1027 |
+
"""
|
| 1028 |
+
|
| 1029 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1030 |
+
|
| 1031 |
+
if labels is None or not self.new.config.unpad_inputs:
|
| 1032 |
+
length = None
|
| 1033 |
+
subset_indices = None
|
| 1034 |
+
else:
|
| 1035 |
+
length = attention_mask.sum(-1).tolist()
|
| 1036 |
+
labels = labels[attention_mask.bool()].unsqueeze(0)
|
| 1037 |
+
subset_indices = labels > -100
|
| 1038 |
+
|
| 1039 |
+
outputs = self.new(
|
| 1040 |
+
input_ids,
|
| 1041 |
+
attention_mask=attention_mask,
|
| 1042 |
+
length=length,
|
| 1043 |
+
subset_indices=subset_indices,
|
| 1044 |
+
token_type_ids=token_type_ids,
|
| 1045 |
+
position_ids=position_ids,
|
| 1046 |
+
head_mask=head_mask,
|
| 1047 |
+
inputs_embeds=inputs_embeds,
|
| 1048 |
+
output_attentions=output_attentions,
|
| 1049 |
+
output_hidden_states=output_hidden_states,
|
| 1050 |
+
return_dict=return_dict,
|
| 1051 |
+
unpad_inputs=unpad_inputs,
|
| 1052 |
+
)
|
| 1053 |
+
|
| 1054 |
+
sequence_output = outputs[0]
|
| 1055 |
+
prediction_scores = self.lm_head(sequence_output)
|
| 1056 |
+
|
| 1057 |
+
masked_lm_loss = None
|
| 1058 |
+
if labels is not None:
|
| 1059 |
+
if subset_indices is None:
|
| 1060 |
+
mask = attention_mask.bool()
|
| 1061 |
+
prediction_scores = prediction_scores[mask]
|
| 1062 |
+
labels = labels[mask]
|
| 1063 |
+
else:
|
| 1064 |
+
labels = labels[subset_indices]
|
| 1065 |
+
masked_lm_loss = self.loss_fct(prediction_scores, labels)
|
| 1066 |
+
|
| 1067 |
+
if not return_dict:
|
| 1068 |
+
output = (prediction_scores,) + outputs[2:]
|
| 1069 |
+
return ((masked_lm_loss,) + output) if masked_lm_loss is not None else output
|
| 1070 |
+
|
| 1071 |
+
return MaskedLMOutput(
|
| 1072 |
+
loss=masked_lm_loss,
|
| 1073 |
+
logits=prediction_scores,
|
| 1074 |
+
hidden_states=outputs.hidden_states,
|
| 1075 |
+
attentions=outputs.attentions,
|
| 1076 |
+
)
|
| 1077 |
+
|
| 1078 |
+
|
| 1079 |
+
class NewForSequenceClassification(NewPreTrainedModel):
|
| 1080 |
+
def __init__(self, config):
|
| 1081 |
+
super().__init__(config)
|
| 1082 |
+
self.num_labels = config.num_labels
|
| 1083 |
+
self.config = config
|
| 1084 |
+
|
| 1085 |
+
self.new = NewModel(config, add_pooling_layer=True)
|
| 1086 |
+
classifier_dropout = (
|
| 1087 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1088 |
+
)
|
| 1089 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1090 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1091 |
+
|
| 1092 |
+
# Initialize weights and apply final processing
|
| 1093 |
+
self.post_init()
|
| 1094 |
+
|
| 1095 |
+
def forward(
|
| 1096 |
+
self,
|
| 1097 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1098 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1099 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1100 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1101 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1102 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1103 |
+
labels: Optional[torch.Tensor] = None,
|
| 1104 |
+
output_attentions: Optional[bool] = None,
|
| 1105 |
+
output_hidden_states: Optional[bool] = None,
|
| 1106 |
+
return_dict: Optional[bool] = None,
|
| 1107 |
+
unpad_inputs: Optional[bool] = None,
|
| 1108 |
+
) -> Union[Tuple[torch.Tensor], SequenceClassifierOutput]:
|
| 1109 |
+
r"""
|
| 1110 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1111 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
| 1112 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
| 1113 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
| 1114 |
+
"""
|
| 1115 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1116 |
+
|
| 1117 |
+
outputs = self.new(
|
| 1118 |
+
input_ids,
|
| 1119 |
+
attention_mask=attention_mask,
|
| 1120 |
+
token_type_ids=token_type_ids,
|
| 1121 |
+
position_ids=position_ids,
|
| 1122 |
+
head_mask=head_mask,
|
| 1123 |
+
inputs_embeds=inputs_embeds,
|
| 1124 |
+
output_attentions=output_attentions,
|
| 1125 |
+
output_hidden_states=output_hidden_states,
|
| 1126 |
+
return_dict=return_dict,
|
| 1127 |
+
unpad_inputs=unpad_inputs,
|
| 1128 |
+
)
|
| 1129 |
+
|
| 1130 |
+
pooled_output = outputs[1]
|
| 1131 |
+
|
| 1132 |
+
pooled_output = self.dropout(pooled_output)
|
| 1133 |
+
logits = self.classifier(pooled_output)
|
| 1134 |
+
|
| 1135 |
+
loss = None
|
| 1136 |
+
if labels is not None:
|
| 1137 |
+
if self.config.problem_type is None:
|
| 1138 |
+
if self.num_labels == 1:
|
| 1139 |
+
self.config.problem_type = "regression"
|
| 1140 |
+
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
|
| 1141 |
+
self.config.problem_type = "single_label_classification"
|
| 1142 |
+
else:
|
| 1143 |
+
self.config.problem_type = "multi_label_classification"
|
| 1144 |
+
|
| 1145 |
+
if self.config.problem_type == "regression":
|
| 1146 |
+
loss_fct = nn.MSELoss()
|
| 1147 |
+
if self.num_labels == 1:
|
| 1148 |
+
loss = loss_fct(logits.squeeze(), labels.squeeze())
|
| 1149 |
+
else:
|
| 1150 |
+
loss = loss_fct(logits, labels)
|
| 1151 |
+
elif self.config.problem_type == "single_label_classification":
|
| 1152 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1153 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1154 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 1155 |
+
loss_fct = nn.BCEWithLogitsLoss()
|
| 1156 |
+
loss = loss_fct(logits, labels)
|
| 1157 |
+
|
| 1158 |
+
if not return_dict:
|
| 1159 |
+
output = (logits,) + outputs[2:]
|
| 1160 |
+
return ((loss,) + output) if loss is not None else output
|
| 1161 |
+
|
| 1162 |
+
return SequenceClassifierOutput(
|
| 1163 |
+
loss=loss,
|
| 1164 |
+
logits=logits,
|
| 1165 |
+
hidden_states=outputs.hidden_states,
|
| 1166 |
+
attentions=outputs.attentions,
|
| 1167 |
+
)
|
| 1168 |
+
|
| 1169 |
+
|
| 1170 |
+
class NewForMultipleChoice(NewPreTrainedModel):
|
| 1171 |
+
def __init__(self, config):
|
| 1172 |
+
super().__init__(config)
|
| 1173 |
+
|
| 1174 |
+
self.new = NewModel(config, add_pooling_layer=True)
|
| 1175 |
+
classifier_dropout = (
|
| 1176 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1177 |
+
)
|
| 1178 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1179 |
+
self.classifier = nn.Linear(config.hidden_size, 1)
|
| 1180 |
+
|
| 1181 |
+
# Initialize weights and apply final processing
|
| 1182 |
+
self.post_init()
|
| 1183 |
+
|
| 1184 |
+
def forward(
|
| 1185 |
+
self,
|
| 1186 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1187 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1188 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1189 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1190 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1191 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1192 |
+
labels: Optional[torch.Tensor] = None,
|
| 1193 |
+
output_attentions: Optional[bool] = None,
|
| 1194 |
+
output_hidden_states: Optional[bool] = None,
|
| 1195 |
+
return_dict: Optional[bool] = None,
|
| 1196 |
+
unpad_inputs: Optional[bool] = None,
|
| 1197 |
+
) -> Union[Tuple[torch.Tensor], MultipleChoiceModelOutput]:
|
| 1198 |
+
r"""
|
| 1199 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1200 |
+
Labels for computing the multiple choice classification loss. Indices should be in `[0, ...,
|
| 1201 |
+
num_choices-1]` where `num_choices` is the size of the second dimension of the input tensors. (See
|
| 1202 |
+
`input_ids` above)
|
| 1203 |
+
"""
|
| 1204 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1205 |
+
num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
|
| 1206 |
+
|
| 1207 |
+
input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
|
| 1208 |
+
attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
|
| 1209 |
+
token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
|
| 1210 |
+
position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
|
| 1211 |
+
inputs_embeds = (
|
| 1212 |
+
inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
|
| 1213 |
+
if inputs_embeds is not None
|
| 1214 |
+
else None
|
| 1215 |
+
)
|
| 1216 |
+
|
| 1217 |
+
outputs = self.new(
|
| 1218 |
+
input_ids,
|
| 1219 |
+
attention_mask=attention_mask,
|
| 1220 |
+
token_type_ids=token_type_ids,
|
| 1221 |
+
position_ids=position_ids,
|
| 1222 |
+
head_mask=head_mask,
|
| 1223 |
+
inputs_embeds=inputs_embeds,
|
| 1224 |
+
output_attentions=output_attentions,
|
| 1225 |
+
output_hidden_states=output_hidden_states,
|
| 1226 |
+
return_dict=return_dict,
|
| 1227 |
+
unpad_inputs=unpad_inputs,
|
| 1228 |
+
)
|
| 1229 |
+
|
| 1230 |
+
pooled_output = outputs[1]
|
| 1231 |
+
|
| 1232 |
+
pooled_output = self.dropout(pooled_output)
|
| 1233 |
+
logits = self.classifier(pooled_output)
|
| 1234 |
+
reshaped_logits = logits.view(-1, num_choices)
|
| 1235 |
+
|
| 1236 |
+
loss = None
|
| 1237 |
+
if labels is not None:
|
| 1238 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1239 |
+
loss = loss_fct(reshaped_logits, labels)
|
| 1240 |
+
|
| 1241 |
+
if not return_dict:
|
| 1242 |
+
output = (reshaped_logits,) + outputs[2:]
|
| 1243 |
+
return ((loss,) + output) if loss is not None else output
|
| 1244 |
+
|
| 1245 |
+
return MultipleChoiceModelOutput(
|
| 1246 |
+
loss=loss,
|
| 1247 |
+
logits=reshaped_logits,
|
| 1248 |
+
hidden_states=outputs.hidden_states,
|
| 1249 |
+
attentions=outputs.attentions,
|
| 1250 |
+
)
|
| 1251 |
+
|
| 1252 |
+
|
| 1253 |
+
@dataclass
|
| 1254 |
+
class NewTokenClassifierOutput(ModelOutput):
|
| 1255 |
+
loss: Optional[torch.FloatTensor] = None
|
| 1256 |
+
logits: torch.FloatTensor = None
|
| 1257 |
+
last_hidden_state: torch.FloatTensor = None
|
| 1258 |
+
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 1259 |
+
attentions: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 1260 |
+
|
| 1261 |
+
|
| 1262 |
+
class NewForTokenClassification(NewPreTrainedModel):
|
| 1263 |
+
def __init__(self, config):
|
| 1264 |
+
super().__init__(config)
|
| 1265 |
+
self.num_labels = config.num_labels
|
| 1266 |
+
|
| 1267 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
| 1268 |
+
classifier_dropout = (
|
| 1269 |
+
config.classifier_dropout if config.classifier_dropout is not None else config.hidden_dropout_prob
|
| 1270 |
+
)
|
| 1271 |
+
self.dropout = nn.Dropout(classifier_dropout)
|
| 1272 |
+
self.classifier = nn.Linear(config.hidden_size, config.num_labels)
|
| 1273 |
+
|
| 1274 |
+
# Initialize weights and apply final processing
|
| 1275 |
+
self.post_init()
|
| 1276 |
+
|
| 1277 |
+
def forward(
|
| 1278 |
+
self,
|
| 1279 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1280 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1281 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1282 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1283 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1284 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1285 |
+
labels: Optional[torch.Tensor] = None,
|
| 1286 |
+
output_attentions: Optional[bool] = None,
|
| 1287 |
+
output_hidden_states: Optional[bool] = None,
|
| 1288 |
+
return_dict: Optional[bool] = None,
|
| 1289 |
+
unpad_inputs: Optional[bool] = None,
|
| 1290 |
+
) -> Union[Tuple[torch.Tensor], NewTokenClassifierOutput]:
|
| 1291 |
+
r"""
|
| 1292 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
| 1293 |
+
Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`.
|
| 1294 |
+
"""
|
| 1295 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1296 |
+
|
| 1297 |
+
outputs = self.new(
|
| 1298 |
+
input_ids,
|
| 1299 |
+
attention_mask=attention_mask,
|
| 1300 |
+
token_type_ids=token_type_ids,
|
| 1301 |
+
position_ids=position_ids,
|
| 1302 |
+
head_mask=head_mask,
|
| 1303 |
+
inputs_embeds=inputs_embeds,
|
| 1304 |
+
output_attentions=output_attentions,
|
| 1305 |
+
output_hidden_states=output_hidden_states,
|
| 1306 |
+
return_dict=return_dict,
|
| 1307 |
+
unpad_inputs=unpad_inputs,
|
| 1308 |
+
)
|
| 1309 |
+
|
| 1310 |
+
sequence_output = outputs[0]
|
| 1311 |
+
|
| 1312 |
+
sequence_output = self.dropout(sequence_output)
|
| 1313 |
+
logits = self.classifier(sequence_output)
|
| 1314 |
+
|
| 1315 |
+
loss = None
|
| 1316 |
+
if labels is not None:
|
| 1317 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1318 |
+
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
|
| 1319 |
+
|
| 1320 |
+
if not return_dict:
|
| 1321 |
+
output = (logits,) + outputs[2:]
|
| 1322 |
+
return ((loss,) + output) if loss is not None else output
|
| 1323 |
+
|
| 1324 |
+
return NewTokenClassifierOutput(
|
| 1325 |
+
loss=loss,
|
| 1326 |
+
logits=logits,
|
| 1327 |
+
last_hidden_state=sequence_output,
|
| 1328 |
+
hidden_states=outputs.hidden_states,
|
| 1329 |
+
attentions=outputs.attentions,
|
| 1330 |
+
)
|
| 1331 |
+
|
| 1332 |
+
|
| 1333 |
+
class NewForQuestionAnswering(NewPreTrainedModel):
|
| 1334 |
+
def __init__(self, config):
|
| 1335 |
+
super().__init__(config)
|
| 1336 |
+
self.num_labels = config.num_labels
|
| 1337 |
+
|
| 1338 |
+
self.new = NewModel(config, add_pooling_layer=False)
|
| 1339 |
+
self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)
|
| 1340 |
+
|
| 1341 |
+
# Initialize weights and apply final processing
|
| 1342 |
+
self.post_init()
|
| 1343 |
+
|
| 1344 |
+
def forward(
|
| 1345 |
+
self,
|
| 1346 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 1347 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1348 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 1349 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 1350 |
+
head_mask: Optional[torch.Tensor] = None,
|
| 1351 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1352 |
+
start_positions: Optional[torch.Tensor] = None,
|
| 1353 |
+
end_positions: Optional[torch.Tensor] = None,
|
| 1354 |
+
output_attentions: Optional[bool] = None,
|
| 1355 |
+
output_hidden_states: Optional[bool] = None,
|
| 1356 |
+
return_dict: Optional[bool] = None,
|
| 1357 |
+
unpad_inputs: Optional[bool] = None,
|
| 1358 |
+
) -> Union[Tuple[torch.Tensor], QuestionAnsweringModelOutput]:
|
| 1359 |
+
r"""
|
| 1360 |
+
start_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1361 |
+
Labels for position (index) of the start of the labelled span for computing the token classification loss.
|
| 1362 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1363 |
+
are not taken into account for computing the loss.
|
| 1364 |
+
end_positions (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
| 1365 |
+
Labels for position (index) of the end of the labelled span for computing the token classification loss.
|
| 1366 |
+
Positions are clamped to the length of the sequence (`sequence_length`). Position outside of the sequence
|
| 1367 |
+
are not taken into account for computing the loss.
|
| 1368 |
+
"""
|
| 1369 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1370 |
+
|
| 1371 |
+
outputs = self.new(
|
| 1372 |
+
input_ids,
|
| 1373 |
+
attention_mask=attention_mask,
|
| 1374 |
+
token_type_ids=token_type_ids,
|
| 1375 |
+
position_ids=position_ids,
|
| 1376 |
+
head_mask=head_mask,
|
| 1377 |
+
inputs_embeds=inputs_embeds,
|
| 1378 |
+
output_attentions=output_attentions,
|
| 1379 |
+
output_hidden_states=output_hidden_states,
|
| 1380 |
+
return_dict=return_dict,
|
| 1381 |
+
unpad_inputs=unpad_inputs,
|
| 1382 |
+
)
|
| 1383 |
+
|
| 1384 |
+
sequence_output = outputs[0]
|
| 1385 |
+
|
| 1386 |
+
logits = self.qa_outputs(sequence_output)
|
| 1387 |
+
start_logits, end_logits = logits.split(1, dim=-1)
|
| 1388 |
+
start_logits = start_logits.squeeze(-1).contiguous()
|
| 1389 |
+
end_logits = end_logits.squeeze(-1).contiguous()
|
| 1390 |
+
|
| 1391 |
+
total_loss = None
|
| 1392 |
+
if start_positions is not None and end_positions is not None:
|
| 1393 |
+
# If we are on multi-GPU, split add a dimension
|
| 1394 |
+
if len(start_positions.size()) > 1:
|
| 1395 |
+
start_positions = start_positions.squeeze(-1)
|
| 1396 |
+
if len(end_positions.size()) > 1:
|
| 1397 |
+
end_positions = end_positions.squeeze(-1)
|
| 1398 |
+
# sometimes the start/end positions are outside our model inputs, we ignore these terms
|
| 1399 |
+
ignored_index = start_logits.size(1)
|
| 1400 |
+
start_positions = start_positions.clamp(0, ignored_index)
|
| 1401 |
+
end_positions = end_positions.clamp(0, ignored_index)
|
| 1402 |
+
|
| 1403 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=ignored_index)
|
| 1404 |
+
start_loss = loss_fct(start_logits, start_positions)
|
| 1405 |
+
end_loss = loss_fct(end_logits, end_positions)
|
| 1406 |
+
total_loss = (start_loss + end_loss) / 2
|
| 1407 |
+
|
| 1408 |
+
if not return_dict:
|
| 1409 |
+
output = (start_logits, end_logits) + outputs[2:]
|
| 1410 |
+
return ((total_loss,) + output) if total_loss is not None else output
|
| 1411 |
+
|
| 1412 |
+
return QuestionAnsweringModelOutput(
|
| 1413 |
+
loss=total_loss,
|
| 1414 |
+
start_logits=start_logits,
|
| 1415 |
+
end_logits=end_logits,
|
| 1416 |
+
hidden_states=outputs.hidden_states,
|
| 1417 |
+
attentions=outputs.attentions,
|
| 1418 |
+
)
|
document_0_MLMTransformer/sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 8192,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
document_0_MLMTransformer/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
document_0_MLMTransformer/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
document_0_MLMTransformer/tokenizer_config.json
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"max_length": 8192,
|
| 50 |
+
"model_max_length": 8192,
|
| 51 |
+
"pad_to_multiple_of": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"pad_token_type_id": 0,
|
| 54 |
+
"padding_side": "right",
|
| 55 |
+
"sep_token": "[SEP]",
|
| 56 |
+
"stride": 0,
|
| 57 |
+
"strip_accents": null,
|
| 58 |
+
"tokenize_chinese_chars": true,
|
| 59 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 60 |
+
"truncation_side": "right",
|
| 61 |
+
"truncation_strategy": "longest_first",
|
| 62 |
+
"unk_token": "[UNK]"
|
| 63 |
+
}
|
document_0_MLMTransformer/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
document_1_SpladePooling/config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"pooling_strategy": "max",
|
| 3 |
+
"activation_function": "log1p_relu",
|
| 4 |
+
"word_embedding_dimension": 30522
|
| 5 |
+
}
|
modules.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Router"
|
| 7 |
+
}
|
| 8 |
+
]
|
query_0_SparseStaticEmbedding/config.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"frozen": false
|
| 3 |
+
}
|
query_0_SparseStaticEmbedding/model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6d146387a9640e0bd1ab3edce45c682f442649e9940629c559c738513e38d4d3
|
| 3 |
+
size 122168
|
query_0_SparseStaticEmbedding/special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
query_0_SparseStaticEmbedding/tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
query_0_SparseStaticEmbedding/tokenizer_config.json
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_lower_case": true,
|
| 47 |
+
"extra_special_tokens": {},
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"max_length": 8192,
|
| 50 |
+
"model_max_length": 8192,
|
| 51 |
+
"pad_to_multiple_of": null,
|
| 52 |
+
"pad_token": "[PAD]",
|
| 53 |
+
"pad_token_type_id": 0,
|
| 54 |
+
"padding_side": "right",
|
| 55 |
+
"sep_token": "[SEP]",
|
| 56 |
+
"stride": 0,
|
| 57 |
+
"strip_accents": null,
|
| 58 |
+
"tokenize_chinese_chars": true,
|
| 59 |
+
"tokenizer_class": "DistilBertTokenizer",
|
| 60 |
+
"truncation_side": "right",
|
| 61 |
+
"truncation_strategy": "longest_first",
|
| 62 |
+
"unk_token": "[UNK]"
|
| 63 |
+
}
|
query_0_SparseStaticEmbedding/vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
router_config.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"types": {
|
| 3 |
+
"query_0_SparseStaticEmbedding": "sentence_transformers.sparse_encoder.models.SparseStaticEmbedding.SparseStaticEmbedding",
|
| 4 |
+
"document_0_MLMTransformer": "sentence_transformers.sparse_encoder.models.MLMTransformer.MLMTransformer",
|
| 5 |
+
"document_1_SpladePooling": "sentence_transformers.sparse_encoder.models.SpladePooling.SpladePooling"
|
| 6 |
+
},
|
| 7 |
+
"structure": {
|
| 8 |
+
"query": [
|
| 9 |
+
"query_0_SparseStaticEmbedding"
|
| 10 |
+
],
|
| 11 |
+
"document": [
|
| 12 |
+
"document_0_MLMTransformer",
|
| 13 |
+
"document_1_SpladePooling"
|
| 14 |
+
]
|
| 15 |
+
},
|
| 16 |
+
"parameters": {
|
| 17 |
+
"default_route": "document",
|
| 18 |
+
"allow_empty_key": true
|
| 19 |
+
}
|
| 20 |
+
}
|