Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- chat_template.jinja +3 -0
- config.json +236 -0
- configuration_gar.py +63 -0
- image_processing_perception_lm_fast.py +378 -0
- model-00001-of-00004.safetensors +3 -0
- model-00002-of-00004.safetensors +3 -0
- model-00003-of-00004.safetensors +3 -0
- model-00004-of-00004.safetensors +3 -0
- model.safetensors.index.json +966 -0
- modeling_gar.py +352 -0
- modeling_perception_lm.py +865 -0
- preprocessor_config.json +40 -0
- processing_gar.py +316 -0
- processor_config.json +9 -0
- special_tokens_map.json +19 -0
- tokenizer.json +3 -0
- tokenizer_config.json +2118 -0
- video_preprocessor_config.json +37 -0
    	
        .gitattributes
    CHANGED
    
    | @@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
|  | 
|  | |
| 33 | 
             
            *.zip filter=lfs diff=lfs merge=lfs -text
         | 
| 34 | 
             
            *.zst filter=lfs diff=lfs merge=lfs -text
         | 
| 35 | 
             
            *tfevents* filter=lfs diff=lfs merge=lfs -text
         | 
| 36 | 
            +
            tokenizer.json filter=lfs diff=lfs merge=lfs -text
         | 
    	
        chat_template.jinja
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {{- bos_token }}{%- if messages[0]['role'] == 'system' -%}    {%- set system_message = messages[0]['content']|trim %}
         | 
| 2 | 
            +
                {%- set messages = messages[1:] %}
         | 
| 3 | 
            +
            {%- else %}    {%- set system_message = 'You are a helpful language and vision assistant. You are able to understand the visual content that the user provides, and assist the user with a variety of tasks using natural language.' %}{%- endif %}{{- '<|start_header_id|>system<|end_header_id|>\n\n' }}{{- system_message }}{{- '<|eot_id|>' }}{%- for message in messages %}{{- '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n' }}{%- for content in message['content'] | selectattr('type', 'equalto', 'image') %}{{ '<|image|>' }}{%- endfor %}{%- for content in message['content'] | selectattr('type', 'equalto', 'video') %}{{ '<|video|>' }}{%- endfor %}{%- for content in message['content'] | selectattr('type', 'equalto', 'text') %}{{- content['text'] | trim }}{%- endfor %}{{'<|eot_id|>' }}{%- endfor %}{%- if add_generation_prompt %}{{- '<|start_header_id|>assistant<|end_header_id|>\n\n' }}{%- endif %}
         | 
    	
        config.json
    ADDED
    
    | @@ -0,0 +1,236 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "architectures": [
         | 
| 3 | 
            +
                "GARModel"
         | 
| 4 | 
            +
              ],
         | 
| 5 | 
            +
              "auto_map": {
         | 
| 6 | 
            +
                "AutoConfig": "configuration_gar.GARConfig",
         | 
| 7 | 
            +
                "AutoModel": "modeling_gar.GARModel",
         | 
| 8 | 
            +
                "AutoModelForCausalLM": "modeling_gar.GARModel"
         | 
| 9 | 
            +
              },
         | 
| 10 | 
            +
              "crop_tokens_ids": [
         | 
| 11 | 
            +
                128004,
         | 
| 12 | 
            +
                128005,
         | 
| 13 | 
            +
                128008,
         | 
| 14 | 
            +
                128010,
         | 
| 15 | 
            +
                128011
         | 
| 16 | 
            +
              ],
         | 
| 17 | 
            +
              "kernel_size": [
         | 
| 18 | 
            +
                14,
         | 
| 19 | 
            +
                14
         | 
| 20 | 
            +
              ],
         | 
| 21 | 
            +
              "mask_path_embedding_out_channels": 1536,
         | 
| 22 | 
            +
              "mllm_config": {
         | 
| 23 | 
            +
                "_name_or_path": "/mnt/bn/zilongdata-us/wangyuhao/model/Perception-LM-8B",
         | 
| 24 | 
            +
                "architectures": [
         | 
| 25 | 
            +
                  "PerceptionLMForConditionalGeneration"
         | 
| 26 | 
            +
                ],
         | 
| 27 | 
            +
                "image_token_id": 128002,
         | 
| 28 | 
            +
                "model_type": "perception_lm",
         | 
| 29 | 
            +
                "projector_pooling_ratio": 2,
         | 
| 30 | 
            +
                "text_config": {
         | 
| 31 | 
            +
                  "_name_or_path": "",
         | 
| 32 | 
            +
                  "add_cross_attention": false,
         | 
| 33 | 
            +
                  "architectures": null,
         | 
| 34 | 
            +
                  "attention_bias": false,
         | 
| 35 | 
            +
                  "attention_dropout": 0.0,
         | 
| 36 | 
            +
                  "bad_words_ids": null,
         | 
| 37 | 
            +
                  "begin_suppress_tokens": null,
         | 
| 38 | 
            +
                  "bos_token_id": 128000,
         | 
| 39 | 
            +
                  "chunk_size_feed_forward": 0,
         | 
| 40 | 
            +
                  "cross_attention_hidden_size": null,
         | 
| 41 | 
            +
                  "decoder_start_token_id": null,
         | 
| 42 | 
            +
                  "diversity_penalty": 0.0,
         | 
| 43 | 
            +
                  "do_sample": false,
         | 
| 44 | 
            +
                  "early_stopping": false,
         | 
| 45 | 
            +
                  "encoder_no_repeat_ngram_size": 0,
         | 
| 46 | 
            +
                  "eos_token_id": [
         | 
| 47 | 
            +
                    128001,
         | 
| 48 | 
            +
                    128009
         | 
| 49 | 
            +
                  ],
         | 
| 50 | 
            +
                  "exponential_decay_length_penalty": null,
         | 
| 51 | 
            +
                  "finetuning_task": null,
         | 
| 52 | 
            +
                  "forced_bos_token_id": null,
         | 
| 53 | 
            +
                  "forced_eos_token_id": null,
         | 
| 54 | 
            +
                  "head_dim": 128,
         | 
| 55 | 
            +
                  "hidden_act": "silu",
         | 
| 56 | 
            +
                  "hidden_size": 4096,
         | 
| 57 | 
            +
                  "id2label": {
         | 
| 58 | 
            +
                    "0": "LABEL_0",
         | 
| 59 | 
            +
                    "1": "LABEL_1"
         | 
| 60 | 
            +
                  },
         | 
| 61 | 
            +
                  "initializer_range": 0.02,
         | 
| 62 | 
            +
                  "intermediate_size": 14336,
         | 
| 63 | 
            +
                  "is_decoder": false,
         | 
| 64 | 
            +
                  "is_encoder_decoder": false,
         | 
| 65 | 
            +
                  "label2id": {
         | 
| 66 | 
            +
                    "LABEL_0": 0,
         | 
| 67 | 
            +
                    "LABEL_1": 1
         | 
| 68 | 
            +
                  },
         | 
| 69 | 
            +
                  "length_penalty": 1.0,
         | 
| 70 | 
            +
                  "max_length": 20,
         | 
| 71 | 
            +
                  "max_position_embeddings": 11520,
         | 
| 72 | 
            +
                  "min_length": 0,
         | 
| 73 | 
            +
                  "mlp_bias": false,
         | 
| 74 | 
            +
                  "model_type": "llama",
         | 
| 75 | 
            +
                  "no_repeat_ngram_size": 0,
         | 
| 76 | 
            +
                  "num_attention_heads": 32,
         | 
| 77 | 
            +
                  "num_beam_groups": 1,
         | 
| 78 | 
            +
                  "num_beams": 1,
         | 
| 79 | 
            +
                  "num_hidden_layers": 32,
         | 
| 80 | 
            +
                  "num_key_value_heads": 8,
         | 
| 81 | 
            +
                  "num_return_sequences": 1,
         | 
| 82 | 
            +
                  "output_attentions": false,
         | 
| 83 | 
            +
                  "output_hidden_states": false,
         | 
| 84 | 
            +
                  "output_scores": false,
         | 
| 85 | 
            +
                  "pad_token_id": null,
         | 
| 86 | 
            +
                  "prefix": null,
         | 
| 87 | 
            +
                  "pretraining_tp": 1,
         | 
| 88 | 
            +
                  "problem_type": null,
         | 
| 89 | 
            +
                  "pruned_heads": {},
         | 
| 90 | 
            +
                  "remove_invalid_values": false,
         | 
| 91 | 
            +
                  "repetition_penalty": 1.0,
         | 
| 92 | 
            +
                  "return_dict": true,
         | 
| 93 | 
            +
                  "return_dict_in_generate": false,
         | 
| 94 | 
            +
                  "rms_norm_eps": 1e-05,
         | 
| 95 | 
            +
                  "rope_scaling": null,
         | 
| 96 | 
            +
                  "rope_theta": 500000.0,
         | 
| 97 | 
            +
                  "sep_token_id": null,
         | 
| 98 | 
            +
                  "suppress_tokens": null,
         | 
| 99 | 
            +
                  "task_specific_params": null,
         | 
| 100 | 
            +
                  "temperature": 1.0,
         | 
| 101 | 
            +
                  "tf_legacy_loss": false,
         | 
| 102 | 
            +
                  "tie_encoder_decoder": false,
         | 
| 103 | 
            +
                  "tie_word_embeddings": false,
         | 
| 104 | 
            +
                  "tokenizer_class": null,
         | 
| 105 | 
            +
                  "top_k": 50,
         | 
| 106 | 
            +
                  "top_p": 1.0,
         | 
| 107 | 
            +
                  "torch_dtype": "bfloat16",
         | 
| 108 | 
            +
                  "torchscript": false,
         | 
| 109 | 
            +
                  "typical_p": 1.0,
         | 
| 110 | 
            +
                  "use_bfloat16": false,
         | 
| 111 | 
            +
                  "use_cache": true,
         | 
| 112 | 
            +
                  "use_flash_attn": true,
         | 
| 113 | 
            +
                  "vocab_size": 128262
         | 
| 114 | 
            +
                },
         | 
| 115 | 
            +
                "torch_dtype": "bfloat16",
         | 
| 116 | 
            +
                "use_flash_attn": true,
         | 
| 117 | 
            +
                "video_token_id": 128003,
         | 
| 118 | 
            +
                "vision_config": {
         | 
| 119 | 
            +
                  "_name_or_path": "",
         | 
| 120 | 
            +
                  "add_cross_attention": false,
         | 
| 121 | 
            +
                  "architecture": "vit_pe_core_gigantic_patch14_448",
         | 
| 122 | 
            +
                  "architectures": null,
         | 
| 123 | 
            +
                  "bad_words_ids": null,
         | 
| 124 | 
            +
                  "begin_suppress_tokens": null,
         | 
| 125 | 
            +
                  "bos_token_id": null,
         | 
| 126 | 
            +
                  "chunk_size_feed_forward": 0,
         | 
| 127 | 
            +
                  "cross_attention_hidden_size": null,
         | 
| 128 | 
            +
                  "decoder_start_token_id": null,
         | 
| 129 | 
            +
                  "diversity_penalty": 0.0,
         | 
| 130 | 
            +
                  "do_pooling": true,
         | 
| 131 | 
            +
                  "do_sample": false,
         | 
| 132 | 
            +
                  "early_stopping": false,
         | 
| 133 | 
            +
                  "encoder_no_repeat_ngram_size": 0,
         | 
| 134 | 
            +
                  "eos_token_id": null,
         | 
| 135 | 
            +
                  "exponential_decay_length_penalty": null,
         | 
| 136 | 
            +
                  "finetuning_task": null,
         | 
| 137 | 
            +
                  "forced_bos_token_id": null,
         | 
| 138 | 
            +
                  "forced_eos_token_id": null,
         | 
| 139 | 
            +
                  "global_pool": "map",
         | 
| 140 | 
            +
                  "initializer_range": 0.02,
         | 
| 141 | 
            +
                  "is_decoder": false,
         | 
| 142 | 
            +
                  "is_encoder_decoder": false,
         | 
| 143 | 
            +
                  "label_names": [
         | 
| 144 | 
            +
                    "LABEL_0",
         | 
| 145 | 
            +
                    "LABEL_1"
         | 
| 146 | 
            +
                  ],
         | 
| 147 | 
            +
                  "length_penalty": 1.0,
         | 
| 148 | 
            +
                  "max_length": 20,
         | 
| 149 | 
            +
                  "min_length": 0,
         | 
| 150 | 
            +
                  "model_args": {
         | 
| 151 | 
            +
                    "depth": 47,
         | 
| 152 | 
            +
                    "embed_dim": 1536,
         | 
| 153 | 
            +
                    "global_pool": "",
         | 
| 154 | 
            +
                    "img_size": [
         | 
| 155 | 
            +
                      448,
         | 
| 156 | 
            +
                      448
         | 
| 157 | 
            +
                    ],
         | 
| 158 | 
            +
                    "init_values": 0.1,
         | 
| 159 | 
            +
                    "ref_feat_shape": [
         | 
| 160 | 
            +
                      32,
         | 
| 161 | 
            +
                      32
         | 
| 162 | 
            +
                    ],
         | 
| 163 | 
            +
                    "use_post_transformer_norm": false
         | 
| 164 | 
            +
                  },
         | 
| 165 | 
            +
                  "model_type": "timm_wrapper",
         | 
| 166 | 
            +
                  "no_repeat_ngram_size": 0,
         | 
| 167 | 
            +
                  "num_beam_groups": 1,
         | 
| 168 | 
            +
                  "num_beams": 1,
         | 
| 169 | 
            +
                  "num_classes": 2,
         | 
| 170 | 
            +
                  "num_features": 1536,
         | 
| 171 | 
            +
                  "num_return_sequences": 1,
         | 
| 172 | 
            +
                  "output_attentions": false,
         | 
| 173 | 
            +
                  "output_hidden_states": false,
         | 
| 174 | 
            +
                  "output_scores": false,
         | 
| 175 | 
            +
                  "pad_token_id": null,
         | 
| 176 | 
            +
                  "prefix": null,
         | 
| 177 | 
            +
                  "pretrained_cfg": {
         | 
| 178 | 
            +
                    "classifier": "head",
         | 
| 179 | 
            +
                    "crop_mode": "center",
         | 
| 180 | 
            +
                    "crop_pct": 1.0,
         | 
| 181 | 
            +
                    "custom_load": false,
         | 
| 182 | 
            +
                    "first_conv": "patch_embed.proj",
         | 
| 183 | 
            +
                    "fixed_input_size": true,
         | 
| 184 | 
            +
                    "input_size": [
         | 
| 185 | 
            +
                      3,
         | 
| 186 | 
            +
                      448,
         | 
| 187 | 
            +
                      448
         | 
| 188 | 
            +
                    ],
         | 
| 189 | 
            +
                    "interpolation": "bicubic",
         | 
| 190 | 
            +
                    "license": "custom",
         | 
| 191 | 
            +
                    "mean": [
         | 
| 192 | 
            +
                      0.5,
         | 
| 193 | 
            +
                      0.5,
         | 
| 194 | 
            +
                      0.5
         | 
| 195 | 
            +
                    ],
         | 
| 196 | 
            +
                    "pool_size": null,
         | 
| 197 | 
            +
                    "std": [
         | 
| 198 | 
            +
                      0.5,
         | 
| 199 | 
            +
                      0.5,
         | 
| 200 | 
            +
                      0.5
         | 
| 201 | 
            +
                    ],
         | 
| 202 | 
            +
                    "tag": "fb"
         | 
| 203 | 
            +
                  },
         | 
| 204 | 
            +
                  "problem_type": null,
         | 
| 205 | 
            +
                  "pruned_heads": {},
         | 
| 206 | 
            +
                  "remove_invalid_values": false,
         | 
| 207 | 
            +
                  "repetition_penalty": 1.0,
         | 
| 208 | 
            +
                  "return_dict": true,
         | 
| 209 | 
            +
                  "return_dict_in_generate": false,
         | 
| 210 | 
            +
                  "sep_token_id": null,
         | 
| 211 | 
            +
                  "suppress_tokens": null,
         | 
| 212 | 
            +
                  "task_specific_params": null,
         | 
| 213 | 
            +
                  "temperature": 1.0,
         | 
| 214 | 
            +
                  "tf_legacy_loss": false,
         | 
| 215 | 
            +
                  "tie_encoder_decoder": false,
         | 
| 216 | 
            +
                  "tie_word_embeddings": true,
         | 
| 217 | 
            +
                  "tokenizer_class": null,
         | 
| 218 | 
            +
                  "top_k": 50,
         | 
| 219 | 
            +
                  "top_p": 1.0,
         | 
| 220 | 
            +
                  "torch_dtype": "bfloat16",
         | 
| 221 | 
            +
                  "torchscript": false,
         | 
| 222 | 
            +
                  "typical_p": 1.0,
         | 
| 223 | 
            +
                  "use_bfloat16": false,
         | 
| 224 | 
            +
                  "use_flash_attn": false
         | 
| 225 | 
            +
                },
         | 
| 226 | 
            +
                "vision_use_cls_token": false
         | 
| 227 | 
            +
              },
         | 
| 228 | 
            +
              "model_type": "GAR",
         | 
| 229 | 
            +
              "output_attentions": false,
         | 
| 230 | 
            +
              "patch_size_h": 14,
         | 
| 231 | 
            +
              "patch_size_w": 14,
         | 
| 232 | 
            +
              "prompt_numbers": 5,
         | 
| 233 | 
            +
              "torch_dtype": "bfloat16",
         | 
| 234 | 
            +
              "max_num_tiles": 8,
         | 
| 235 | 
            +
              "transformers_version": null
         | 
| 236 | 
            +
            }
         | 
    	
        configuration_gar.py
    ADDED
    
    | @@ -0,0 +1,63 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            import copy
         | 
| 2 | 
            +
            from transformers.utils import logging
         | 
| 3 | 
            +
            from transformers.configuration_utils import PretrainedConfig
         | 
| 4 | 
            +
            from transformers import AutoConfig, PerceptionLMConfig
         | 
| 5 | 
            +
             | 
| 6 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 7 | 
            +
             | 
| 8 | 
            +
             | 
| 9 | 
            +
            class GARConfig(PretrainedConfig):
         | 
| 10 | 
            +
                model_type = 'GAR'
         | 
| 11 | 
            +
                is_composition = True
         | 
| 12 | 
            +
             | 
| 13 | 
            +
                def __init__(
         | 
| 14 | 
            +
                    self,
         | 
| 15 | 
            +
                    mllm_config=None,
         | 
| 16 | 
            +
                    prompt_numbers=5,
         | 
| 17 | 
            +
                    crop_tokens_ids=[128004, 128005, 128008, 128010, 128011],
         | 
| 18 | 
            +
                    use_flash_attn=True,
         | 
| 19 | 
            +
                    **kwargs,
         | 
| 20 | 
            +
                ):
         | 
| 21 | 
            +
                    super().__init__(**kwargs)
         | 
| 22 | 
            +
                    if mllm_config is None:
         | 
| 23 | 
            +
                        mllm_config = {}
         | 
| 24 | 
            +
                        logger.info('mllm_config is None. Initializing the PerceptionLM with default values.')
         | 
| 25 | 
            +
             | 
| 26 | 
            +
                    if mllm_config is None:
         | 
| 27 | 
            +
                        self.mllm_config = AutoConfig.from_pretrained("facebook/Perception-LM-8B")
         | 
| 28 | 
            +
                    else:
         | 
| 29 | 
            +
                        self.mllm_config = PerceptionLMConfig(**mllm_config)
         | 
| 30 | 
            +
                    self.prompt_numbers = prompt_numbers
         | 
| 31 | 
            +
             | 
| 32 | 
            +
                    self.crop_tokens_ids = crop_tokens_ids
         | 
| 33 | 
            +
                    assert len(self.crop_tokens_ids) == self.prompt_numbers, f'{self.crop_tokens_ids} crop_tokens_ids length should be {self.prompt_numbers}'
         | 
| 34 | 
            +
             | 
| 35 | 
            +
                    try:
         | 
| 36 | 
            +
                        self.patch_size_h = self.mllm_config.vision_config.model_args["img_size"][0] // self.mllm_config.vision_config.model_args["ref_feat_shape"][0]
         | 
| 37 | 
            +
                        self.patch_size_w = self.mllm_config.vision_config.model_args["img_size"][1] // self.mllm_config.vision_config.model_args["ref_feat_shape"][1]
         | 
| 38 | 
            +
                        self.kernel_size = [self.patch_size_h, self.patch_size_w]
         | 
| 39 | 
            +
                    except:
         | 
| 40 | 
            +
                        self.patch_size_h = 16
         | 
| 41 | 
            +
                        self.patch_size_w = 16
         | 
| 42 | 
            +
                        self.kernel_size = [self.patch_size_h, self.patch_size_w]
         | 
| 43 | 
            +
                        
         | 
| 44 | 
            +
                    try:
         | 
| 45 | 
            +
                        self.mask_path_embedding_out_channels = self.mllm_config.vision_config.num_features
         | 
| 46 | 
            +
                    except:
         | 
| 47 | 
            +
                        self.mask_path_embedding_out_channels = 1280
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                    self.mllm_config.use_flash_attn = True if use_flash_attn else False
         | 
| 50 | 
            +
                    self.mllm_config.text_config.use_flash_attn = True if use_flash_attn else False
         | 
| 51 | 
            +
                    self.mllm_config.vision_config.use_flash_attn = False
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                def to_dict(self):
         | 
| 54 | 
            +
                    """
         | 
| 55 | 
            +
                    Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`].
         | 
| 56 | 
            +
             | 
| 57 | 
            +
                    Returns:
         | 
| 58 | 
            +
                        `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance,
         | 
| 59 | 
            +
                    """
         | 
| 60 | 
            +
                    output = copy.deepcopy(self.__dict__)
         | 
| 61 | 
            +
                    output['mllm_config'] = self.mllm_config.to_dict()
         | 
| 62 | 
            +
                    output['model_type'] = self.__class__.model_type
         | 
| 63 | 
            +
                    return output
         | 
    	
        image_processing_perception_lm_fast.py
    ADDED
    
    | @@ -0,0 +1,378 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B-
         | 
| 4 | 
            +
            # ytedance Inc..
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Adapted from https://github.com/huggingface/transformers/blob/v4.55.4/src/transformers/models/perception_lm/image_processing_perception_lm_fast.py
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
         | 
| 10 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 11 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 12 | 
            +
            # You may obtain a copy of the License at
         | 
| 13 | 
            +
            #
         | 
| 14 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 15 | 
            +
            #
         | 
| 16 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 17 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 18 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 19 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 20 | 
            +
            # limitations under the License.
         | 
| 21 | 
            +
            """Fast Image processor class for PerceptionLM."""
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import math
         | 
| 24 | 
            +
            from functools import reduce
         | 
| 25 | 
            +
            from typing import Optional, Union
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            import numpy as np
         | 
| 28 | 
            +
            from transformers.image_processing_utils import BatchFeature
         | 
| 29 | 
            +
            from transformers.image_processing_utils_fast import (
         | 
| 30 | 
            +
                BaseImageProcessorFast,
         | 
| 31 | 
            +
                DefaultFastImageProcessorKwargs,
         | 
| 32 | 
            +
                get_image_size,
         | 
| 33 | 
            +
                group_images_by_shape,
         | 
| 34 | 
            +
                reorder_images,
         | 
| 35 | 
            +
            )
         | 
| 36 | 
            +
            from transformers.image_utils import (
         | 
| 37 | 
            +
                IMAGENET_STANDARD_MEAN,
         | 
| 38 | 
            +
                IMAGENET_STANDARD_STD,
         | 
| 39 | 
            +
                ChannelDimension,
         | 
| 40 | 
            +
                PILImageResampling,
         | 
| 41 | 
            +
            )
         | 
| 42 | 
            +
            from transformers.processing_utils import Unpack
         | 
| 43 | 
            +
            from transformers.utils import (
         | 
| 44 | 
            +
                TensorType,
         | 
| 45 | 
            +
                auto_docstring,
         | 
| 46 | 
            +
                is_torch_available,
         | 
| 47 | 
            +
                is_torchvision_available,
         | 
| 48 | 
            +
            )
         | 
| 49 | 
            +
             | 
| 50 | 
            +
            if is_torch_available():
         | 
| 51 | 
            +
                import torch
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            if is_torchvision_available():
         | 
| 54 | 
            +
                from torchvision.transforms import functional as F
         | 
| 55 | 
            +
             | 
| 56 | 
            +
             | 
| 57 | 
            +
            class PerceptionLMFastImageProcessorKwargs(DefaultFastImageProcessorKwargs):
         | 
| 58 | 
            +
                r"""
         | 
| 59 | 
            +
                vision_input_type (`str`, *optional*, defaults to `"thumb+tile"`):
         | 
| 60 | 
            +
                    Vision processing strategy. `"thumb+tile"` uses both thumbnails and multiple tiles for
         | 
| 61 | 
            +
                    multi-scale processing, otherwise uses single tile for lower memory usage.
         | 
| 62 | 
            +
                tile_size (`int`, *optional*, defaults to `448`):
         | 
| 63 | 
            +
                    Height and width dimension (in pixels) of each tile used for image processing.
         | 
| 64 | 
            +
                max_num_tiles (`int`, *optional*, defaults to `36`):
         | 
| 65 | 
            +
                    Maximum number of tiles an image can be split into based on its aspect ratio.
         | 
| 66 | 
            +
                """
         | 
| 67 | 
            +
             | 
| 68 | 
            +
                vision_input_type: str = "thumb+tile"
         | 
| 69 | 
            +
                tile_size: int = 448
         | 
| 70 | 
            +
                max_num_tiles: int = 36
         | 
| 71 | 
            +
             | 
| 72 | 
            +
             | 
| 73 | 
            +
            @auto_docstring
         | 
| 74 | 
            +
            class PerceptionLMImageProcessorFast(BaseImageProcessorFast):
         | 
| 75 | 
            +
                resample = PILImageResampling.BICUBIC
         | 
| 76 | 
            +
                image_mean = IMAGENET_STANDARD_MEAN
         | 
| 77 | 
            +
                image_std = IMAGENET_STANDARD_STD
         | 
| 78 | 
            +
                do_resize = True
         | 
| 79 | 
            +
                do_center_crop = False
         | 
| 80 | 
            +
                do_rescale = True
         | 
| 81 | 
            +
                do_normalize = True
         | 
| 82 | 
            +
                do_convert_rgb = True
         | 
| 83 | 
            +
                size = {"width": 448, "height": 448}  # for backward compatibility in tests
         | 
| 84 | 
            +
                valid_kwargs = PerceptionLMFastImageProcessorKwargs
         | 
| 85 | 
            +
             | 
| 86 | 
            +
                def __init__(self, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs]) -> None:
         | 
| 87 | 
            +
                    super().__init__(**kwargs)
         | 
| 88 | 
            +
             | 
| 89 | 
            +
                @auto_docstring
         | 
| 90 | 
            +
                def preprocess(
         | 
| 91 | 
            +
                    self, images, **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs]
         | 
| 92 | 
            +
                ) -> BatchFeature:
         | 
| 93 | 
            +
                    return super().preprocess(images, **kwargs)
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                @staticmethod
         | 
| 96 | 
            +
                def _factors(n: int):
         | 
| 97 | 
            +
                    """Return all factors of a number."""
         | 
| 98 | 
            +
                    return set(
         | 
| 99 | 
            +
                        reduce(
         | 
| 100 | 
            +
                            list.__add__,
         | 
| 101 | 
            +
                            ([i, n // i] for i in range(1, int(n**0.5) + 1) if n % i == 0),
         | 
| 102 | 
            +
                        )
         | 
| 103 | 
            +
                    )
         | 
| 104 | 
            +
             | 
| 105 | 
            +
                def _find_supported_aspect_ratios(self):
         | 
| 106 | 
            +
                    """
         | 
| 107 | 
            +
                    This function computes all the allowed aspect ratios for a fixed
         | 
| 108 | 
            +
                    number of input chunks. The order of returned items matters for the result of `_fit_image_to_canvas` function.
         | 
| 109 | 
            +
                    If tie exists in `_fit_image_to_canvas`, the latter in `_find_supported_aspect_ratios` wins.
         | 
| 110 | 
            +
             | 
| 111 | 
            +
                    For example, with `num_tiles=5`, it will return:
         | 
| 112 | 
            +
                    {
         | 
| 113 | 
            +
                        0.2: [(1, 5)],
         | 
| 114 | 
            +
                        5.0: [(5, 1)],
         | 
| 115 | 
            +
                        0.25: [(1, 4)],
         | 
| 116 | 
            +
                        1.0: [(2, 2), (1, 1)],
         | 
| 117 | 
            +
                        4.0: [(4, 1)],
         | 
| 118 | 
            +
                        0.3333333333333333: [(1, 3)],
         | 
| 119 | 
            +
                        3.0: [(3, 1)],
         | 
| 120 | 
            +
                        0.5: [(1, 2)],
         | 
| 121 | 
            +
                        2.0: [(2, 1)]
         | 
| 122 | 
            +
                    }
         | 
| 123 | 
            +
                    """
         | 
| 124 | 
            +
                    asp_dict = {}
         | 
| 125 | 
            +
                    for chunk_size in range(self.max_num_tiles, 0, -1):
         | 
| 126 | 
            +
                        _factors = sorted(self._factors(chunk_size))
         | 
| 127 | 
            +
                        _asp_ratios = [(x, chunk_size // x) for x in _factors]
         | 
| 128 | 
            +
                        for ratio in _asp_ratios:
         | 
| 129 | 
            +
                            k = ratio[0] / ratio[1]
         | 
| 130 | 
            +
                            if k not in asp_dict:
         | 
| 131 | 
            +
                                asp_dict[k] = [ratio]
         | 
| 132 | 
            +
                            else:
         | 
| 133 | 
            +
                                asp_dict[k].append(ratio)
         | 
| 134 | 
            +
                    return asp_dict
         | 
| 135 | 
            +
             | 
| 136 | 
            +
                def _get_image_height_width(
         | 
| 137 | 
            +
                    self, image_width: int, image_height: int, target_width: int, target_height: int
         | 
| 138 | 
            +
                ) -> tuple[int, int]:
         | 
| 139 | 
            +
                    """
         | 
| 140 | 
            +
                    Given image width, height and target width, height for the canvas, return the dimensions of how the image would be resized
         | 
| 141 | 
            +
                    with aspect ratio preservation.
         | 
| 142 | 
            +
                    """
         | 
| 143 | 
            +
                    scale = image_width / image_height
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    if scale > 1.0:
         | 
| 146 | 
            +
                        # Width is larger than height
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                        # Rescaling factor is the minimum of the two scaling factors. Else one side would be outside of the canvas.
         | 
| 149 | 
            +
                        rescaling_factor = min(
         | 
| 150 | 
            +
                            target_width / image_width, target_height / image_height
         | 
| 151 | 
            +
                        )
         | 
| 152 | 
            +
             | 
| 153 | 
            +
                        # Set new width to target width and height to the rescaled height.
         | 
| 154 | 
            +
                        new_w = rescaling_factor * image_width
         | 
| 155 | 
            +
                        new_h = math.floor(new_w / scale)
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                    else:
         | 
| 158 | 
            +
                        # Height is larger than width
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                        # Rescaling factor is the minimum of the two scaling factors. Else one side would be outside of the canvas.
         | 
| 161 | 
            +
                        rescaling_factor = min(
         | 
| 162 | 
            +
                            target_width / image_width, target_height / image_height
         | 
| 163 | 
            +
                        )
         | 
| 164 | 
            +
             | 
| 165 | 
            +
                        # Set new height to target height and width to the rescaled width.
         | 
| 166 | 
            +
                        new_h = rescaling_factor * image_height
         | 
| 167 | 
            +
                        new_w = math.floor(new_h * scale)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    return new_w, new_h
         | 
| 170 | 
            +
             | 
| 171 | 
            +
                def _fit_image_to_canvas(self, img_width: int, img_height: int, tile_size: int):
         | 
| 172 | 
            +
                    """
         | 
| 173 | 
            +
                    Given an image width, height and target number of chunks this function will see if the image
         | 
| 174 | 
            +
                    can be fit into any of the canvases that can be build from arranging the tiles in a grid.
         | 
| 175 | 
            +
                    If the image can be fit onto several canvases, it will return the canvas where the shorter edge
         | 
| 176 | 
            +
                    of the image will be largest.
         | 
| 177 | 
            +
                    """
         | 
| 178 | 
            +
                    # Initialize the optimal canvas to None. If no canvas is found where image fits, function returns None.
         | 
| 179 | 
            +
                    optimal_canvas = None
         | 
| 180 | 
            +
                    optimal_image_width_height = None
         | 
| 181 | 
            +
             | 
| 182 | 
            +
                    scale = img_width / img_height
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                    # Gather all potential supported image resolutions and iterate through them to find best match
         | 
| 185 | 
            +
                    potential_arrangements = [
         | 
| 186 | 
            +
                        item
         | 
| 187 | 
            +
                        for sublist in self._find_supported_aspect_ratios().values()
         | 
| 188 | 
            +
                        for item in sublist
         | 
| 189 | 
            +
                    ]
         | 
| 190 | 
            +
                    for n_w, n_h in potential_arrangements:
         | 
| 191 | 
            +
                        # Compute the canvas size
         | 
| 192 | 
            +
                        canvas_width, canvas_height = n_w * tile_size, n_h * tile_size
         | 
| 193 | 
            +
             | 
| 194 | 
            +
                        # Check if image can fit into the canvas without downsampling
         | 
| 195 | 
            +
                        if canvas_width >= img_width and canvas_height >= img_height:
         | 
| 196 | 
            +
                            # If we did not find a good canvas yet, we will use the current one
         | 
| 197 | 
            +
                            if optimal_canvas is None:
         | 
| 198 | 
            +
                                # Set optimal canvas and determine the actual image height and width in the canvas with aspect ratio preserving resampling
         | 
| 199 | 
            +
                                optimal_canvas = (n_w, n_h)
         | 
| 200 | 
            +
                                optimal_image_width_height = self._get_image_height_width(
         | 
| 201 | 
            +
                                    image_width=img_width,
         | 
| 202 | 
            +
                                    image_height=img_height,
         | 
| 203 | 
            +
                                    target_width=n_w * tile_size,
         | 
| 204 | 
            +
                                    target_height=n_h * tile_size,
         | 
| 205 | 
            +
                                )
         | 
| 206 | 
            +
                            else:
         | 
| 207 | 
            +
                                # If we already found an optimal canvas before, we will check if the shorter edge of the image will be larger than the current optimal canvas.
         | 
| 208 | 
            +
                                # This means we can potentially upsample the image resolution which is beneficial to performance.
         | 
| 209 | 
            +
                                image_width_height = self._get_image_height_width(
         | 
| 210 | 
            +
                                    image_width=img_width,
         | 
| 211 | 
            +
                                    image_height=img_height,
         | 
| 212 | 
            +
                                    target_width=n_w * tile_size,
         | 
| 213 | 
            +
                                    target_height=n_h * tile_size,
         | 
| 214 | 
            +
                                )
         | 
| 215 | 
            +
                                # Llama3V dynamic tiling. Priortize biggest canvas.
         | 
| 216 | 
            +
                                if (
         | 
| 217 | 
            +
                                    scale < 1.0
         | 
| 218 | 
            +
                                    and (image_width_height[0] >= optimal_image_width_height[0])
         | 
| 219 | 
            +
                                ) or (
         | 
| 220 | 
            +
                                    scale >= 1.0
         | 
| 221 | 
            +
                                    and (image_width_height[1] >= optimal_image_width_height[1])
         | 
| 222 | 
            +
                                ):
         | 
| 223 | 
            +
                                    optimal_canvas = (n_w, n_h)
         | 
| 224 | 
            +
                                    optimal_image_width_height = image_width_height
         | 
| 225 | 
            +
                    return optimal_canvas
         | 
| 226 | 
            +
             | 
| 227 | 
            +
                def _find_closest_aspect_ratio(
         | 
| 228 | 
            +
                    self, img_width: int, img_height: int, tile_size: int
         | 
| 229 | 
            +
                ) -> tuple:
         | 
| 230 | 
            +
                    """
         | 
| 231 | 
            +
                    Given an image width, height and target number of chunks
         | 
| 232 | 
            +
                    this function will find the closest supported aspect ratio.
         | 
| 233 | 
            +
                    """
         | 
| 234 | 
            +
                    target_aspect_ratio = img_width / img_height
         | 
| 235 | 
            +
                    asp_dict = self._find_supported_aspect_ratios()
         | 
| 236 | 
            +
                    closest_aspect_ratio = None
         | 
| 237 | 
            +
                    if target_aspect_ratio >= 1:
         | 
| 238 | 
            +
                        closest_aspect_ratio = min(
         | 
| 239 | 
            +
                            [k for k in asp_dict if k <= target_aspect_ratio],
         | 
| 240 | 
            +
                            key=lambda x: abs(x - target_aspect_ratio),
         | 
| 241 | 
            +
                        )
         | 
| 242 | 
            +
                        tiles_given_aspect_ratio = asp_dict[closest_aspect_ratio]
         | 
| 243 | 
            +
                        # select largest width
         | 
| 244 | 
            +
                        return max(tiles_given_aspect_ratio, key=lambda x: x[0])
         | 
| 245 | 
            +
                    else:
         | 
| 246 | 
            +
                        closest_aspect_ratio = min(
         | 
| 247 | 
            +
                            [k for k in asp_dict if k > target_aspect_ratio],
         | 
| 248 | 
            +
                            key=lambda x: abs(1 / x - 1 / target_aspect_ratio),
         | 
| 249 | 
            +
                        )
         | 
| 250 | 
            +
                        tiles_given_aspect_ratio = asp_dict[closest_aspect_ratio]
         | 
| 251 | 
            +
                        # select largest height
         | 
| 252 | 
            +
                        return max(tiles_given_aspect_ratio, key=lambda x: x[1])
         | 
| 253 | 
            +
             | 
| 254 | 
            +
                def _split(self, image: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
         | 
| 255 | 
            +
                    # Split image into number of required tiles (width x height)
         | 
| 256 | 
            +
                    batch_size, num_channels, height, width = image.size()
         | 
| 257 | 
            +
                    image = image.view(
         | 
| 258 | 
            +
                        batch_size, num_channels, nch, height // nch, ncw, width // ncw
         | 
| 259 | 
            +
                    )
         | 
| 260 | 
            +
                    # Permute dimensions to reorder the axes
         | 
| 261 | 
            +
                    image = image.permute(0, 2, 4, 1, 3, 5).contiguous()
         | 
| 262 | 
            +
                    # Reshape into the desired output shape (batch_size * 4, num_channels, width/2, height/2)
         | 
| 263 | 
            +
                    image = image.view(
         | 
| 264 | 
            +
                        batch_size, ncw * nch, num_channels, height // nch, width // ncw
         | 
| 265 | 
            +
                    )
         | 
| 266 | 
            +
                    return image
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                def resize(
         | 
| 269 | 
            +
                    self,
         | 
| 270 | 
            +
                    image: np.ndarray,
         | 
| 271 | 
            +
                    tile_size: int,
         | 
| 272 | 
            +
                    max_num_tiles: int,
         | 
| 273 | 
            +
                    resample: PILImageResampling = PILImageResampling.BICUBIC,
         | 
| 274 | 
            +
                    input_data_format: Optional[Union[str, ChannelDimension]] = None,
         | 
| 275 | 
            +
                ):
         | 
| 276 | 
            +
                    height, width = get_image_size(image, channel_dim=input_data_format)
         | 
| 277 | 
            +
                    if max_num_tiles > 1:
         | 
| 278 | 
            +
                        aspect_ratio = self._fit_image_to_canvas(
         | 
| 279 | 
            +
                            img_width=width, img_height=height, tile_size=tile_size
         | 
| 280 | 
            +
                        )
         | 
| 281 | 
            +
                        if aspect_ratio is None:
         | 
| 282 | 
            +
                            # If we did not find a canvas, we have to find the closest aspect ratio and downsample the image
         | 
| 283 | 
            +
                            aspect_ratio = self._find_closest_aspect_ratio(
         | 
| 284 | 
            +
                                img_width=width, img_height=height, tile_size=tile_size
         | 
| 285 | 
            +
                            )
         | 
| 286 | 
            +
                    else:
         | 
| 287 | 
            +
                        aspect_ratio = (1, 1)
         | 
| 288 | 
            +
                    new_width, new_height = aspect_ratio[0] * tile_size, aspect_ratio[1] * tile_size
         | 
| 289 | 
            +
                    image = F.resize(image, (new_height, new_width), interpolation=resample)
         | 
| 290 | 
            +
                    return image, aspect_ratio
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                def _preprocess(
         | 
| 293 | 
            +
                    self,
         | 
| 294 | 
            +
                    images: list["torch.Tensor"],
         | 
| 295 | 
            +
                    do_resize: bool,
         | 
| 296 | 
            +
                    do_rescale: Optional[bool],
         | 
| 297 | 
            +
                    rescale_factor: Optional[Union[int, float]],
         | 
| 298 | 
            +
                    do_normalize: Optional[bool],
         | 
| 299 | 
            +
                    image_mean: Optional[Union[float, list[float]]],
         | 
| 300 | 
            +
                    image_std: Optional[Union[float, list[float]]],
         | 
| 301 | 
            +
                    vision_input_type: str,
         | 
| 302 | 
            +
                    tile_size: int,
         | 
| 303 | 
            +
                    max_num_tiles: int,
         | 
| 304 | 
            +
                    return_tensors: Optional[Union[str, TensorType]],
         | 
| 305 | 
            +
                    disable_grouping: bool,
         | 
| 306 | 
            +
                    **kwargs: Unpack[PerceptionLMFastImageProcessorKwargs],
         | 
| 307 | 
            +
                ) -> BatchFeature:
         | 
| 308 | 
            +
                    # Group images by size for batched transformation
         | 
| 309 | 
            +
             | 
| 310 | 
            +
                    resample = kwargs.pop("resample", self.resample)
         | 
| 311 | 
            +
             | 
| 312 | 
            +
                    grouped_images, grouped_images_index = group_images_by_shape(
         | 
| 313 | 
            +
                        images, disable_grouping=disable_grouping
         | 
| 314 | 
            +
                    )
         | 
| 315 | 
            +
                    resized_images_grouped = {}
         | 
| 316 | 
            +
                    aspect_ratio = [1, 1]
         | 
| 317 | 
            +
                    for shape, stacked_images in grouped_images.items():
         | 
| 318 | 
            +
                        if do_resize:
         | 
| 319 | 
            +
                            if vision_input_type == "thumb+tile":
         | 
| 320 | 
            +
                                thumbnails, _ = self.resize(
         | 
| 321 | 
            +
                                    stacked_images,
         | 
| 322 | 
            +
                                    tile_size,
         | 
| 323 | 
            +
                                    max_num_tiles=1,
         | 
| 324 | 
            +
                                    resample=resample,
         | 
| 325 | 
            +
                                )
         | 
| 326 | 
            +
                                images_for_tiling, (tiles_w, tiles_h) = self.resize(
         | 
| 327 | 
            +
                                    stacked_images,
         | 
| 328 | 
            +
                                    tile_size,
         | 
| 329 | 
            +
                                    max_num_tiles=max_num_tiles,
         | 
| 330 | 
            +
                                    resample=resample,
         | 
| 331 | 
            +
                                )
         | 
| 332 | 
            +
                                image_tiles = self._split(images_for_tiling, tiles_w, tiles_h)
         | 
| 333 | 
            +
                                stacked_images = torch.cat(
         | 
| 334 | 
            +
                                    [thumbnails.unsqueeze(1), image_tiles], dim=1
         | 
| 335 | 
            +
                                )
         | 
| 336 | 
            +
                                aspect_ratio = [tiles_w, tiles_h]
         | 
| 337 | 
            +
                            else:  # vanilla single tile for low memory devices
         | 
| 338 | 
            +
                                stacked_images, _ = self.resize(
         | 
| 339 | 
            +
                                    stacked_images,
         | 
| 340 | 
            +
                                    tile_size,
         | 
| 341 | 
            +
                                    max_num_tiles=1,
         | 
| 342 | 
            +
                                    resample=resample,
         | 
| 343 | 
            +
                                )
         | 
| 344 | 
            +
             | 
| 345 | 
            +
                        resized_images_grouped[shape] = stacked_images
         | 
| 346 | 
            +
                    resized_images = reorder_images(resized_images_grouped, grouped_images_index)
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                    grouped_images, grouped_images_index = group_images_by_shape(
         | 
| 349 | 
            +
                        resized_images, disable_grouping=disable_grouping
         | 
| 350 | 
            +
                    )
         | 
| 351 | 
            +
                    processed_images_grouped = {}
         | 
| 352 | 
            +
                    for shape, stacked_images in grouped_images.items():
         | 
| 353 | 
            +
                        # Fused rescale and normalize
         | 
| 354 | 
            +
                        stacked_images = self.rescale_and_normalize(
         | 
| 355 | 
            +
                            stacked_images,
         | 
| 356 | 
            +
                            do_rescale,
         | 
| 357 | 
            +
                            rescale_factor,
         | 
| 358 | 
            +
                            do_normalize,
         | 
| 359 | 
            +
                            image_mean,
         | 
| 360 | 
            +
                            image_std,
         | 
| 361 | 
            +
                        )
         | 
| 362 | 
            +
                        processed_images_grouped[shape] = stacked_images
         | 
| 363 | 
            +
                    processed_images = reorder_images(
         | 
| 364 | 
            +
                        processed_images_grouped, grouped_images_index
         | 
| 365 | 
            +
                    )
         | 
| 366 | 
            +
                    processed_images = [
         | 
| 367 | 
            +
                        p[None] if p.ndim == 3 else p for p in processed_images
         | 
| 368 | 
            +
                    ]  # add tiles dimension if needed
         | 
| 369 | 
            +
                    processed_images = (
         | 
| 370 | 
            +
                        torch.stack(processed_images, dim=0) if return_tensors else processed_images
         | 
| 371 | 
            +
                    )
         | 
| 372 | 
            +
                    return BatchFeature(
         | 
| 373 | 
            +
                        data={"pixel_values": processed_images, "aspect_ratio": aspect_ratio},
         | 
| 374 | 
            +
                        tensor_type=return_tensors,
         | 
| 375 | 
            +
                    )
         | 
| 376 | 
            +
             | 
| 377 | 
            +
             | 
| 378 | 
            +
            __all__ = ["PerceptionLMImageProcessorFast"]
         | 
    	
        model-00001-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:91936e527378cb6b015c5b5c55cbba39c2447861ae7ccdc2c4cbc5250394c797
         | 
| 3 | 
            +
            size 4897577360
         | 
    	
        model-00002-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:c9088e0cabf3dd407650de65bd4626a58060e0d80fc9a731993169c7c129d76c
         | 
| 3 | 
            +
            size 4999821376
         | 
    	
        model-00003-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:40f994e49ec8c5176ef6df326ca9515cdf717dc382d24e56e9cc0d29121ff216
         | 
| 3 | 
            +
            size 4915918184
         | 
    	
        model-00004-of-00004.safetensors
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:8cf8454946e58d69ac0c2a9a16d42d6a4e38a3b42c3fa63a1681edff67950896
         | 
| 3 | 
            +
            size 4777236976
         | 
    	
        model.safetensors.index.json
    ADDED
    
    | @@ -0,0 +1,966 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "metadata": {
         | 
| 3 | 
            +
                "total_parameters": 9795213056,
         | 
| 4 | 
            +
                "total_size": 19590426112
         | 
| 5 | 
            +
              },
         | 
| 6 | 
            +
              "weight_map": {
         | 
| 7 | 
            +
                "mask_patch_embedding.weight": "model-00004-of-00004.safetensors",
         | 
| 8 | 
            +
                "mllm.lm_head.weight": "model-00004-of-00004.safetensors",
         | 
| 9 | 
            +
                "mllm.model.language_model.embed_tokens.weight": "model-00001-of-00004.safetensors",
         | 
| 10 | 
            +
                "mllm.model.language_model.layers.0.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 11 | 
            +
                "mllm.model.language_model.layers.0.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 12 | 
            +
                "mllm.model.language_model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 13 | 
            +
                "mllm.model.language_model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 14 | 
            +
                "mllm.model.language_model.layers.0.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 15 | 
            +
                "mllm.model.language_model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 16 | 
            +
                "mllm.model.language_model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 17 | 
            +
                "mllm.model.language_model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 18 | 
            +
                "mllm.model.language_model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
         | 
| 19 | 
            +
                "mllm.model.language_model.layers.1.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 20 | 
            +
                "mllm.model.language_model.layers.1.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 21 | 
            +
                "mllm.model.language_model.layers.1.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 22 | 
            +
                "mllm.model.language_model.layers.1.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 23 | 
            +
                "mllm.model.language_model.layers.1.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 24 | 
            +
                "mllm.model.language_model.layers.1.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 25 | 
            +
                "mllm.model.language_model.layers.1.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 26 | 
            +
                "mllm.model.language_model.layers.1.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 27 | 
            +
                "mllm.model.language_model.layers.1.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 28 | 
            +
                "mllm.model.language_model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 29 | 
            +
                "mllm.model.language_model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 30 | 
            +
                "mllm.model.language_model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 31 | 
            +
                "mllm.model.language_model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 32 | 
            +
                "mllm.model.language_model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 33 | 
            +
                "mllm.model.language_model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 34 | 
            +
                "mllm.model.language_model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 35 | 
            +
                "mllm.model.language_model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 36 | 
            +
                "mllm.model.language_model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 37 | 
            +
                "mllm.model.language_model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 38 | 
            +
                "mllm.model.language_model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 39 | 
            +
                "mllm.model.language_model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 40 | 
            +
                "mllm.model.language_model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 41 | 
            +
                "mllm.model.language_model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 42 | 
            +
                "mllm.model.language_model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 43 | 
            +
                "mllm.model.language_model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 44 | 
            +
                "mllm.model.language_model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 45 | 
            +
                "mllm.model.language_model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 46 | 
            +
                "mllm.model.language_model.layers.12.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 47 | 
            +
                "mllm.model.language_model.layers.12.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 48 | 
            +
                "mllm.model.language_model.layers.12.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 49 | 
            +
                "mllm.model.language_model.layers.12.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 50 | 
            +
                "mllm.model.language_model.layers.12.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 51 | 
            +
                "mllm.model.language_model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 52 | 
            +
                "mllm.model.language_model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 53 | 
            +
                "mllm.model.language_model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 54 | 
            +
                "mllm.model.language_model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 55 | 
            +
                "mllm.model.language_model.layers.13.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 56 | 
            +
                "mllm.model.language_model.layers.13.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 57 | 
            +
                "mllm.model.language_model.layers.13.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 58 | 
            +
                "mllm.model.language_model.layers.13.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 59 | 
            +
                "mllm.model.language_model.layers.13.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 60 | 
            +
                "mllm.model.language_model.layers.13.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 61 | 
            +
                "mllm.model.language_model.layers.13.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 62 | 
            +
                "mllm.model.language_model.layers.13.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 63 | 
            +
                "mllm.model.language_model.layers.13.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 64 | 
            +
                "mllm.model.language_model.layers.14.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 65 | 
            +
                "mllm.model.language_model.layers.14.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 66 | 
            +
                "mllm.model.language_model.layers.14.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 67 | 
            +
                "mllm.model.language_model.layers.14.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 68 | 
            +
                "mllm.model.language_model.layers.14.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 69 | 
            +
                "mllm.model.language_model.layers.14.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 70 | 
            +
                "mllm.model.language_model.layers.14.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 71 | 
            +
                "mllm.model.language_model.layers.14.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 72 | 
            +
                "mllm.model.language_model.layers.14.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 73 | 
            +
                "mllm.model.language_model.layers.15.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 74 | 
            +
                "mllm.model.language_model.layers.15.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 75 | 
            +
                "mllm.model.language_model.layers.15.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 76 | 
            +
                "mllm.model.language_model.layers.15.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 77 | 
            +
                "mllm.model.language_model.layers.15.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 78 | 
            +
                "mllm.model.language_model.layers.15.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 79 | 
            +
                "mllm.model.language_model.layers.15.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 80 | 
            +
                "mllm.model.language_model.layers.15.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 81 | 
            +
                "mllm.model.language_model.layers.15.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 82 | 
            +
                "mllm.model.language_model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 83 | 
            +
                "mllm.model.language_model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 84 | 
            +
                "mllm.model.language_model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 85 | 
            +
                "mllm.model.language_model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 86 | 
            +
                "mllm.model.language_model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 87 | 
            +
                "mllm.model.language_model.layers.16.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 88 | 
            +
                "mllm.model.language_model.layers.16.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 89 | 
            +
                "mllm.model.language_model.layers.16.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 90 | 
            +
                "mllm.model.language_model.layers.16.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 91 | 
            +
                "mllm.model.language_model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 92 | 
            +
                "mllm.model.language_model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 93 | 
            +
                "mllm.model.language_model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 94 | 
            +
                "mllm.model.language_model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 95 | 
            +
                "mllm.model.language_model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 96 | 
            +
                "mllm.model.language_model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 97 | 
            +
                "mllm.model.language_model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 98 | 
            +
                "mllm.model.language_model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 99 | 
            +
                "mllm.model.language_model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 100 | 
            +
                "mllm.model.language_model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 101 | 
            +
                "mllm.model.language_model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 102 | 
            +
                "mllm.model.language_model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 103 | 
            +
                "mllm.model.language_model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 104 | 
            +
                "mllm.model.language_model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 105 | 
            +
                "mllm.model.language_model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 106 | 
            +
                "mllm.model.language_model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 107 | 
            +
                "mllm.model.language_model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 108 | 
            +
                "mllm.model.language_model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 109 | 
            +
                "mllm.model.language_model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 110 | 
            +
                "mllm.model.language_model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 111 | 
            +
                "mllm.model.language_model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 112 | 
            +
                "mllm.model.language_model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 113 | 
            +
                "mllm.model.language_model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 114 | 
            +
                "mllm.model.language_model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 115 | 
            +
                "mllm.model.language_model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 116 | 
            +
                "mllm.model.language_model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 117 | 
            +
                "mllm.model.language_model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 118 | 
            +
                "mllm.model.language_model.layers.2.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 119 | 
            +
                "mllm.model.language_model.layers.2.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 120 | 
            +
                "mllm.model.language_model.layers.2.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 121 | 
            +
                "mllm.model.language_model.layers.2.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 122 | 
            +
                "mllm.model.language_model.layers.2.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 123 | 
            +
                "mllm.model.language_model.layers.2.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 124 | 
            +
                "mllm.model.language_model.layers.2.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 125 | 
            +
                "mllm.model.language_model.layers.2.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 126 | 
            +
                "mllm.model.language_model.layers.2.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 127 | 
            +
                "mllm.model.language_model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 128 | 
            +
                "mllm.model.language_model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 129 | 
            +
                "mllm.model.language_model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 130 | 
            +
                "mllm.model.language_model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 131 | 
            +
                "mllm.model.language_model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 132 | 
            +
                "mllm.model.language_model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 133 | 
            +
                "mllm.model.language_model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 134 | 
            +
                "mllm.model.language_model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 135 | 
            +
                "mllm.model.language_model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 136 | 
            +
                "mllm.model.language_model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 137 | 
            +
                "mllm.model.language_model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 138 | 
            +
                "mllm.model.language_model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 139 | 
            +
                "mllm.model.language_model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 140 | 
            +
                "mllm.model.language_model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 141 | 
            +
                "mllm.model.language_model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 142 | 
            +
                "mllm.model.language_model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 143 | 
            +
                "mllm.model.language_model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 144 | 
            +
                "mllm.model.language_model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 145 | 
            +
                "mllm.model.language_model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 146 | 
            +
                "mllm.model.language_model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 147 | 
            +
                "mllm.model.language_model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 148 | 
            +
                "mllm.model.language_model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 149 | 
            +
                "mllm.model.language_model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
         | 
| 150 | 
            +
                "mllm.model.language_model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 151 | 
            +
                "mllm.model.language_model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 152 | 
            +
                "mllm.model.language_model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 153 | 
            +
                "mllm.model.language_model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 154 | 
            +
                "mllm.model.language_model.layers.23.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 155 | 
            +
                "mllm.model.language_model.layers.23.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 156 | 
            +
                "mllm.model.language_model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 157 | 
            +
                "mllm.model.language_model.layers.23.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 158 | 
            +
                "mllm.model.language_model.layers.23.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 159 | 
            +
                "mllm.model.language_model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 160 | 
            +
                "mllm.model.language_model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 161 | 
            +
                "mllm.model.language_model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 162 | 
            +
                "mllm.model.language_model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
         | 
| 163 | 
            +
                "mllm.model.language_model.layers.24.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 164 | 
            +
                "mllm.model.language_model.layers.24.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 165 | 
            +
                "mllm.model.language_model.layers.24.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 166 | 
            +
                "mllm.model.language_model.layers.24.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 167 | 
            +
                "mllm.model.language_model.layers.24.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 168 | 
            +
                "mllm.model.language_model.layers.24.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 169 | 
            +
                "mllm.model.language_model.layers.24.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 170 | 
            +
                "mllm.model.language_model.layers.24.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 171 | 
            +
                "mllm.model.language_model.layers.24.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 172 | 
            +
                "mllm.model.language_model.layers.25.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 173 | 
            +
                "mllm.model.language_model.layers.25.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 174 | 
            +
                "mllm.model.language_model.layers.25.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 175 | 
            +
                "mllm.model.language_model.layers.25.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 176 | 
            +
                "mllm.model.language_model.layers.25.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 177 | 
            +
                "mllm.model.language_model.layers.25.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 178 | 
            +
                "mllm.model.language_model.layers.25.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 179 | 
            +
                "mllm.model.language_model.layers.25.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 180 | 
            +
                "mllm.model.language_model.layers.25.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 181 | 
            +
                "mllm.model.language_model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 182 | 
            +
                "mllm.model.language_model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 183 | 
            +
                "mllm.model.language_model.layers.26.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 184 | 
            +
                "mllm.model.language_model.layers.26.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 185 | 
            +
                "mllm.model.language_model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 186 | 
            +
                "mllm.model.language_model.layers.26.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 187 | 
            +
                "mllm.model.language_model.layers.26.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 188 | 
            +
                "mllm.model.language_model.layers.26.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 189 | 
            +
                "mllm.model.language_model.layers.26.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 190 | 
            +
                "mllm.model.language_model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 191 | 
            +
                "mllm.model.language_model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 192 | 
            +
                "mllm.model.language_model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 193 | 
            +
                "mllm.model.language_model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 194 | 
            +
                "mllm.model.language_model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 195 | 
            +
                "mllm.model.language_model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 196 | 
            +
                "mllm.model.language_model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 197 | 
            +
                "mllm.model.language_model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 198 | 
            +
                "mllm.model.language_model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 199 | 
            +
                "mllm.model.language_model.layers.28.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 200 | 
            +
                "mllm.model.language_model.layers.28.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 201 | 
            +
                "mllm.model.language_model.layers.28.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 202 | 
            +
                "mllm.model.language_model.layers.28.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 203 | 
            +
                "mllm.model.language_model.layers.28.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 204 | 
            +
                "mllm.model.language_model.layers.28.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 205 | 
            +
                "mllm.model.language_model.layers.28.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 206 | 
            +
                "mllm.model.language_model.layers.28.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 207 | 
            +
                "mllm.model.language_model.layers.28.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 208 | 
            +
                "mllm.model.language_model.layers.29.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 209 | 
            +
                "mllm.model.language_model.layers.29.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 210 | 
            +
                "mllm.model.language_model.layers.29.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 211 | 
            +
                "mllm.model.language_model.layers.29.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 212 | 
            +
                "mllm.model.language_model.layers.29.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 213 | 
            +
                "mllm.model.language_model.layers.29.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 214 | 
            +
                "mllm.model.language_model.layers.29.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 215 | 
            +
                "mllm.model.language_model.layers.29.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 216 | 
            +
                "mllm.model.language_model.layers.29.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 217 | 
            +
                "mllm.model.language_model.layers.3.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 218 | 
            +
                "mllm.model.language_model.layers.3.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 219 | 
            +
                "mllm.model.language_model.layers.3.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 220 | 
            +
                "mllm.model.language_model.layers.3.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 221 | 
            +
                "mllm.model.language_model.layers.3.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 222 | 
            +
                "mllm.model.language_model.layers.3.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 223 | 
            +
                "mllm.model.language_model.layers.3.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 224 | 
            +
                "mllm.model.language_model.layers.3.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 225 | 
            +
                "mllm.model.language_model.layers.3.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 226 | 
            +
                "mllm.model.language_model.layers.30.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 227 | 
            +
                "mllm.model.language_model.layers.30.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 228 | 
            +
                "mllm.model.language_model.layers.30.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 229 | 
            +
                "mllm.model.language_model.layers.30.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 230 | 
            +
                "mllm.model.language_model.layers.30.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 231 | 
            +
                "mllm.model.language_model.layers.30.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 232 | 
            +
                "mllm.model.language_model.layers.30.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 233 | 
            +
                "mllm.model.language_model.layers.30.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 234 | 
            +
                "mllm.model.language_model.layers.30.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 235 | 
            +
                "mllm.model.language_model.layers.31.input_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 236 | 
            +
                "mllm.model.language_model.layers.31.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 237 | 
            +
                "mllm.model.language_model.layers.31.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 238 | 
            +
                "mllm.model.language_model.layers.31.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 239 | 
            +
                "mllm.model.language_model.layers.31.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
         | 
| 240 | 
            +
                "mllm.model.language_model.layers.31.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 241 | 
            +
                "mllm.model.language_model.layers.31.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 242 | 
            +
                "mllm.model.language_model.layers.31.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 243 | 
            +
                "mllm.model.language_model.layers.31.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
         | 
| 244 | 
            +
                "mllm.model.language_model.layers.4.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 245 | 
            +
                "mllm.model.language_model.layers.4.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 246 | 
            +
                "mllm.model.language_model.layers.4.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 247 | 
            +
                "mllm.model.language_model.layers.4.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 248 | 
            +
                "mllm.model.language_model.layers.4.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 249 | 
            +
                "mllm.model.language_model.layers.4.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 250 | 
            +
                "mllm.model.language_model.layers.4.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 251 | 
            +
                "mllm.model.language_model.layers.4.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 252 | 
            +
                "mllm.model.language_model.layers.4.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 253 | 
            +
                "mllm.model.language_model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 254 | 
            +
                "mllm.model.language_model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 255 | 
            +
                "mllm.model.language_model.layers.5.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 256 | 
            +
                "mllm.model.language_model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 257 | 
            +
                "mllm.model.language_model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 258 | 
            +
                "mllm.model.language_model.layers.5.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 259 | 
            +
                "mllm.model.language_model.layers.5.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 260 | 
            +
                "mllm.model.language_model.layers.5.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 261 | 
            +
                "mllm.model.language_model.layers.5.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 262 | 
            +
                "mllm.model.language_model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 263 | 
            +
                "mllm.model.language_model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 264 | 
            +
                "mllm.model.language_model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 265 | 
            +
                "mllm.model.language_model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 266 | 
            +
                "mllm.model.language_model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 267 | 
            +
                "mllm.model.language_model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 268 | 
            +
                "mllm.model.language_model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 269 | 
            +
                "mllm.model.language_model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 270 | 
            +
                "mllm.model.language_model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 271 | 
            +
                "mllm.model.language_model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 272 | 
            +
                "mllm.model.language_model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 273 | 
            +
                "mllm.model.language_model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 274 | 
            +
                "mllm.model.language_model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 275 | 
            +
                "mllm.model.language_model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 276 | 
            +
                "mllm.model.language_model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 277 | 
            +
                "mllm.model.language_model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 278 | 
            +
                "mllm.model.language_model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 279 | 
            +
                "mllm.model.language_model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 280 | 
            +
                "mllm.model.language_model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 281 | 
            +
                "mllm.model.language_model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 282 | 
            +
                "mllm.model.language_model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 283 | 
            +
                "mllm.model.language_model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 284 | 
            +
                "mllm.model.language_model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 285 | 
            +
                "mllm.model.language_model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 286 | 
            +
                "mllm.model.language_model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 287 | 
            +
                "mllm.model.language_model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 288 | 
            +
                "mllm.model.language_model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 289 | 
            +
                "mllm.model.language_model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 290 | 
            +
                "mllm.model.language_model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 291 | 
            +
                "mllm.model.language_model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 292 | 
            +
                "mllm.model.language_model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 293 | 
            +
                "mllm.model.language_model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
         | 
| 294 | 
            +
                "mllm.model.language_model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 295 | 
            +
                "mllm.model.language_model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 296 | 
            +
                "mllm.model.language_model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 297 | 
            +
                "mllm.model.language_model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
         | 
| 298 | 
            +
                "mllm.model.language_model.norm.weight": "model-00004-of-00004.safetensors",
         | 
| 299 | 
            +
                "mllm.model.multi_modal_projector.linear_1.bias": "model-00001-of-00004.safetensors",
         | 
| 300 | 
            +
                "mllm.model.multi_modal_projector.linear_1.weight": "model-00001-of-00004.safetensors",
         | 
| 301 | 
            +
                "mllm.model.multi_modal_projector.linear_2.bias": "model-00001-of-00004.safetensors",
         | 
| 302 | 
            +
                "mllm.model.multi_modal_projector.linear_2.weight": "model-00001-of-00004.safetensors",
         | 
| 303 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 304 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 305 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 306 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 307 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 308 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 309 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 310 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 311 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 312 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 313 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 314 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 315 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 316 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.0.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 317 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 318 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 319 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 320 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 321 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 322 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 323 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 324 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 325 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 326 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 327 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 328 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 329 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 330 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.1.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 331 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 332 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 333 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 334 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 335 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 336 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 337 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 338 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 339 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 340 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 341 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 342 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 343 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 344 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.10.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 345 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 346 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 347 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 348 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 349 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 350 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 351 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 352 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 353 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 354 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 355 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 356 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 357 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 358 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.11.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 359 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 360 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 361 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 362 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 363 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 364 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 365 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 366 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 367 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 368 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 369 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 370 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 371 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 372 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.12.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 373 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 374 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 375 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 376 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 377 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 378 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 379 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 380 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 381 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 382 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 383 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 384 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 385 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 386 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.13.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 387 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 388 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 389 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 390 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 391 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 392 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 393 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 394 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 395 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 396 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 397 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 398 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 399 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 400 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.14.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 401 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 402 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 403 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 404 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 405 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 406 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 407 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 408 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 409 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 410 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 411 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 412 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 413 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 414 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.15.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 415 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 416 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 417 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 418 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 419 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 420 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 421 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 422 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 423 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 424 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 425 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 426 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 427 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 428 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.16.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 429 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 430 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 431 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 432 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 433 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 434 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 435 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 436 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 437 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 438 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 439 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 440 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 441 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 442 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.17.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 443 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 444 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 445 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 446 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 447 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 448 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 449 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 450 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 451 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 452 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 453 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 454 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 455 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 456 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.18.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 457 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 458 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 459 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 460 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 461 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 462 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 463 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 464 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 465 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 466 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 467 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 468 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 469 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 470 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.19.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 471 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 472 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 473 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 474 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 475 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 476 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 477 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 478 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 479 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 480 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 481 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 482 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 483 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 484 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.2.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 485 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 486 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 487 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 488 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 489 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 490 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 491 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 492 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 493 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 494 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 495 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 496 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 497 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 498 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.20.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 499 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 500 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 501 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 502 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 503 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 504 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 505 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 506 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 507 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 508 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 509 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 510 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 511 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 512 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.21.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 513 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 514 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 515 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 516 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 517 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 518 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 519 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 520 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 521 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 522 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 523 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 524 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 525 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 526 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.22.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 527 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 528 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 529 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 530 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 531 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 532 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 533 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 534 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 535 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 536 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 537 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 538 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 539 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 540 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.23.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 541 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 542 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 543 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 544 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 545 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 546 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 547 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 548 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 549 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 550 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 551 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 552 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 553 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 554 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.24.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 555 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 556 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 557 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 558 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 559 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 560 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 561 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 562 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 563 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 564 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 565 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 566 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 567 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 568 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.25.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 569 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 570 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 571 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 572 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 573 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 574 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 575 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 576 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 577 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 578 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 579 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 580 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 581 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 582 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.26.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 583 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 584 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 585 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 586 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 587 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 588 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 589 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 590 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 591 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 592 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 593 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 594 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 595 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 596 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.27.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 597 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 598 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 599 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 600 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 601 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 602 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 603 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 604 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 605 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 606 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 607 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 608 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 609 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 610 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.28.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 611 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 612 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 613 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 614 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 615 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 616 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 617 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 618 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 619 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 620 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 621 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 622 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 623 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 624 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.29.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 625 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 626 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 627 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 628 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 629 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 630 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 631 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 632 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 633 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 634 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 635 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 636 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 637 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 638 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.3.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 639 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 640 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 641 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 642 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 643 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 644 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 645 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 646 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 647 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 648 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 649 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 650 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 651 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 652 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.30.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 653 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 654 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 655 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 656 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 657 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 658 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 659 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 660 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 661 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 662 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 663 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 664 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 665 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 666 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.31.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 667 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 668 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 669 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 670 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 671 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 672 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 673 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 674 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 675 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 676 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 677 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 678 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 679 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 680 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.32.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 681 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 682 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 683 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 684 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 685 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 686 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 687 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 688 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 689 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 690 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 691 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 692 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 693 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 694 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.33.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 695 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 696 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 697 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 698 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 699 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 700 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 701 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 702 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 703 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 704 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 705 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 706 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 707 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 708 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.34.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 709 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 710 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 711 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 712 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 713 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 714 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 715 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 716 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 717 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 718 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 719 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 720 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 721 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 722 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.35.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 723 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 724 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 725 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 726 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 727 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 728 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 729 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 730 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 731 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 732 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 733 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 734 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 735 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 736 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.36.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 737 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 738 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 739 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 740 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 741 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 742 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 743 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 744 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 745 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 746 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 747 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 748 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 749 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 750 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.37.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 751 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 752 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 753 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 754 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 755 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 756 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 757 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 758 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 759 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 760 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 761 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 762 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 763 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 764 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.38.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 765 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 766 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 767 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 768 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 769 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 770 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 771 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 772 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 773 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 774 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 775 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 776 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 777 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 778 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.39.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 779 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 780 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 781 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 782 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 783 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 784 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 785 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 786 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 787 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 788 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 789 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 790 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 791 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 792 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.4.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 793 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 794 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 795 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 796 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 797 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 798 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 799 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 800 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 801 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 802 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 803 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 804 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 805 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 806 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.40.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 807 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 808 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 809 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 810 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 811 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 812 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 813 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 814 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 815 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 816 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 817 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 818 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 819 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 820 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.41.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 821 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 822 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 823 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 824 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 825 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 826 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 827 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 828 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 829 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 830 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 831 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 832 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 833 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 834 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.42.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 835 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 836 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 837 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 838 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 839 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 840 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 841 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 842 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 843 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 844 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 845 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 846 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 847 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 848 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.43.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 849 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 850 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 851 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 852 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 853 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 854 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 855 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 856 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 857 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 858 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 859 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 860 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 861 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 862 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.44.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 863 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 864 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 865 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 866 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 867 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 868 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 869 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 870 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 871 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 872 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 873 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 874 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 875 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 876 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.45.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 877 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 878 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 879 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 880 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 881 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 882 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 883 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 884 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 885 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 886 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 887 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 888 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 889 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 890 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.46.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 891 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 892 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 893 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 894 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 895 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 896 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 897 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 898 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 899 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 900 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 901 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 902 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 903 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 904 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.5.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 905 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 906 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 907 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 908 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 909 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 910 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 911 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 912 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 913 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 914 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 915 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 916 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 917 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 918 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.6.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 919 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 920 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 921 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 922 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 923 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 924 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 925 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 926 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 927 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 928 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 929 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 930 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 931 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 932 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.7.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 933 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 934 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 935 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 936 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 937 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 938 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 939 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 940 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 941 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 942 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 943 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 944 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 945 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 946 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.8.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 947 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.attn.proj.bias": "model-00001-of-00004.safetensors",
         | 
| 948 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.attn.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 949 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.attn.qkv.bias": "model-00001-of-00004.safetensors",
         | 
| 950 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.attn.qkv.weight": "model-00001-of-00004.safetensors",
         | 
| 951 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.gamma_1": "model-00001-of-00004.safetensors",
         | 
| 952 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.gamma_2": "model-00001-of-00004.safetensors",
         | 
| 953 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.mlp.fc1.bias": "model-00001-of-00004.safetensors",
         | 
| 954 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.mlp.fc1.weight": "model-00001-of-00004.safetensors",
         | 
| 955 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.mlp.fc2.bias": "model-00001-of-00004.safetensors",
         | 
| 956 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.mlp.fc2.weight": "model-00001-of-00004.safetensors",
         | 
| 957 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.norm1.bias": "model-00001-of-00004.safetensors",
         | 
| 958 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.norm1.weight": "model-00001-of-00004.safetensors",
         | 
| 959 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.norm2.bias": "model-00001-of-00004.safetensors",
         | 
| 960 | 
            +
                "mllm.model.vision_tower.timm_model.blocks.9.norm2.weight": "model-00001-of-00004.safetensors",
         | 
| 961 | 
            +
                "mllm.model.vision_tower.timm_model.norm_pre.bias": "model-00001-of-00004.safetensors",
         | 
| 962 | 
            +
                "mllm.model.vision_tower.timm_model.norm_pre.weight": "model-00001-of-00004.safetensors",
         | 
| 963 | 
            +
                "mllm.model.vision_tower.timm_model.patch_embed.proj.weight": "model-00001-of-00004.safetensors",
         | 
| 964 | 
            +
                "mllm.model.vision_tower.timm_model.pos_embed": "model-00001-of-00004.safetensors"
         | 
| 965 | 
            +
              }
         | 
| 966 | 
            +
            }
         | 
    	
        modeling_gar.py
    ADDED
    
    | @@ -0,0 +1,352 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            from typing import List, Optional, Tuple, Union
         | 
| 2 | 
            +
            from torch import nn
         | 
| 3 | 
            +
            from transformers.modeling_outputs import CausalLMOutputWithPast
         | 
| 4 | 
            +
            from transformers.utils import logging
         | 
| 5 | 
            +
            from typing import Optional, Union
         | 
| 6 | 
            +
            import torch
         | 
| 7 | 
            +
            import torchvision
         | 
| 8 | 
            +
            from torch import nn
         | 
| 9 | 
            +
            from einops import rearrange
         | 
| 10 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 11 | 
            +
            from transformers import GenerationConfig
         | 
| 12 | 
            +
             | 
| 13 | 
            +
            from .configuration_gar import GARConfig
         | 
| 14 | 
            +
            from .modeling_perception_lm import PerceptionLMForConditionalGeneration
         | 
| 15 | 
            +
             | 
| 16 | 
            +
             | 
| 17 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 18 | 
            +
             | 
| 19 | 
            +
             | 
| 20 | 
            +
            class GARModel(PreTrainedModel):
         | 
| 21 | 
            +
                config_class = GARConfig
         | 
| 22 | 
            +
                main_input_name = 'pixel_values'
         | 
| 23 | 
            +
                base_model_prefix = 'language_model'
         | 
| 24 | 
            +
                _no_split_modules = ['LlamaDecoderLayer']
         | 
| 25 | 
            +
                _supports_flash_attn_2 = True
         | 
| 26 | 
            +
                supports_gradient_checkpointing = True
         | 
| 27 | 
            +
             | 
| 28 | 
            +
                def __init__(
         | 
| 29 | 
            +
                    self, 
         | 
| 30 | 
            +
                    config: GARConfig, 
         | 
| 31 | 
            +
                    mllm=None,
         | 
| 32 | 
            +
                    mask_patch_embedding=None,
         | 
| 33 | 
            +
                    use_flash_attn=True,
         | 
| 34 | 
            +
                ):
         | 
| 35 | 
            +
                    super().__init__(config)
         | 
| 36 | 
            +
                    use_flash_attn = use_flash_attn
         | 
| 37 | 
            +
                    config.mllm_config.use_flash_attn = True if use_flash_attn else False
         | 
| 38 | 
            +
                    config.mllm_config.text_config.use_flash_attn = True if use_flash_attn else False
         | 
| 39 | 
            +
                    config.mllm_config.vision_config.use_flash_attn = False
         | 
| 40 | 
            +
                    
         | 
| 41 | 
            +
                    config.mllm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'
         | 
| 42 | 
            +
                    config.mllm_config.vision_config._attn_implementation = 'eager'
         | 
| 43 | 
            +
             | 
| 44 | 
            +
                    self.prompt_numbers = config.prompt_numbers
         | 
| 45 | 
            +
             | 
| 46 | 
            +
                    if mllm is not None:
         | 
| 47 | 
            +
                        self.mllm = mllm
         | 
| 48 | 
            +
                    else:
         | 
| 49 | 
            +
                        self.mllm = PerceptionLMForConditionalGeneration(config.mllm_config)
         | 
| 50 | 
            +
                    if mask_patch_embedding is not None:
         | 
| 51 | 
            +
                        self.mask_patch_embedding = mask_patch_embedding
         | 
| 52 | 
            +
                    else:
         | 
| 53 | 
            +
                        self.mask_patch_embedding = nn.Conv2d(
         | 
| 54 | 
            +
                            in_channels=3,
         | 
| 55 | 
            +
                            out_channels=config.mask_path_embedding_out_channels,
         | 
| 56 | 
            +
                            kernel_size=config.kernel_size, 
         | 
| 57 | 
            +
                            stride=config.kernel_size,
         | 
| 58 | 
            +
                            bias=False,
         | 
| 59 | 
            +
                        )
         | 
| 60 | 
            +
             | 
| 61 | 
            +
                    self.crop_tokens_ids = config.crop_tokens_ids
         | 
| 62 | 
            +
             | 
| 63 | 
            +
                @property
         | 
| 64 | 
            +
                def lm_head(self):
         | 
| 65 | 
            +
                    return self.mllm.model.language_model.get_output_embeddings()
         | 
| 66 | 
            +
             | 
| 67 | 
            +
                def get_input_embeddings(self):
         | 
| 68 | 
            +
                    return self.mllm.model.language_model.get_input_embeddings()
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                def get_output_embeddings(self):
         | 
| 71 | 
            +
                    return self.mllm.model.language_model.get_output_embeddings()
         | 
| 72 | 
            +
             | 
| 73 | 
            +
                def forward(self, data, data_samples=None, mode='loss'):
         | 
| 74 | 
            +
                    crop_tokens = self.crop_tokens_ids
         | 
| 75 | 
            +
                    # (batch_size, num_tiles, channels, height, width)
         | 
| 76 | 
            +
                    pixel_values = data['pixel_values'].to(self.mllm.device).to(self.mllm.dtype)
         | 
| 77 | 
            +
                    mask_values = torch.round((data['global_mask_values'] + 1.) / 2. * 255.).long().to(self.mllm.device)
         | 
| 78 | 
            +
                    mask_values = torch.clamp(mask_values, min=0, max=self.prompt_numbers)
         | 
| 79 | 
            +
                    assert mask_values.max() < self.prompt_numbers + 1 and mask_values.min() >= 0
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                    mask_embeds = self.mask_patch_embedding((mask_values != self.prompt_numbers).to(self.mllm.dtype))     # binary mask
         | 
| 82 | 
            +
                    input_ids = data['input_ids']
         | 
| 83 | 
            +
                    aspect_ratios = data['aspect_ratios']
         | 
| 84 | 
            +
                    bboxes = data['bboxes']
         | 
| 85 | 
            +
                    assert input_ids.shape[0] == 1, "Currently only support batch_size=1"    
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                    inputs_embeds = self.mllm.get_input_embeddings()(input_ids)
         | 
| 88 | 
            +
                    labels = data['labels']
         | 
| 89 | 
            +
             | 
| 90 | 
            +
                    image_features = None
         | 
| 91 | 
            +
                    if pixel_values is not None:
         | 
| 92 | 
            +
                        image_features = self.mllm.get_image_features(
         | 
| 93 | 
            +
                            pixel_values=pixel_values.unsqueeze(0),
         | 
| 94 | 
            +
                            mask_embeds=mask_embeds,
         | 
| 95 | 
            +
                        )
         | 
| 96 | 
            +
                        image_features = image_features.to(inputs_embeds.device, dtype=inputs_embeds.dtype)
         | 
| 97 | 
            +
                        special_image_mask, _ = self.mllm.get_placeholder_mask(
         | 
| 98 | 
            +
                            input_ids, inputs_embeds=inputs_embeds, image_features=image_features
         | 
| 99 | 
            +
                        )
         | 
| 100 | 
            +
                        inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
         | 
| 101 | 
            +
                    
         | 
| 102 | 
            +
                    # feature replay
         | 
| 103 | 
            +
                    new_inputs_embeds = []
         | 
| 104 | 
            +
                    new_labels = []
         | 
| 105 | 
            +
                    image_features_tiles = rearrange(image_features[1:].unsqueeze(0), 'b n (h w) c -> b n c h w', h=16, w=16)
         | 
| 106 | 
            +
                    for batch_idx in range(inputs_embeds.shape[0]):
         | 
| 107 | 
            +
                        curr_inputs_embeds = inputs_embeds[batch_idx]
         | 
| 108 | 
            +
                        curr_labels = labels[batch_idx]
         | 
| 109 | 
            +
                        for crop_token in crop_tokens:
         | 
| 110 | 
            +
                            if crop_token in input_ids[batch_idx]:
         | 
| 111 | 
            +
                                target_mask = input_ids[batch_idx].eq(crop_token)
         | 
| 112 | 
            +
                                target_indices = target_mask.nonzero().squeeze()
         | 
| 113 | 
            +
                                head_idx = target_indices.min().item()
         | 
| 114 | 
            +
                                tail_idx = target_indices.max().item()
         | 
| 115 | 
            +
                                image_features_recover = self._merge(image_features_tiles, aspect_ratios[batch_idx][0], aspect_ratios[batch_idx][1])
         | 
| 116 | 
            +
                                feat_h, feat_w = image_features_recover.shape[2:]
         | 
| 117 | 
            +
             | 
| 118 | 
            +
                                x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
         | 
| 119 | 
            +
                                orig_h, orig_w = feat_h * 28, feat_w * 28
         | 
| 120 | 
            +
             | 
| 121 | 
            +
                                # origin box
         | 
| 122 | 
            +
                                roi_orig_x1 = x1 * orig_w
         | 
| 123 | 
            +
                                roi_orig_y1 = y1 * orig_h
         | 
| 124 | 
            +
                                roi_orig_x2 = x2 * orig_w
         | 
| 125 | 
            +
                                roi_orig_y2 = y2 * orig_h
         | 
| 126 | 
            +
             | 
| 127 | 
            +
                                # feat box
         | 
| 128 | 
            +
                                spatial_scale = feat_w / orig_w
         | 
| 129 | 
            +
                                roi_feat_x1 = roi_orig_x1 * spatial_scale
         | 
| 130 | 
            +
                                roi_feat_y1 = roi_orig_y1 * spatial_scale
         | 
| 131 | 
            +
                                roi_feat_x2 = roi_orig_x2 * spatial_scale
         | 
| 132 | 
            +
                                roi_feat_y2 = roi_orig_y2 * spatial_scale
         | 
| 133 | 
            +
             | 
| 134 | 
            +
                                roi = torch.tensor(
         | 
| 135 | 
            +
                                    [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2], 
         | 
| 136 | 
            +
                                    dtype=torch.float32, device=image_features_recover.device,
         | 
| 137 | 
            +
                                )
         | 
| 138 | 
            +
             | 
| 139 | 
            +
                                roi_features = torchvision.ops.roi_align(
         | 
| 140 | 
            +
                                    input=image_features_recover.float(),
         | 
| 141 | 
            +
                                    boxes=roi.unsqueeze(0),
         | 
| 142 | 
            +
                                    output_size=(16, 16),
         | 
| 143 | 
            +
                                    spatial_scale=spatial_scale,
         | 
| 144 | 
            +
                                    sampling_ratio=2,
         | 
| 145 | 
            +
                                    aligned=True,
         | 
| 146 | 
            +
                                )
         | 
| 147 | 
            +
             | 
| 148 | 
            +
                                image_features_replay = roi_features.permute(0, 2, 3, 1).flatten(1, 2).to(image_features_recover.dtype).squeeze()
         | 
| 149 | 
            +
                                
         | 
| 150 | 
            +
                                curr_inputs_embeds = torch.cat([
         | 
| 151 | 
            +
                                    curr_inputs_embeds[:head_idx], 
         | 
| 152 | 
            +
                                    image_features_replay, 
         | 
| 153 | 
            +
                                    curr_inputs_embeds[tail_idx+1:],
         | 
| 154 | 
            +
                                ])
         | 
| 155 | 
            +
                                curr_labels = torch.cat([
         | 
| 156 | 
            +
                                    curr_labels[:head_idx],
         | 
| 157 | 
            +
                                    -100 * torch.ones(image_features_replay.shape[0], dtype=torch.long, device=labels.device),
         | 
| 158 | 
            +
                                    curr_labels[tail_idx+1:],
         | 
| 159 | 
            +
                                ])
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                                assert curr_inputs_embeds.shape[0] == curr_labels.shape[0], f"shape mismatch, got {curr_inputs_embeds.shape[0]} != {curr_labels.shape[0]}"
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                        new_inputs_embeds.append(curr_inputs_embeds.unsqueeze(0))
         | 
| 164 | 
            +
                        new_labels.append(curr_labels)
         | 
| 165 | 
            +
                    
         | 
| 166 | 
            +
                    inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
         | 
| 167 | 
            +
                    labels = torch.cat(new_labels, dim=0)
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    skip_this_batch = False
         | 
| 170 | 
            +
                    
         | 
| 171 | 
            +
                    if mode == "loss":
         | 
| 172 | 
            +
                        position_ids = torch.arange(0, inputs_embeds.shape[1], dtype=torch.long, device=inputs_embeds.device).unsqueeze(0).repeat(inputs_embeds.shape[0], 1)
         | 
| 173 | 
            +
                        attention_mask = torch.ones(inputs_embeds.shape[0], inputs_embeds.shape[1], dtype=torch.long, device=inputs_embeds.device)
         | 
| 174 | 
            +
                        use_cache = False
         | 
| 175 | 
            +
                        
         | 
| 176 | 
            +
                        outputs, _skip_this_case = self._llm_forward(
         | 
| 177 | 
            +
                            inputs_embeds=inputs_embeds,
         | 
| 178 | 
            +
                            position_ids=position_ids,
         | 
| 179 | 
            +
                            attention_mask=attention_mask,
         | 
| 180 | 
            +
                            labels=labels,
         | 
| 181 | 
            +
                            use_cache=use_cache
         | 
| 182 | 
            +
                        )
         | 
| 183 | 
            +
             | 
| 184 | 
            +
                        if skip_this_batch or _skip_this_case:
         | 
| 185 | 
            +
                            print("skip this batch!")
         | 
| 186 | 
            +
                            loss_dict = {'loss': outputs.loss * 0.0}
         | 
| 187 | 
            +
                        else:
         | 
| 188 | 
            +
                            loss_dict = {'loss': outputs.loss}
         | 
| 189 | 
            +
                        return loss_dict
         | 
| 190 | 
            +
                    
         | 
| 191 | 
            +
                    elif mode == "predict":
         | 
| 192 | 
            +
                        pass
         | 
| 193 | 
            +
                    elif mode == "tensor":
         | 
| 194 | 
            +
                        pass
         | 
| 195 | 
            +
                    else:
         | 
| 196 | 
            +
                        raise NotImplementedError
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                    return outputs
         | 
| 199 | 
            +
                
         | 
| 200 | 
            +
                def _merge(self, tiles: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
         | 
| 201 | 
            +
                    batch_size, num_tiles, num_channels, tile_height, tile_width = tiles.size()
         | 
| 202 | 
            +
                    assert num_tiles == ncw * nch, f"{ncw * nch} != {num_tiles}"
         | 
| 203 | 
            +
                    
         | 
| 204 | 
            +
                    tiles = tiles.view(batch_size, nch, ncw, num_channels, tile_height, tile_width)
         | 
| 205 | 
            +
                    tiles = tiles.permute(0, 3, 1, 4, 2, 5).contiguous()
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    original_height = nch * tile_height
         | 
| 208 | 
            +
                    original_width = ncw * tile_width
         | 
| 209 | 
            +
             | 
| 210 | 
            +
                    image = tiles.view(batch_size, num_channels, original_height, original_width)
         | 
| 211 | 
            +
                        
         | 
| 212 | 
            +
                    return image
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                def _llm_forward(
         | 
| 215 | 
            +
                    self,
         | 
| 216 | 
            +
                    inputs_embeds: torch.FloatTensor,
         | 
| 217 | 
            +
                    input_ids: torch.LongTensor = None,
         | 
| 218 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,
         | 
| 219 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,
         | 
| 220 | 
            +
                    image_flags: Optional[torch.LongTensor] = None,
         | 
| 221 | 
            +
                    past_key_values: Optional[List[torch.FloatTensor]] = None,
         | 
| 222 | 
            +
                    labels: Optional[torch.LongTensor] = None,
         | 
| 223 | 
            +
                    use_cache: Optional[bool] = None,
         | 
| 224 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 225 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 226 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 227 | 
            +
                ) -> Union[Tuple, CausalLMOutputWithPast]:
         | 
| 228 | 
            +
                    return_dict = return_dict if return_dict is not None \
         | 
| 229 | 
            +
                        else self.mllm.config.use_return_dict
         | 
| 230 | 
            +
                    skip_this_case = False
         | 
| 231 | 
            +
             | 
| 232 | 
            +
                    outputs = self.mllm(
         | 
| 233 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 234 | 
            +
                        attention_mask=attention_mask,
         | 
| 235 | 
            +
                        position_ids=position_ids,
         | 
| 236 | 
            +
                        labels=labels,
         | 
| 237 | 
            +
                        past_key_values=past_key_values,
         | 
| 238 | 
            +
                        use_cache=use_cache,
         | 
| 239 | 
            +
                        output_attentions=output_attentions,
         | 
| 240 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 241 | 
            +
                        return_dict=return_dict,
         | 
| 242 | 
            +
                    )
         | 
| 243 | 
            +
             | 
| 244 | 
            +
                    return outputs, skip_this_case
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                @torch.no_grad()
         | 
| 247 | 
            +
                def generate(
         | 
| 248 | 
            +
                    self,
         | 
| 249 | 
            +
                    pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 250 | 
            +
                    global_mask_values: Optional[torch.LongTensor] = None,
         | 
| 251 | 
            +
                    aspect_ratios: Optional[torch.FloatTensor] = None,
         | 
| 252 | 
            +
                    bboxes: Optional[torch.FloatTensor] = None,
         | 
| 253 | 
            +
                    input_ids: Optional[torch.FloatTensor] = None,
         | 
| 254 | 
            +
                    attention_mask: Optional[torch.LongTensor] = None,
         | 
| 255 | 
            +
                    generation_config: Optional[GenerationConfig] = None,
         | 
| 256 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 257 | 
            +
                    return_dict: Optional[bool] = None,
         | 
| 258 | 
            +
                    **generate_kwargs,
         | 
| 259 | 
            +
                ) -> torch.LongTensor:
         | 
| 260 | 
            +
                    device = self.device
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    if pixel_values is not None:
         | 
| 263 | 
            +
                        pixel_values = pixel_values.to(device).to(self.mllm.dtype)
         | 
| 264 | 
            +
                        if global_mask_values is not None:
         | 
| 265 | 
            +
                            
         | 
| 266 | 
            +
                            mask_values = torch.round((global_mask_values + 1.) / 2. * 255.).long().to(device)
         | 
| 267 | 
            +
                            mask_values = torch.clamp(mask_values, min=0, max=self.prompt_numbers)
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                            assert mask_values.max() < self.prompt_numbers + 1 and mask_values.min() >= 0, f"max: {mask_values.max()}, min: {mask_values.min()}"
         | 
| 270 | 
            +
                            mask_embeds = self.mask_patch_embedding((mask_values != self.prompt_numbers).to(self.mllm.dtype)) 
         | 
| 271 | 
            +
                        else:
         | 
| 272 | 
            +
                            mask_embeds = None
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                        inputs_embeds = self.mllm.get_input_embeddings()(input_ids)
         | 
| 275 | 
            +
             | 
| 276 | 
            +
                        image_features = self.mllm.get_image_features(
         | 
| 277 | 
            +
                            pixel_values=pixel_values.unsqueeze(0),
         | 
| 278 | 
            +
                            mask_embeds=mask_embeds,
         | 
| 279 | 
            +
                        )
         | 
| 280 | 
            +
                        image_features = image_features.to(inputs_embeds.device, dtype=inputs_embeds.dtype)
         | 
| 281 | 
            +
                        special_image_mask, _ = self.mllm.get_placeholder_mask(
         | 
| 282 | 
            +
                            input_ids, inputs_embeds=inputs_embeds, image_features=image_features
         | 
| 283 | 
            +
                        )
         | 
| 284 | 
            +
                        inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features)
         | 
| 285 | 
            +
             | 
| 286 | 
            +
                        # feature replay
         | 
| 287 | 
            +
                        new_inputs_embeds = []
         | 
| 288 | 
            +
                        image_features_tiles = rearrange(image_features[1:].unsqueeze(0), 'b n (h w) c -> b n c h w', h=16, w=16)
         | 
| 289 | 
            +
                        for batch_idx in range(inputs_embeds.shape[0]):
         | 
| 290 | 
            +
                            curr_inputs_embeds = inputs_embeds[batch_idx]
         | 
| 291 | 
            +
                            for crop_token in self.crop_tokens_ids:
         | 
| 292 | 
            +
                                if crop_token in input_ids[batch_idx]:
         | 
| 293 | 
            +
                                    target_mask = input_ids[batch_idx].eq(crop_token)
         | 
| 294 | 
            +
                                    target_indices = target_mask.nonzero().squeeze()
         | 
| 295 | 
            +
                                    head_idx = target_indices.min().item()
         | 
| 296 | 
            +
                                    tail_idx = target_indices.max().item()
         | 
| 297 | 
            +
                                    image_features_recover = self._merge(image_features_tiles, aspect_ratios[batch_idx][0], aspect_ratios[batch_idx][1])
         | 
| 298 | 
            +
                                    feat_h, feat_w = image_features_recover.shape[2:]
         | 
| 299 | 
            +
                                    x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
         | 
| 300 | 
            +
                                    orig_h, orig_w = feat_h * 28, feat_w * 28
         | 
| 301 | 
            +
             | 
| 302 | 
            +
                                    # origin box
         | 
| 303 | 
            +
                                    roi_orig_x1 = x1 * orig_w
         | 
| 304 | 
            +
                                    roi_orig_y1 = y1 * orig_h
         | 
| 305 | 
            +
                                    roi_orig_x2 = x2 * orig_w
         | 
| 306 | 
            +
                                    roi_orig_y2 = y2 * orig_h
         | 
| 307 | 
            +
             | 
| 308 | 
            +
                                    # feat box
         | 
| 309 | 
            +
                                    spatial_scale = feat_w / orig_w
         | 
| 310 | 
            +
                                    roi_feat_x1 = roi_orig_x1 * spatial_scale
         | 
| 311 | 
            +
                                    roi_feat_y1 = roi_orig_y1 * spatial_scale
         | 
| 312 | 
            +
                                    roi_feat_x2 = roi_orig_x2 * spatial_scale
         | 
| 313 | 
            +
                                    roi_feat_y2 = roi_orig_y2 * spatial_scale
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                                    roi = torch.tensor(
         | 
| 316 | 
            +
                                        [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2], 
         | 
| 317 | 
            +
                                        dtype=torch.float32, device=image_features_recover.device,
         | 
| 318 | 
            +
                                    )
         | 
| 319 | 
            +
             | 
| 320 | 
            +
                                    roi_features = torchvision.ops.roi_align(
         | 
| 321 | 
            +
                                        input=image_features_recover.float(),
         | 
| 322 | 
            +
                                        boxes=roi.unsqueeze(0),
         | 
| 323 | 
            +
                                        output_size=(16, 16),
         | 
| 324 | 
            +
                                        spatial_scale=spatial_scale,
         | 
| 325 | 
            +
                                        sampling_ratio=2,
         | 
| 326 | 
            +
                                        aligned=True,
         | 
| 327 | 
            +
                                    )
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                                    image_features_replay = roi_features.permute(0, 2, 3, 1).flatten(1, 2).to(image_features_recover.dtype).squeeze()
         | 
| 330 | 
            +
                                
         | 
| 331 | 
            +
                                    curr_inputs_embeds = torch.cat([
         | 
| 332 | 
            +
                                        curr_inputs_embeds[:head_idx], 
         | 
| 333 | 
            +
                                        image_features_replay, 
         | 
| 334 | 
            +
                                        curr_inputs_embeds[tail_idx+1:],
         | 
| 335 | 
            +
                                    ])
         | 
| 336 | 
            +
             | 
| 337 | 
            +
                            new_inputs_embeds.append(curr_inputs_embeds.unsqueeze(0))
         | 
| 338 | 
            +
                        inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
         | 
| 339 | 
            +
                    else:
         | 
| 340 | 
            +
                        inputs_embeds = self.mllm.get_input_embeddings()(input_ids)
         | 
| 341 | 
            +
             | 
| 342 | 
            +
                    outputs = self.mllm.generate(
         | 
| 343 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 344 | 
            +
                        attention_mask=attention_mask,
         | 
| 345 | 
            +
                        generation_config=generation_config,
         | 
| 346 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 347 | 
            +
                        # return_dict=return_dict,
         | 
| 348 | 
            +
                        use_cache=True,
         | 
| 349 | 
            +
                        return_dict_in_generate=True,
         | 
| 350 | 
            +
                    )
         | 
| 351 | 
            +
             | 
| 352 | 
            +
                    return outputs
         | 
    	
        modeling_perception_lm.py
    ADDED
    
    | @@ -0,0 +1,865 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # *************************************************************************
         | 
| 2 | 
            +
            # This file may have been modified by Bytedance Inc. (“Bytedance Inc.'s Mo-
         | 
| 3 | 
            +
            # difications”). All Bytedance Inc.'s Modifications are Copyright (2025) B-
         | 
| 4 | 
            +
            # ytedance Inc..
         | 
| 5 | 
            +
            # *************************************************************************
         | 
| 6 | 
            +
             | 
| 7 | 
            +
            # Adapted from https://github.com/huggingface/transformers/blob/v4.55.4/src/transformers/models/perception_lm/modeling_perception_lm.py
         | 
| 8 | 
            +
             | 
| 9 | 
            +
            # coding=utf-8
         | 
| 10 | 
            +
            # Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
         | 
| 11 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 12 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 13 | 
            +
            # You may obtain a copy of the License at
         | 
| 14 | 
            +
            #
         | 
| 15 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 16 | 
            +
            #
         | 
| 17 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 18 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 19 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 20 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 21 | 
            +
            # limitations under the License.
         | 
| 22 | 
            +
             | 
| 23 | 
            +
            import math
         | 
| 24 | 
            +
            from dataclasses import dataclass
         | 
| 25 | 
            +
            from typing import Optional, Union
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            import torch
         | 
| 28 | 
            +
            import torch.nn.functional as F
         | 
| 29 | 
            +
            import torchvision
         | 
| 30 | 
            +
            from einops import rearrange
         | 
| 31 | 
            +
            from timm.models._manipulate import checkpoint
         | 
| 32 | 
            +
            from torch import nn
         | 
| 33 | 
            +
            from transformers import AutoModel, PerceptionLMConfig
         | 
| 34 | 
            +
            from transformers.generation import GenerationMixin
         | 
| 35 | 
            +
            from transformers.modeling_outputs import BaseModelOutputWithPast, ModelOutput
         | 
| 36 | 
            +
            from transformers.modeling_utils import PreTrainedModel
         | 
| 37 | 
            +
            from transformers.utils import auto_docstring, can_return_tuple
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            class PerceptionLMAdaptiveAvgPooling(nn.Module):
         | 
| 41 | 
            +
                def __init__(self, pooling_ratio=2):
         | 
| 42 | 
            +
                    super().__init__()
         | 
| 43 | 
            +
                    self.pooling_ratio = pooling_ratio
         | 
| 44 | 
            +
             | 
| 45 | 
            +
                def forward(self, hidden_states):
         | 
| 46 | 
            +
                    b, num_tokens, c = hidden_states.shape
         | 
| 47 | 
            +
                    h = int(math.sqrt(num_tokens))
         | 
| 48 | 
            +
                    if h * h != num_tokens:
         | 
| 49 | 
            +
                        raise ValueError(
         | 
| 50 | 
            +
                            f"num_tokens {num_tokens} is expected to be a square number"
         | 
| 51 | 
            +
                        )
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                    shape = (h // self.pooling_ratio, h // self.pooling_ratio)
         | 
| 54 | 
            +
                    hidden_states = hidden_states.permute(0, 2, 1).reshape(b, -1, h, h)
         | 
| 55 | 
            +
                    hidden_states = F.adaptive_avg_pool2d(hidden_states, shape)
         | 
| 56 | 
            +
                    hidden_states = hidden_states.flatten(2).transpose(1, 2)
         | 
| 57 | 
            +
             | 
| 58 | 
            +
                    return hidden_states
         | 
| 59 | 
            +
             | 
| 60 | 
            +
             | 
| 61 | 
            +
            class PerceptionLMMultiModalProjector(nn.Module):
         | 
| 62 | 
            +
                def __init__(self, config: PerceptionLMConfig):
         | 
| 63 | 
            +
                    super().__init__()
         | 
| 64 | 
            +
                    input_size = config.vision_config.model_args["embed_dim"]
         | 
| 65 | 
            +
                    output_size = config.text_config.hidden_size
         | 
| 66 | 
            +
                    self.linear_1 = nn.Linear(
         | 
| 67 | 
            +
                        in_features=input_size,
         | 
| 68 | 
            +
                        out_features=output_size,
         | 
| 69 | 
            +
                        bias=True,
         | 
| 70 | 
            +
                    )
         | 
| 71 | 
            +
                    self.gelu = nn.GELU()
         | 
| 72 | 
            +
                    self.linear_2 = nn.Linear(
         | 
| 73 | 
            +
                        in_features=output_size,
         | 
| 74 | 
            +
                        out_features=output_size,
         | 
| 75 | 
            +
                        bias=True,
         | 
| 76 | 
            +
                    )
         | 
| 77 | 
            +
                    self.pooling = (
         | 
| 78 | 
            +
                        PerceptionLMAdaptiveAvgPooling(config.projector_pooling_ratio)
         | 
| 79 | 
            +
                        if config.projector_pooling_ratio > 1
         | 
| 80 | 
            +
                        else nn.Identity()
         | 
| 81 | 
            +
                    )
         | 
| 82 | 
            +
             | 
| 83 | 
            +
                def forward(self, features):
         | 
| 84 | 
            +
                    features = features.permute(1, 0, 2)  # NLD -> LND
         | 
| 85 | 
            +
                    features = self.linear_1(features)
         | 
| 86 | 
            +
                    features = self.gelu(features)
         | 
| 87 | 
            +
                    features = self.linear_2(features)
         | 
| 88 | 
            +
                    features = features.permute(1, 0, 2)  # LND -> NLD
         | 
| 89 | 
            +
                    features = self.pooling(features)
         | 
| 90 | 
            +
                    return features
         | 
| 91 | 
            +
             | 
| 92 | 
            +
             | 
| 93 | 
            +
            @auto_docstring
         | 
| 94 | 
            +
            class PerceptionLMPreTrainedModel(PreTrainedModel):
         | 
| 95 | 
            +
                config: PerceptionLMConfig
         | 
| 96 | 
            +
                base_model_prefix = "model"
         | 
| 97 | 
            +
                supports_gradient_checkpointing = True
         | 
| 98 | 
            +
                _skip_keys_device_placement = "past_key_values"
         | 
| 99 | 
            +
             | 
| 100 | 
            +
                _supports_flash_attn = True
         | 
| 101 | 
            +
                _supports_sdpa = True
         | 
| 102 | 
            +
             | 
| 103 | 
            +
                _can_compile_fullgraph = True
         | 
| 104 | 
            +
                _supports_flex_attn = True
         | 
| 105 | 
            +
                _supports_attention_backend = True
         | 
| 106 | 
            +
             | 
| 107 | 
            +
             | 
| 108 | 
            +
            @dataclass
         | 
| 109 | 
            +
            @auto_docstring(
         | 
| 110 | 
            +
                custom_intro="""
         | 
| 111 | 
            +
                Base class for PerceptionLM outputs, with hidden states and attentions.
         | 
| 112 | 
            +
                """
         | 
| 113 | 
            +
            )
         | 
| 114 | 
            +
            class PerceptionLMModelOutputWithPast(BaseModelOutputWithPast):
         | 
| 115 | 
            +
                r"""
         | 
| 116 | 
            +
                past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         | 
| 117 | 
            +
                    Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 118 | 
            +
                    `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
         | 
| 119 | 
            +
             | 
| 120 | 
            +
                    Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
         | 
| 121 | 
            +
                    `past_key_values` input) to speed up sequential decoding.
         | 
| 122 | 
            +
                image_hidden_states (`torch.FloatTensor`, *optional*):
         | 
| 123 | 
            +
                    A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
         | 
| 124 | 
            +
                    Image hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
         | 
| 125 | 
            +
                video_hidden_states (`torch.FloatTensor`, *optional*):
         | 
| 126 | 
            +
                    A `torch.FloatTensor` of size `(batch_size, num_videos, sequence_length, hidden_size)`.
         | 
| 127 | 
            +
                    Video hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
         | 
| 128 | 
            +
                """
         | 
| 129 | 
            +
             | 
| 130 | 
            +
                image_hidden_states: Optional[torch.FloatTensor] = None
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                video_hidden_states: Optional[torch.FloatTensor] = None
         | 
| 133 | 
            +
             | 
| 134 | 
            +
             | 
| 135 | 
            +
            @dataclass
         | 
| 136 | 
            +
            @auto_docstring(
         | 
| 137 | 
            +
                custom_intro="""
         | 
| 138 | 
            +
                Base class for PerceptionLM causal language model (or autoregressive) outputs.
         | 
| 139 | 
            +
                """
         | 
| 140 | 
            +
            )
         | 
| 141 | 
            +
            class PerceptionLMCausalLMOutputWithPast(ModelOutput):
         | 
| 142 | 
            +
                r"""
         | 
| 143 | 
            +
                loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
         | 
| 144 | 
            +
                    Language modeling loss (for next-token prediction).
         | 
| 145 | 
            +
                logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
         | 
| 146 | 
            +
                    Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
         | 
| 147 | 
            +
                past_key_values (`Cache`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
         | 
| 148 | 
            +
                    Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
         | 
| 149 | 
            +
                    `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
         | 
| 150 | 
            +
             | 
| 151 | 
            +
                    Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
         | 
| 152 | 
            +
                    `past_key_values` input) to speed up sequential decoding.
         | 
| 153 | 
            +
                image_hidden_states (`torch.FloatTensor`, *optional*):
         | 
| 154 | 
            +
                    A `torch.FloatTensor` of size `(batch_size, num_images, sequence_length, hidden_size)`.
         | 
| 155 | 
            +
                    Image hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
         | 
| 156 | 
            +
                video_hidden_states (`torch.FloatTensor`, *optional*):
         | 
| 157 | 
            +
                    A `torch.FloatTensor` of size `(batch_size, num_videos, sequence_length, hidden_size)`.
         | 
| 158 | 
            +
                    Video hidden_states of the model produced by the vision encoder and after projecting the last hidden state.
         | 
| 159 | 
            +
                """
         | 
| 160 | 
            +
             | 
| 161 | 
            +
                loss: Optional[torch.FloatTensor] = None
         | 
| 162 | 
            +
                logits: Optional[torch.FloatTensor] = None
         | 
| 163 | 
            +
                past_key_values: Optional[list[torch.FloatTensor]] = None
         | 
| 164 | 
            +
                hidden_states: Optional[tuple[torch.FloatTensor]] = None
         | 
| 165 | 
            +
                attentions: Optional[tuple[torch.FloatTensor]] = None
         | 
| 166 | 
            +
                image_hidden_states: Optional[torch.FloatTensor] = None
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                video_hidden_states: Optional[torch.FloatTensor] = None
         | 
| 169 | 
            +
             | 
| 170 | 
            +
             | 
| 171 | 
            +
            @auto_docstring
         | 
| 172 | 
            +
            class PerceptionLMModel(PerceptionLMPreTrainedModel):
         | 
| 173 | 
            +
                _checkpoint_conversion_mapping = {}
         | 
| 174 | 
            +
             | 
| 175 | 
            +
                def __init__(self, config: PerceptionLMConfig):
         | 
| 176 | 
            +
                    super().__init__(config)
         | 
| 177 | 
            +
                    self.vision_tower = AutoModel.from_config(config.vision_config)
         | 
| 178 | 
            +
             | 
| 179 | 
            +
                    def custom_forward_features(
         | 
| 180 | 
            +
                        self,
         | 
| 181 | 
            +
                        x: torch.Tensor,
         | 
| 182 | 
            +
                        mask_embeds: Optional[torch.Tensor] = None,
         | 
| 183 | 
            +
                    ) -> torch.Tensor:
         | 
| 184 | 
            +
                        """Forward pass through feature extraction layers.
         | 
| 185 | 
            +
             | 
| 186 | 
            +
                        Args:
         | 
| 187 | 
            +
                            x: Input tensor.
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                        Returns:
         | 
| 190 | 
            +
                            Feature tensor.
         | 
| 191 | 
            +
                        """
         | 
| 192 | 
            +
                        x = self.patch_embed(x)
         | 
| 193 | 
            +
                        if mask_embeds is not None:
         | 
| 194 | 
            +
                            x = x + mask_embeds.flatten(2).transpose(1, 2)
         | 
| 195 | 
            +
                        x, rot_pos_embed = self._pos_embed(x)
         | 
| 196 | 
            +
                        x = self.norm_pre(x)
         | 
| 197 | 
            +
             | 
| 198 | 
            +
                        if getattr(self, "rope_mixed", False) and rot_pos_embed is not None:
         | 
| 199 | 
            +
                            # Handle depth-dependent embeddings for mixed mode
         | 
| 200 | 
            +
                            # pos embed has shape (depth, num_heads, H*W, dim) or (depth, batch_size, num_heads, H*W, dim)
         | 
| 201 | 
            +
                            for i, blk in enumerate(self.blocks):
         | 
| 202 | 
            +
                                if self.grad_checkpointing and not torch.jit.is_scripting():
         | 
| 203 | 
            +
                                    x = checkpoint(blk, x, rope=rot_pos_embed[i])
         | 
| 204 | 
            +
                                else:
         | 
| 205 | 
            +
                                    x = blk(x, rope=rot_pos_embed[i])
         | 
| 206 | 
            +
                        else:
         | 
| 207 | 
            +
                            # Standard path for non-mixed mode
         | 
| 208 | 
            +
                            for blk in self.blocks:
         | 
| 209 | 
            +
                                if self.grad_checkpointing and not torch.jit.is_scripting():
         | 
| 210 | 
            +
                                    x = checkpoint(blk, x, rope=rot_pos_embed)
         | 
| 211 | 
            +
                                else:
         | 
| 212 | 
            +
                                    x = blk(x, rope=rot_pos_embed)
         | 
| 213 | 
            +
             | 
| 214 | 
            +
                        x = self.norm(x)
         | 
| 215 | 
            +
                        return x
         | 
| 216 | 
            +
             | 
| 217 | 
            +
                    self.vision_tower.timm_model.forward_features = custom_forward_features.__get__(
         | 
| 218 | 
            +
                        self.vision_tower.timm_model
         | 
| 219 | 
            +
                    )
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                    self.multi_modal_projector = PerceptionLMMultiModalProjector(config)
         | 
| 222 | 
            +
                    self.language_model = AutoModel.from_config(config.text_config)
         | 
| 223 | 
            +
                    self.post_init()
         | 
| 224 | 
            +
             | 
| 225 | 
            +
                def get_input_embeddings(self):
         | 
| 226 | 
            +
                    return self.language_model.get_input_embeddings()
         | 
| 227 | 
            +
             | 
| 228 | 
            +
                def set_input_embeddings(self, value):
         | 
| 229 | 
            +
                    self.language_model.set_input_embeddings(value)
         | 
| 230 | 
            +
             | 
| 231 | 
            +
                def set_decoder(self, decoder):
         | 
| 232 | 
            +
                    self.language_model = decoder
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def get_decoder(self):
         | 
| 235 | 
            +
                    return self.language_model
         | 
| 236 | 
            +
             | 
| 237 | 
            +
                def get_image_features(
         | 
| 238 | 
            +
                    self,
         | 
| 239 | 
            +
                    pixel_values: torch.FloatTensor,
         | 
| 240 | 
            +
                    mask_embeds: Optional[torch.FloatTensor] = None,
         | 
| 241 | 
            +
                    **kwargs,
         | 
| 242 | 
            +
                ):
         | 
| 243 | 
            +
                    """
         | 
| 244 | 
            +
                    Obtains image last hidden states from the vision tower and apply multimodal projection.
         | 
| 245 | 
            +
             | 
| 246 | 
            +
                    Args:
         | 
| 247 | 
            +
                        pixel_values (`torch.FloatTensor]` of shape `(batch_size, num_tiles, channels, height, width)`)
         | 
| 248 | 
            +
                           The tensors corresponding to the input images.
         | 
| 249 | 
            +
                    Returns:
         | 
| 250 | 
            +
                        image_features (`torch.Tensor`): Image feature tensor of shape `(num_tiles, num_patches, embed_dim)`).
         | 
| 251 | 
            +
                    """
         | 
| 252 | 
            +
                    if len(pixel_values.shape) == 5:
         | 
| 253 | 
            +
                        pixel_values = pixel_values.flatten(0, 1)
         | 
| 254 | 
            +
                    assert (
         | 
| 255 | 
            +
                        len(pixel_values.shape) == 4
         | 
| 256 | 
            +
                    ), f"pixel_values should be of shape (batch_size * num_tiles, channels, height, width). But got {pixel_values.shape}."
         | 
| 257 | 
            +
                    # pre-mask
         | 
| 258 | 
            +
                    image_outputs = self.vision_tower(pixel_values, mask_embeds=mask_embeds)
         | 
| 259 | 
            +
                    # image_outputs = self.vision_tower(pixel_values)
         | 
| 260 | 
            +
                    image_outputs = image_outputs.last_hidden_state
         | 
| 261 | 
            +
                    if self.config.vision_use_cls_token:
         | 
| 262 | 
            +
                        image_outputs = image_outputs[:, 1:, :]
         | 
| 263 | 
            +
                    # post-mask
         | 
| 264 | 
            +
                    # if mask_embeds is not None:
         | 
| 265 | 
            +
                    #     image_outputs = image_outputs + mask_embeds.flatten(2).transpose(1, 2)
         | 
| 266 | 
            +
                    image_features = self.multi_modal_projector(image_outputs)
         | 
| 267 | 
            +
                    return image_features
         | 
| 268 | 
            +
             | 
| 269 | 
            +
                def get_placeholder_mask(
         | 
| 270 | 
            +
                    self,
         | 
| 271 | 
            +
                    input_ids: torch.LongTensor,
         | 
| 272 | 
            +
                    inputs_embeds: torch.FloatTensor,
         | 
| 273 | 
            +
                    image_features: torch.FloatTensor = None,
         | 
| 274 | 
            +
                    video_features: torch.FloatTensor = None,
         | 
| 275 | 
            +
                ):
         | 
| 276 | 
            +
                    """
         | 
| 277 | 
            +
                    Obtains multimodal placeholdr mask from `input_ids` or `inputs_embeds`, and checks that the placeholder token count is
         | 
| 278 | 
            +
                    equal to the length of multimodal features. If the lengths are different, an error is raised.
         | 
| 279 | 
            +
                    """
         | 
| 280 | 
            +
                    if input_ids is None:
         | 
| 281 | 
            +
                        special_image_mask = inputs_embeds == self.get_input_embeddings()(
         | 
| 282 | 
            +
                            torch.tensor(
         | 
| 283 | 
            +
                                self.config.image_token_id,
         | 
| 284 | 
            +
                                dtype=torch.long,
         | 
| 285 | 
            +
                                device=inputs_embeds.device,
         | 
| 286 | 
            +
                            )
         | 
| 287 | 
            +
                        )
         | 
| 288 | 
            +
                        special_image_mask = special_image_mask.all(-1)
         | 
| 289 | 
            +
                        special_video_mask = inputs_embeds == self.get_input_embeddings()(
         | 
| 290 | 
            +
                            torch.tensor(
         | 
| 291 | 
            +
                                self.config.video_token_id,
         | 
| 292 | 
            +
                                dtype=torch.long,
         | 
| 293 | 
            +
                                device=inputs_embeds.device,
         | 
| 294 | 
            +
                            )
         | 
| 295 | 
            +
                        )
         | 
| 296 | 
            +
                        special_video_mask = special_video_mask.all(-1)
         | 
| 297 | 
            +
                    else:
         | 
| 298 | 
            +
                        special_image_mask = input_ids == self.config.image_token_id
         | 
| 299 | 
            +
                        special_video_mask = input_ids == self.config.video_token_id
         | 
| 300 | 
            +
             | 
| 301 | 
            +
                    n_image_tokens = special_image_mask.sum()
         | 
| 302 | 
            +
                    special_image_mask = (
         | 
| 303 | 
            +
                        special_image_mask.unsqueeze(-1)
         | 
| 304 | 
            +
                        .expand_as(inputs_embeds)
         | 
| 305 | 
            +
                        .to(inputs_embeds.device)
         | 
| 306 | 
            +
                    )
         | 
| 307 | 
            +
                    if (
         | 
| 308 | 
            +
                        image_features is not None
         | 
| 309 | 
            +
                        and inputs_embeds[special_image_mask].numel() != image_features.numel()
         | 
| 310 | 
            +
                    ):
         | 
| 311 | 
            +
                        raise ValueError(
         | 
| 312 | 
            +
                            f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {image_features.size()[:-1].numel()}"
         | 
| 313 | 
            +
                        )
         | 
| 314 | 
            +
             | 
| 315 | 
            +
                    n_video_tokens = special_video_mask.sum()
         | 
| 316 | 
            +
                    special_video_mask = (
         | 
| 317 | 
            +
                        special_video_mask.unsqueeze(-1)
         | 
| 318 | 
            +
                        .expand_as(inputs_embeds)
         | 
| 319 | 
            +
                        .to(inputs_embeds.device)
         | 
| 320 | 
            +
                    )
         | 
| 321 | 
            +
                    if (
         | 
| 322 | 
            +
                        video_features is not None
         | 
| 323 | 
            +
                        and inputs_embeds[special_video_mask].numel() != video_features.numel()
         | 
| 324 | 
            +
                    ):
         | 
| 325 | 
            +
                        raise ValueError(
         | 
| 326 | 
            +
                            f"Videos features and image tokens do not match: tokens: {n_video_tokens}, features {video_features.size()[:-1].numel()}"
         | 
| 327 | 
            +
                        )
         | 
| 328 | 
            +
             | 
| 329 | 
            +
                    return special_image_mask, special_video_mask
         | 
| 330 | 
            +
             | 
| 331 | 
            +
                @can_return_tuple
         | 
| 332 | 
            +
                @auto_docstring
         | 
| 333 | 
            +
                def forward(
         | 
| 334 | 
            +
                    self,
         | 
| 335 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,
         | 
| 336 | 
            +
                    pixel_values: Optional[torch.FloatTensor] = None,
         | 
| 337 | 
            +
                    mask_embeds: Optional[torch.FloatTensor] = None,
         | 
| 338 | 
            +
                    pixel_values_videos: Optional[torch.FloatTensor] = None,
         | 
| 339 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,  # need
         | 
| 340 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,  # need
         | 
| 341 | 
            +
                    past_key_values: Optional[list[torch.FloatTensor]] = None,
         | 
| 342 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,  # need
         | 
| 343 | 
            +
                    use_cache: Optional[bool] = None,  # need
         | 
| 344 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 345 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 346 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 347 | 
            +
                    logits_to_keep: Union[int, torch.Tensor] = 0,
         | 
| 348 | 
            +
                    **lm_kwargs,
         | 
| 349 | 
            +
                ) -> Union[tuple, PerceptionLMModelOutputWithPast]:
         | 
| 350 | 
            +
                    output_attentions = (
         | 
| 351 | 
            +
                        output_attentions
         | 
| 352 | 
            +
                        if output_attentions is not None
         | 
| 353 | 
            +
                        else self.config.output_attentions
         | 
| 354 | 
            +
                    )
         | 
| 355 | 
            +
                    output_hidden_states = (
         | 
| 356 | 
            +
                        output_hidden_states
         | 
| 357 | 
            +
                        if output_hidden_states is not None
         | 
| 358 | 
            +
                        else self.config.output_hidden_states
         | 
| 359 | 
            +
                    )
         | 
| 360 | 
            +
                    if (input_ids is None) ^ (inputs_embeds is not None):
         | 
| 361 | 
            +
                        raise ValueError(
         | 
| 362 | 
            +
                            "You must specify exactly one of input_ids or inputs_embeds"
         | 
| 363 | 
            +
                        )
         | 
| 364 | 
            +
                    if (
         | 
| 365 | 
            +
                        pixel_values is not None or pixel_values_videos is not None
         | 
| 366 | 
            +
                    ) and inputs_embeds is not None:
         | 
| 367 | 
            +
                        raise ValueError(
         | 
| 368 | 
            +
                            "You cannot specify both (pixel_values or pixel_values_videos) and inputs_embeds at the same time, and must specify either one"
         | 
| 369 | 
            +
                        )
         | 
| 370 | 
            +
             | 
| 371 | 
            +
                    if inputs_embeds is None:
         | 
| 372 | 
            +
                        inputs_embeds = self.get_input_embeddings()(input_ids)
         | 
| 373 | 
            +
             | 
| 374 | 
            +
                    image_features = None
         | 
| 375 | 
            +
                    if pixel_values is not None:
         | 
| 376 | 
            +
                        image_features = self.get_image_features(
         | 
| 377 | 
            +
                            pixel_values=pixel_values, mask_embeds=mask_embeds
         | 
| 378 | 
            +
                        )
         | 
| 379 | 
            +
                        image_features = image_features.to(
         | 
| 380 | 
            +
                            inputs_embeds.device, dtype=inputs_embeds.dtype
         | 
| 381 | 
            +
                        )
         | 
| 382 | 
            +
                        special_image_mask, _ = self.get_placeholder_mask(
         | 
| 383 | 
            +
                            input_ids, inputs_embeds=inputs_embeds, image_features=image_features
         | 
| 384 | 
            +
                        )
         | 
| 385 | 
            +
                        inputs_embeds = inputs_embeds.masked_scatter(
         | 
| 386 | 
            +
                            special_image_mask, image_features
         | 
| 387 | 
            +
                        )
         | 
| 388 | 
            +
             | 
| 389 | 
            +
                    video_features = None
         | 
| 390 | 
            +
                    if pixel_values_videos is not None:
         | 
| 391 | 
            +
                        video_features = self.get_image_features(pixel_values=pixel_values_videos)
         | 
| 392 | 
            +
                        video_features = video_features.to(
         | 
| 393 | 
            +
                            inputs_embeds.device, dtype=inputs_embeds.dtype
         | 
| 394 | 
            +
                        )
         | 
| 395 | 
            +
                        _, special_video_mask = self.get_placeholder_mask(
         | 
| 396 | 
            +
                            input_ids, inputs_embeds=inputs_embeds, video_features=video_features
         | 
| 397 | 
            +
                        )
         | 
| 398 | 
            +
                        inputs_embeds = inputs_embeds.masked_scatter(
         | 
| 399 | 
            +
                            special_video_mask, video_features
         | 
| 400 | 
            +
                        )
         | 
| 401 | 
            +
             | 
| 402 | 
            +
                    outputs = self.language_model(
         | 
| 403 | 
            +
                        attention_mask=attention_mask,
         | 
| 404 | 
            +
                        position_ids=position_ids,
         | 
| 405 | 
            +
                        past_key_values=past_key_values,
         | 
| 406 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 407 | 
            +
                        use_cache=use_cache,
         | 
| 408 | 
            +
                        output_attentions=output_attentions,
         | 
| 409 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 410 | 
            +
                        return_dict=True,
         | 
| 411 | 
            +
                        cache_position=cache_position,
         | 
| 412 | 
            +
                        logits_to_keep=logits_to_keep,
         | 
| 413 | 
            +
                        **lm_kwargs,
         | 
| 414 | 
            +
                    )
         | 
| 415 | 
            +
                    return PerceptionLMModelOutputWithPast(
         | 
| 416 | 
            +
                        last_hidden_state=outputs.last_hidden_state,
         | 
| 417 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 418 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 419 | 
            +
                        attentions=outputs.attentions,
         | 
| 420 | 
            +
                        image_hidden_states=image_features if pixel_values is not None else None,
         | 
| 421 | 
            +
                        video_hidden_states=(
         | 
| 422 | 
            +
                            video_features if pixel_values_videos is not None else None
         | 
| 423 | 
            +
                        ),
         | 
| 424 | 
            +
                    )
         | 
| 425 | 
            +
             | 
| 426 | 
            +
             | 
| 427 | 
            +
            @auto_docstring
         | 
| 428 | 
            +
            class PerceptionLMForConditionalGeneration(
         | 
| 429 | 
            +
                PerceptionLMPreTrainedModel, GenerationMixin
         | 
| 430 | 
            +
            ):
         | 
| 431 | 
            +
                _checkpoint_conversion_mapping = {}
         | 
| 432 | 
            +
                _tied_weights_keys = ["lm_head.weight"]
         | 
| 433 | 
            +
             | 
| 434 | 
            +
                def __init__(self, config: PerceptionLMConfig):
         | 
| 435 | 
            +
                    super().__init__(config)
         | 
| 436 | 
            +
                    self.model = PerceptionLMModel(config)
         | 
| 437 | 
            +
                    self.lm_head = nn.Linear(
         | 
| 438 | 
            +
                        config.text_config.hidden_size, config.text_config.vocab_size, bias=False
         | 
| 439 | 
            +
                    )
         | 
| 440 | 
            +
                    self.post_init()
         | 
| 441 | 
            +
             | 
| 442 | 
            +
                def get_input_embeddings(self):
         | 
| 443 | 
            +
                    return self.model.get_input_embeddings()
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                def set_input_embeddings(self, value):
         | 
| 446 | 
            +
                    self.model.set_input_embeddings(value)
         | 
| 447 | 
            +
             | 
| 448 | 
            +
                def get_output_embeddings(self) -> nn.Module:
         | 
| 449 | 
            +
                    return self.lm_head
         | 
| 450 | 
            +
             | 
| 451 | 
            +
                def set_decoder(self, decoder):
         | 
| 452 | 
            +
                    self.model.set_decoder(decoder)
         | 
| 453 | 
            +
             | 
| 454 | 
            +
                def get_decoder(self):
         | 
| 455 | 
            +
                    return self.model.get_decoder()
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                def get_image_features(
         | 
| 458 | 
            +
                    self,
         | 
| 459 | 
            +
                    pixel_values: torch.FloatTensor,
         | 
| 460 | 
            +
                    mask_embeds: Optional[torch.FloatTensor] = None,
         | 
| 461 | 
            +
                    **kwargs,
         | 
| 462 | 
            +
                ):
         | 
| 463 | 
            +
                    return self.model.get_image_features(
         | 
| 464 | 
            +
                        pixel_values=pixel_values, mask_embeds=mask_embeds, **kwargs
         | 
| 465 | 
            +
                    )
         | 
| 466 | 
            +
             | 
| 467 | 
            +
                def get_placeholder_mask(
         | 
| 468 | 
            +
                    self,
         | 
| 469 | 
            +
                    input_ids: torch.LongTensor,
         | 
| 470 | 
            +
                    inputs_embeds: torch.FloatTensor,
         | 
| 471 | 
            +
                    image_features: torch.FloatTensor = None,
         | 
| 472 | 
            +
                    video_features: torch.FloatTensor = None,
         | 
| 473 | 
            +
                ):
         | 
| 474 | 
            +
                    return self.model.get_placeholder_mask(
         | 
| 475 | 
            +
                        input_ids=input_ids,
         | 
| 476 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 477 | 
            +
                        image_features=image_features,
         | 
| 478 | 
            +
                        video_features=video_features,
         | 
| 479 | 
            +
                    )
         | 
| 480 | 
            +
             | 
| 481 | 
            +
                @can_return_tuple
         | 
| 482 | 
            +
                @auto_docstring
         | 
| 483 | 
            +
                def forward(
         | 
| 484 | 
            +
                    self,
         | 
| 485 | 
            +
                    input_ids: Optional[torch.LongTensor] = None,  # no need
         | 
| 486 | 
            +
                    pixel_values: Optional[torch.FloatTensor] = None,  # no need
         | 
| 487 | 
            +
                    pixel_values_videos: Optional[torch.FloatTensor] = None,  # no need
         | 
| 488 | 
            +
                    attention_mask: Optional[torch.Tensor] = None,  # need
         | 
| 489 | 
            +
                    position_ids: Optional[torch.LongTensor] = None,  # need
         | 
| 490 | 
            +
                    past_key_values: Optional[list[torch.FloatTensor]] = None,
         | 
| 491 | 
            +
                    inputs_embeds: Optional[torch.FloatTensor] = None,  # need
         | 
| 492 | 
            +
                    labels: Optional[torch.LongTensor] = None,  # need
         | 
| 493 | 
            +
                    use_cache: Optional[bool] = None,  # need
         | 
| 494 | 
            +
                    output_attentions: Optional[bool] = None,
         | 
| 495 | 
            +
                    output_hidden_states: Optional[bool] = None,
         | 
| 496 | 
            +
                    cache_position: Optional[torch.LongTensor] = None,
         | 
| 497 | 
            +
                    logits_to_keep: Union[int, torch.Tensor] = 0,
         | 
| 498 | 
            +
                    **lm_kwargs,
         | 
| 499 | 
            +
                ) -> Union[tuple, PerceptionLMCausalLMOutputWithPast]:
         | 
| 500 | 
            +
                    r"""
         | 
| 501 | 
            +
                    labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
         | 
| 502 | 
            +
                        Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
         | 
| 503 | 
            +
                        config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
         | 
| 504 | 
            +
                        (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
         | 
| 505 | 
            +
             | 
| 506 | 
            +
                    Example:
         | 
| 507 | 
            +
             | 
| 508 | 
            +
                    ```python
         | 
| 509 | 
            +
                    >>> from PIL import Image
         | 
| 510 | 
            +
                    >>> import requests
         | 
| 511 | 
            +
                    >>> from transformers import AutoProcessor, PerceptionLMForConditionalGeneration
         | 
| 512 | 
            +
             | 
| 513 | 
            +
                    >>> model = PerceptionLMForConditionalGeneration.from_pretrained("perception_lm-hf/perception_lm-1.5-7b-hf")
         | 
| 514 | 
            +
                    >>> processor = AutoProcessor.from_pretrained("perception_lm-hf/perception_lm-1.5-7b-hf")
         | 
| 515 | 
            +
             | 
| 516 | 
            +
                    >>> prompt = "USER: <image>\nWhat's the content of the image? ASSISTANT:"
         | 
| 517 | 
            +
                    >>> url = "https://www.ilankelman.org/stopsigns/australia.jpg"
         | 
| 518 | 
            +
                    >>> image = Image.open(requests.get(url, stream=True).raw)
         | 
| 519 | 
            +
             | 
| 520 | 
            +
                    >>> inputs = processor(images=image, text=prompt, return_tensors="pt")
         | 
| 521 | 
            +
             | 
| 522 | 
            +
                    >>> # Generate
         | 
| 523 | 
            +
                    >>> generate_ids = model.generate(**inputs, max_new_tokens=15)
         | 
| 524 | 
            +
                    >>> processor.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
         | 
| 525 | 
            +
                    "USER:  \nWhat's the content of the image? ASSISTANT: The image features a busy city street with a stop sign prominently displayed"
         | 
| 526 | 
            +
                    ```"""
         | 
| 527 | 
            +
                    outputs = self.model(
         | 
| 528 | 
            +
                        input_ids=input_ids,
         | 
| 529 | 
            +
                        pixel_values=pixel_values,
         | 
| 530 | 
            +
                        pixel_values_videos=pixel_values_videos,
         | 
| 531 | 
            +
                        attention_mask=attention_mask,
         | 
| 532 | 
            +
                        position_ids=position_ids,
         | 
| 533 | 
            +
                        past_key_values=past_key_values,
         | 
| 534 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 535 | 
            +
                        use_cache=use_cache,
         | 
| 536 | 
            +
                        output_attentions=output_attentions,
         | 
| 537 | 
            +
                        output_hidden_states=output_hidden_states,
         | 
| 538 | 
            +
                        cache_position=cache_position,
         | 
| 539 | 
            +
                        logits_to_keep=logits_to_keep,
         | 
| 540 | 
            +
                        **lm_kwargs,
         | 
| 541 | 
            +
                    )
         | 
| 542 | 
            +
             | 
| 543 | 
            +
                    hidden_states = outputs[0]
         | 
| 544 | 
            +
                    # Only compute necessary logits, and do not upcast them to float if we are not computing the loss
         | 
| 545 | 
            +
                    slice_indices = (
         | 
| 546 | 
            +
                        slice(-logits_to_keep, None)
         | 
| 547 | 
            +
                        if isinstance(logits_to_keep, int)
         | 
| 548 | 
            +
                        else logits_to_keep
         | 
| 549 | 
            +
                    )
         | 
| 550 | 
            +
                    logits = self.lm_head(hidden_states[:, slice_indices, :])
         | 
| 551 | 
            +
             | 
| 552 | 
            +
                    loss = None
         | 
| 553 | 
            +
             | 
| 554 | 
            +
                    if labels is not None:
         | 
| 555 | 
            +
                        loss = self.loss_function(
         | 
| 556 | 
            +
                            logits=logits,
         | 
| 557 | 
            +
                            labels=labels,
         | 
| 558 | 
            +
                            vocab_size=self.config.text_config.vocab_size,
         | 
| 559 | 
            +
                            **lm_kwargs,
         | 
| 560 | 
            +
                        )
         | 
| 561 | 
            +
             | 
| 562 | 
            +
                    return PerceptionLMCausalLMOutputWithPast(
         | 
| 563 | 
            +
                        loss=loss,
         | 
| 564 | 
            +
                        logits=logits,
         | 
| 565 | 
            +
                        past_key_values=outputs.past_key_values,
         | 
| 566 | 
            +
                        hidden_states=outputs.hidden_states,
         | 
| 567 | 
            +
                        attentions=outputs.attentions,
         | 
| 568 | 
            +
                        image_hidden_states=outputs.image_hidden_states,
         | 
| 569 | 
            +
                        video_hidden_states=outputs.video_hidden_states,
         | 
| 570 | 
            +
                    )
         | 
| 571 | 
            +
             | 
| 572 | 
            +
                def prepare_inputs_for_generation(
         | 
| 573 | 
            +
                    self,
         | 
| 574 | 
            +
                    input_ids,
         | 
| 575 | 
            +
                    past_key_values=None,
         | 
| 576 | 
            +
                    inputs_embeds=None,
         | 
| 577 | 
            +
                    pixel_values=None,
         | 
| 578 | 
            +
                    mask_embeds=None,
         | 
| 579 | 
            +
                    pixel_values_videos=None,
         | 
| 580 | 
            +
                    attention_mask=None,
         | 
| 581 | 
            +
                    cache_position=None,
         | 
| 582 | 
            +
                    logits_to_keep=None,
         | 
| 583 | 
            +
                    feature_replay=None,
         | 
| 584 | 
            +
                    feature_replay_video=None,
         | 
| 585 | 
            +
                    crop_tokens=[128004],
         | 
| 586 | 
            +
                    roi_align=None,
         | 
| 587 | 
            +
                    bboxes=None,
         | 
| 588 | 
            +
                    aspect_ratios=True,
         | 
| 589 | 
            +
                    processor=None,
         | 
| 590 | 
            +
                    **kwargs,
         | 
| 591 | 
            +
                ):
         | 
| 592 | 
            +
                    # Overwritten -- in specific circumstances we don't want to forward image inputs to the model
         | 
| 593 | 
            +
             | 
| 594 | 
            +
                    model_inputs = super().prepare_inputs_for_generation(
         | 
| 595 | 
            +
                        input_ids,
         | 
| 596 | 
            +
                        past_key_values=past_key_values,
         | 
| 597 | 
            +
                        inputs_embeds=inputs_embeds,
         | 
| 598 | 
            +
                        attention_mask=attention_mask,
         | 
| 599 | 
            +
                        cache_position=cache_position,
         | 
| 600 | 
            +
                        logits_to_keep=logits_to_keep,
         | 
| 601 | 
            +
                        **kwargs,
         | 
| 602 | 
            +
                    )
         | 
| 603 | 
            +
             | 
| 604 | 
            +
                    assert not (feature_replay and feature_replay_video)
         | 
| 605 | 
            +
             | 
| 606 | 
            +
                    if cache_position[0] == 0:
         | 
| 607 | 
            +
                        inputs_embeds = model_inputs["inputs_embeds"]
         | 
| 608 | 
            +
             | 
| 609 | 
            +
                        if inputs_embeds is None:
         | 
| 610 | 
            +
                            inputs_embeds = self.get_input_embeddings()(input_ids)
         | 
| 611 | 
            +
             | 
| 612 | 
            +
                        image_features = None
         | 
| 613 | 
            +
                        if pixel_values is not None:
         | 
| 614 | 
            +
                            image_features = self.get_image_features(
         | 
| 615 | 
            +
                                pixel_values=pixel_values, mask_embeds=mask_embeds
         | 
| 616 | 
            +
                            )
         | 
| 617 | 
            +
                            image_features = image_features.to(
         | 
| 618 | 
            +
                                inputs_embeds.device, dtype=inputs_embeds.dtype
         | 
| 619 | 
            +
                            )
         | 
| 620 | 
            +
                            special_image_mask, _ = self.get_placeholder_mask(
         | 
| 621 | 
            +
                                input_ids,
         | 
| 622 | 
            +
                                inputs_embeds=inputs_embeds,
         | 
| 623 | 
            +
                                image_features=image_features,
         | 
| 624 | 
            +
                            )
         | 
| 625 | 
            +
                            inputs_embeds = inputs_embeds.masked_scatter(
         | 
| 626 | 
            +
                                special_image_mask, image_features
         | 
| 627 | 
            +
                            )
         | 
| 628 | 
            +
             | 
| 629 | 
            +
                        video_features = None
         | 
| 630 | 
            +
                        if pixel_values_videos is not None:
         | 
| 631 | 
            +
                            video_features = self.get_image_features(
         | 
| 632 | 
            +
                                pixel_values=pixel_values_videos
         | 
| 633 | 
            +
                            )
         | 
| 634 | 
            +
                            video_features = video_features.to(
         | 
| 635 | 
            +
                                inputs_embeds.device, dtype=inputs_embeds.dtype
         | 
| 636 | 
            +
                            )
         | 
| 637 | 
            +
                            _, special_video_mask = self.get_placeholder_mask(
         | 
| 638 | 
            +
                                input_ids,
         | 
| 639 | 
            +
                                inputs_embeds=inputs_embeds,
         | 
| 640 | 
            +
                                video_features=video_features,
         | 
| 641 | 
            +
                            )
         | 
| 642 | 
            +
                            inputs_embeds = inputs_embeds.masked_scatter(
         | 
| 643 | 
            +
                                special_video_mask, video_features
         | 
| 644 | 
            +
                            )
         | 
| 645 | 
            +
             | 
| 646 | 
            +
                        if feature_replay:
         | 
| 647 | 
            +
                            assert (
         | 
| 648 | 
            +
                                inputs_embeds.shape[0] == 1
         | 
| 649 | 
            +
                            ), "Currently only support batch_size=1 for feature replay"
         | 
| 650 | 
            +
             | 
| 651 | 
            +
                            def _merge(tiles: torch.Tensor, ncw: int, nch: int) -> torch.Tensor:
         | 
| 652 | 
            +
                                # merge image tiles to the original image
         | 
| 653 | 
            +
                                # input: (batch_size, ncw * nch, num_channels, height//nch, width//ncw)
         | 
| 654 | 
            +
                                # output: (batch_size, num_channels, height, width)
         | 
| 655 | 
            +
             | 
| 656 | 
            +
                                batch_size, num_tiles, num_channels, tile_height, tile_width = (
         | 
| 657 | 
            +
                                    tiles.size()
         | 
| 658 | 
            +
                                )
         | 
| 659 | 
            +
                                assert num_tiles == ncw * nch, f"{ncw * nch} != {num_tiles}"
         | 
| 660 | 
            +
             | 
| 661 | 
            +
                                tiles = tiles.view(
         | 
| 662 | 
            +
                                    batch_size, nch, ncw, num_channels, tile_height, tile_width
         | 
| 663 | 
            +
                                )
         | 
| 664 | 
            +
                                tiles = tiles.permute(0, 3, 1, 4, 2, 5).contiguous()
         | 
| 665 | 
            +
             | 
| 666 | 
            +
                                original_height = nch * tile_height
         | 
| 667 | 
            +
                                original_width = ncw * tile_width
         | 
| 668 | 
            +
             | 
| 669 | 
            +
                                image = tiles.view(
         | 
| 670 | 
            +
                                    batch_size, num_channels, original_height, original_width
         | 
| 671 | 
            +
                                )
         | 
| 672 | 
            +
             | 
| 673 | 
            +
                                return image
         | 
| 674 | 
            +
             | 
| 675 | 
            +
                            new_inputs_embeds = []
         | 
| 676 | 
            +
                            image_features_tiles = rearrange(
         | 
| 677 | 
            +
                                image_features[1:].unsqueeze(0),
         | 
| 678 | 
            +
                                "b n (h w) c -> b n c h w",
         | 
| 679 | 
            +
                                h=16,
         | 
| 680 | 
            +
                                w=16,
         | 
| 681 | 
            +
                            )
         | 
| 682 | 
            +
                            for batch_idx in range(inputs_embeds.shape[0]):
         | 
| 683 | 
            +
                                curr_inputs_emebds = inputs_embeds[batch_idx]
         | 
| 684 | 
            +
                                for crop_token in crop_tokens:
         | 
| 685 | 
            +
                                    if crop_token in input_ids[batch_idx]:
         | 
| 686 | 
            +
                                        target_mask = input_ids[batch_idx].eq(crop_token)
         | 
| 687 | 
            +
                                        target_indices = target_mask.nonzero().squeeze()
         | 
| 688 | 
            +
                                        head_idx = target_indices.min().item()
         | 
| 689 | 
            +
                                        tail_idx = target_indices.max().item()
         | 
| 690 | 
            +
                                        image_features_recover = _merge(
         | 
| 691 | 
            +
                                            image_features_tiles,
         | 
| 692 | 
            +
                                            aspect_ratios[batch_idx][0],
         | 
| 693 | 
            +
                                            aspect_ratios[batch_idx][1],
         | 
| 694 | 
            +
                                        )
         | 
| 695 | 
            +
                                        x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
         | 
| 696 | 
            +
                                        feat_h, feat_w = image_features_recover.shape[2:]
         | 
| 697 | 
            +
                                        orig_h, orig_w = feat_h * 28, feat_w * 28  # 原图尺寸
         | 
| 698 | 
            +
             | 
| 699 | 
            +
                                        # origin box
         | 
| 700 | 
            +
                                        roi_orig_x1 = x1 * orig_w
         | 
| 701 | 
            +
                                        roi_orig_y1 = y1 * orig_h
         | 
| 702 | 
            +
                                        roi_orig_x2 = x2 * orig_w
         | 
| 703 | 
            +
                                        roi_orig_y2 = y2 * orig_h
         | 
| 704 | 
            +
             | 
| 705 | 
            +
                                        # feat box
         | 
| 706 | 
            +
                                        spatial_scale = feat_w / orig_w
         | 
| 707 | 
            +
                                        roi_feat_x1 = roi_orig_x1 * spatial_scale
         | 
| 708 | 
            +
                                        roi_feat_y1 = roi_orig_y1 * spatial_scale
         | 
| 709 | 
            +
                                        roi_feat_x2 = roi_orig_x2 * spatial_scale
         | 
| 710 | 
            +
                                        roi_feat_y2 = roi_orig_y2 * spatial_scale
         | 
| 711 | 
            +
             | 
| 712 | 
            +
                                        roi = torch.tensor(
         | 
| 713 | 
            +
                                            [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
         | 
| 714 | 
            +
                                            dtype=torch.float32,
         | 
| 715 | 
            +
                                            device=image_features_recover.device,
         | 
| 716 | 
            +
                                        )
         | 
| 717 | 
            +
             | 
| 718 | 
            +
                                        roi_features = torchvision.ops.roi_align(
         | 
| 719 | 
            +
                                            input=image_features_recover.float(),
         | 
| 720 | 
            +
                                            boxes=roi.unsqueeze(0),
         | 
| 721 | 
            +
                                            output_size=(16, 16),
         | 
| 722 | 
            +
                                            spatial_scale=spatial_scale,
         | 
| 723 | 
            +
                                            sampling_ratio=2,
         | 
| 724 | 
            +
                                            aligned=True,
         | 
| 725 | 
            +
                                        )
         | 
| 726 | 
            +
             | 
| 727 | 
            +
                                        image_features_replay = (
         | 
| 728 | 
            +
                                            roi_features.permute(0, 2, 3, 1)
         | 
| 729 | 
            +
                                            .flatten(1, 2)
         | 
| 730 | 
            +
                                            .to(image_features_recover.dtype)
         | 
| 731 | 
            +
                                            .squeeze()
         | 
| 732 | 
            +
                                        )
         | 
| 733 | 
            +
             | 
| 734 | 
            +
                                        curr_inputs_emebds = torch.cat(
         | 
| 735 | 
            +
                                            [
         | 
| 736 | 
            +
                                                inputs_embeds[batch_idx][:head_idx],
         | 
| 737 | 
            +
                                                image_features_replay,
         | 
| 738 | 
            +
                                                inputs_embeds[batch_idx][tail_idx + 1 :],
         | 
| 739 | 
            +
                                            ]
         | 
| 740 | 
            +
                                        )
         | 
| 741 | 
            +
             | 
| 742 | 
            +
                                new_inputs_embeds.append(curr_inputs_emebds.unsqueeze(0))
         | 
| 743 | 
            +
             | 
| 744 | 
            +
                            inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
         | 
| 745 | 
            +
                            model_inputs["position_ids"] = (
         | 
| 746 | 
            +
                                torch.arange(
         | 
| 747 | 
            +
                                    0,
         | 
| 748 | 
            +
                                    inputs_embeds.shape[1],
         | 
| 749 | 
            +
                                    dtype=torch.long,
         | 
| 750 | 
            +
                                    device=inputs_embeds.device,
         | 
| 751 | 
            +
                                )
         | 
| 752 | 
            +
                                .unsqueeze(0)
         | 
| 753 | 
            +
                                .repeat(inputs_embeds.shape[0], 1)
         | 
| 754 | 
            +
                            )
         | 
| 755 | 
            +
                            model_inputs["attention_mask"] = torch.ones(
         | 
| 756 | 
            +
                                inputs_embeds.shape[0],
         | 
| 757 | 
            +
                                inputs_embeds.shape[1],
         | 
| 758 | 
            +
                                dtype=torch.long,
         | 
| 759 | 
            +
                                device=inputs_embeds.device,
         | 
| 760 | 
            +
                            )
         | 
| 761 | 
            +
                            model_inputs["cache_position"] = model_inputs["position_ids"].clone()
         | 
| 762 | 
            +
             | 
| 763 | 
            +
                        elif feature_replay_video:
         | 
| 764 | 
            +
                            assert (
         | 
| 765 | 
            +
                                inputs_embeds.shape[0] == 1
         | 
| 766 | 
            +
                            ), "Currently only support batch_size=1 for feature replay"
         | 
| 767 | 
            +
                            assert processor is not None, "Need processor"
         | 
| 768 | 
            +
             | 
| 769 | 
            +
                            new_inputs_embeds = []
         | 
| 770 | 
            +
                            image_features_tiles = rearrange(
         | 
| 771 | 
            +
                                image_features.unsqueeze(0), "b n (h w) c -> b n c h w", h=16, w=16
         | 
| 772 | 
            +
                            )
         | 
| 773 | 
            +
                            for batch_idx in range(inputs_embeds.shape[0]):
         | 
| 774 | 
            +
                                curr_inputs_emebds = inputs_embeds[batch_idx]
         | 
| 775 | 
            +
                                for frame_idx in range(image_features.shape[0]):
         | 
| 776 | 
            +
                                    crop_token = processor.tokenizer.convert_tokens_to_ids(
         | 
| 777 | 
            +
                                        f"<|reserved_special_token_{2 + frame_idx}|>"
         | 
| 778 | 
            +
                                    )
         | 
| 779 | 
            +
                                    if crop_token in input_ids[batch_idx]:
         | 
| 780 | 
            +
                                        target_mask = input_ids[batch_idx].eq(crop_token)
         | 
| 781 | 
            +
                                        target_indices = target_mask.nonzero().squeeze()
         | 
| 782 | 
            +
                                        head_idx = target_indices.min().item()
         | 
| 783 | 
            +
                                        tail_idx = target_indices.max().item()
         | 
| 784 | 
            +
                                        x1, y1, x2, y2 = bboxes[batch_idx][str(crop_token)]
         | 
| 785 | 
            +
                                        feat_h, feat_w = 16, 16
         | 
| 786 | 
            +
                                        orig_h, orig_w = feat_h * 28, feat_w * 28
         | 
| 787 | 
            +
             | 
| 788 | 
            +
                                        # origin box
         | 
| 789 | 
            +
                                        roi_orig_x1 = x1 * orig_w
         | 
| 790 | 
            +
                                        roi_orig_y1 = y1 * orig_h
         | 
| 791 | 
            +
                                        roi_orig_x2 = x2 * orig_w
         | 
| 792 | 
            +
                                        roi_orig_y2 = y2 * orig_h
         | 
| 793 | 
            +
             | 
| 794 | 
            +
                                        # feat box
         | 
| 795 | 
            +
                                        spatial_scale = feat_w / orig_w
         | 
| 796 | 
            +
                                        roi_feat_x1 = roi_orig_x1 * spatial_scale
         | 
| 797 | 
            +
                                        roi_feat_y1 = roi_orig_y1 * spatial_scale
         | 
| 798 | 
            +
                                        roi_feat_x2 = roi_orig_x2 * spatial_scale
         | 
| 799 | 
            +
                                        roi_feat_y2 = roi_orig_y2 * spatial_scale
         | 
| 800 | 
            +
             | 
| 801 | 
            +
                                        roi = torch.tensor(
         | 
| 802 | 
            +
                                            [0, roi_feat_x1, roi_feat_y1, roi_feat_x2, roi_feat_y2],
         | 
| 803 | 
            +
                                            dtype=torch.float32,
         | 
| 804 | 
            +
                                            device=image_features_tiles.device,
         | 
| 805 | 
            +
                                        )
         | 
| 806 | 
            +
             | 
| 807 | 
            +
                                        roi_features = torchvision.ops.roi_align(
         | 
| 808 | 
            +
                                            input=image_features_tiles[:, frame_idx].float(),
         | 
| 809 | 
            +
                                            boxes=roi.unsqueeze(0),
         | 
| 810 | 
            +
                                            output_size=(16, 16),
         | 
| 811 | 
            +
                                            spatial_scale=spatial_scale,
         | 
| 812 | 
            +
                                            sampling_ratio=2,
         | 
| 813 | 
            +
                                            aligned=True,
         | 
| 814 | 
            +
                                        )
         | 
| 815 | 
            +
             | 
| 816 | 
            +
                                        image_features_replay = (
         | 
| 817 | 
            +
                                            roi_features.permute(0, 2, 3, 1)
         | 
| 818 | 
            +
                                            .flatten(1, 2)
         | 
| 819 | 
            +
                                            .to(image_features_tiles.dtype)
         | 
| 820 | 
            +
                                            .squeeze()
         | 
| 821 | 
            +
                                        )
         | 
| 822 | 
            +
             | 
| 823 | 
            +
                                        curr_inputs_emebds = torch.cat(
         | 
| 824 | 
            +
                                            [
         | 
| 825 | 
            +
                                                curr_inputs_emebds[:head_idx],
         | 
| 826 | 
            +
                                                image_features_replay,
         | 
| 827 | 
            +
                                                curr_inputs_emebds[tail_idx + 1 :],
         | 
| 828 | 
            +
                                            ]
         | 
| 829 | 
            +
                                        )
         | 
| 830 | 
            +
             | 
| 831 | 
            +
                                new_inputs_embeds.append(curr_inputs_emebds.unsqueeze(0))
         | 
| 832 | 
            +
             | 
| 833 | 
            +
                            inputs_embeds = torch.cat(new_inputs_embeds, dim=0)
         | 
| 834 | 
            +
                            model_inputs["position_ids"] = (
         | 
| 835 | 
            +
                                torch.arange(
         | 
| 836 | 
            +
                                    0,
         | 
| 837 | 
            +
                                    inputs_embeds.shape[1],
         | 
| 838 | 
            +
                                    dtype=torch.long,
         | 
| 839 | 
            +
                                    device=inputs_embeds.device,
         | 
| 840 | 
            +
                                )
         | 
| 841 | 
            +
                                .unsqueeze(0)
         | 
| 842 | 
            +
                                .repeat(inputs_embeds.shape[0], 1)
         | 
| 843 | 
            +
                            )
         | 
| 844 | 
            +
                            model_inputs["attention_mask"] = torch.ones(
         | 
| 845 | 
            +
                                inputs_embeds.shape[0],
         | 
| 846 | 
            +
                                inputs_embeds.shape[1],
         | 
| 847 | 
            +
                                dtype=torch.long,
         | 
| 848 | 
            +
                                device=inputs_embeds.device,
         | 
| 849 | 
            +
                            )
         | 
| 850 | 
            +
                            model_inputs["cache_position"] = model_inputs["position_ids"].clone()
         | 
| 851 | 
            +
             | 
| 852 | 
            +
                        model_inputs["inputs_embeds"] = inputs_embeds
         | 
| 853 | 
            +
                        model_inputs["input_ids"] = None
         | 
| 854 | 
            +
                        model_inputs["pixel_values"] = None
         | 
| 855 | 
            +
                        model_inputs["pixel_values_videos"] = None
         | 
| 856 | 
            +
                        model_inputs["mask_embeds"] = None
         | 
| 857 | 
            +
             | 
| 858 | 
            +
                    return model_inputs
         | 
| 859 | 
            +
             | 
| 860 | 
            +
             | 
| 861 | 
            +
            __all__ = [
         | 
| 862 | 
            +
                "PerceptionLMForConditionalGeneration",
         | 
| 863 | 
            +
                "PerceptionLMPreTrainedModel",
         | 
| 864 | 
            +
                "PerceptionLMModel",
         | 
| 865 | 
            +
            ]
         | 
    	
        preprocessor_config.json
    ADDED
    
    | @@ -0,0 +1,40 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "auto_map": {
         | 
| 3 | 
            +
                "AutoImageProcessor": "image_processing_perception_lm_fast.PerceptionLMImageProcessorFast",
         | 
| 4 | 
            +
                "AutoProcessor": "processing_gar.GARPerceptionLMProcessor"
         | 
| 5 | 
            +
              },
         | 
| 6 | 
            +
              "crop_size": null,
         | 
| 7 | 
            +
              "data_format": "channels_first",
         | 
| 8 | 
            +
              "default_to_square": true,
         | 
| 9 | 
            +
              "device": null,
         | 
| 10 | 
            +
              "disable_grouping": null,
         | 
| 11 | 
            +
              "do_center_crop": false,
         | 
| 12 | 
            +
              "do_convert_rgb": true,
         | 
| 13 | 
            +
              "do_normalize": true,
         | 
| 14 | 
            +
              "do_rescale": true,
         | 
| 15 | 
            +
              "do_resize": true,
         | 
| 16 | 
            +
              "image_mean": [
         | 
| 17 | 
            +
                0.5,
         | 
| 18 | 
            +
                0.5,
         | 
| 19 | 
            +
                0.5
         | 
| 20 | 
            +
              ],
         | 
| 21 | 
            +
              "image_processor_type": "PerceptionLMImageProcessorFast",
         | 
| 22 | 
            +
              "image_std": [
         | 
| 23 | 
            +
                0.5,
         | 
| 24 | 
            +
                0.5,
         | 
| 25 | 
            +
                0.5
         | 
| 26 | 
            +
              ],
         | 
| 27 | 
            +
              "input_data_format": null,
         | 
| 28 | 
            +
              "max_frame_tiles": 1,
         | 
| 29 | 
            +
              "max_num_tiles": 8,
         | 
| 30 | 
            +
              "processor_class": "GARPerceptionLMProcessor",
         | 
| 31 | 
            +
              "resample": 3,
         | 
| 32 | 
            +
              "rescale_factor": 0.00392156862745098,
         | 
| 33 | 
            +
              "return_tensors": null,
         | 
| 34 | 
            +
              "size": {
         | 
| 35 | 
            +
                "height": 448,
         | 
| 36 | 
            +
                "width": 448
         | 
| 37 | 
            +
              },
         | 
| 38 | 
            +
              "tile_size": 448,
         | 
| 39 | 
            +
              "vision_input_type": "thumb+tile"
         | 
| 40 | 
            +
            }
         | 
    	
        processing_gar.py
    ADDED
    
    | @@ -0,0 +1,316 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            # coding=utf-8
         | 
| 2 | 
            +
            # Copyright 2025 Meta Platforms, Inc. and the HuggingFace Inc. team. All rights reserved.
         | 
| 3 | 
            +
            # Licensed under the Apache License, Version 2.0 (the "License");
         | 
| 4 | 
            +
            # you may not use this file except in compliance with the License.
         | 
| 5 | 
            +
            # You may obtain a copy of the License at
         | 
| 6 | 
            +
            #
         | 
| 7 | 
            +
            #     http://www.apache.org/licenses/LICENSE-2.0
         | 
| 8 | 
            +
            #
         | 
| 9 | 
            +
            # Unless required by applicable law or agreed to in writing, software
         | 
| 10 | 
            +
            # distributed under the License is distributed on an "AS IS" BASIS,
         | 
| 11 | 
            +
            # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
         | 
| 12 | 
            +
            # See the License for the specific language governing permissions and
         | 
| 13 | 
            +
            # limitations under the License.
         | 
| 14 | 
            +
            """
         | 
| 15 | 
            +
            Processor class for PerceptionLM.
         | 
| 16 | 
            +
            """
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            from typing import Iterable, Union
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            import numpy as np
         | 
| 21 | 
            +
            from transformers.feature_extraction_utils import BatchFeature
         | 
| 22 | 
            +
            from transformers.image_utils import ImageInput, get_image_size, to_numpy_array
         | 
| 23 | 
            +
            from transformers.processing_utils import (
         | 
| 24 | 
            +
                MultiModalData,
         | 
| 25 | 
            +
                ProcessingKwargs,
         | 
| 26 | 
            +
                ProcessorMixin,
         | 
| 27 | 
            +
                Unpack,
         | 
| 28 | 
            +
            )
         | 
| 29 | 
            +
            from transformers.tokenization_utils_base import PreTokenizedInput, TextInput
         | 
| 30 | 
            +
            from transformers.utils import logging
         | 
| 31 | 
            +
            from transformers.video_utils import VideoInput
         | 
| 32 | 
            +
            from transformers.image_utils import PILImageResampling
         | 
| 33 | 
            +
            from .image_processing_perception_lm_fast import PerceptionLMImageProcessorFast
         | 
| 34 | 
            +
            from transformers import AutoTokenizer, AutoProcessor, AutoImageProcessor
         | 
| 35 | 
            +
             | 
| 36 | 
            +
            logger = logging.get_logger(__name__)
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            class PerceptionLMProcessorKwargs(ProcessingKwargs, total=False):
         | 
| 40 | 
            +
                _defaults = {
         | 
| 41 | 
            +
                    "text_kwargs": {
         | 
| 42 | 
            +
                        "padding": False,
         | 
| 43 | 
            +
                        "return_mm_token_type_ids": False,
         | 
| 44 | 
            +
                    },
         | 
| 45 | 
            +
                }
         | 
| 46 | 
            +
             | 
| 47 | 
            +
             | 
| 48 | 
            +
            class GARPerceptionLMProcessor(ProcessorMixin):
         | 
| 49 | 
            +
                r"""
         | 
| 50 | 
            +
                Constructs a PerceptionLM processor which wraps a PerceptionLM image processor, a PerceptionLM video processor, and a tokenizer into a single processor.
         | 
| 51 | 
            +
             | 
| 52 | 
            +
                [`PerceptionLMProcessor`] offers all the functionalities of [`PerceptionLMImageProcessorFast`], [`PerceptionLMVideoProcessor`], and the tokenizer (e.g. [`LlamaTokenizerFast`]). See the
         | 
| 53 | 
            +
                [`~PerceptionLMProcessor.__call__`] and [`~PerceptionLMProcessor.decode`] for more information.
         | 
| 54 | 
            +
             | 
| 55 | 
            +
                Args:
         | 
| 56 | 
            +
                    video_processor ([`PerceptionLMVideoProcessor`], *optional*):
         | 
| 57 | 
            +
                        The video processor to process video inputs.
         | 
| 58 | 
            +
                    image_processor ([`PerceptionLMImageProcessorFast`], *optional*):
         | 
| 59 | 
            +
                        The image processor to process image inputs.
         | 
| 60 | 
            +
                    tokenizer ([`LlamaTokenizerFast`] or similar, *optional*):
         | 
| 61 | 
            +
                        The tokenizer to process text inputs.
         | 
| 62 | 
            +
                    patch_size (`int`, *optional*):
         | 
| 63 | 
            +
                        Patch size from the vision tower.
         | 
| 64 | 
            +
                    chat_template (`str`, *optional*):
         | 
| 65 | 
            +
                        A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string.
         | 
| 66 | 
            +
                    pooling_ratio (`int`, *optional*, defaults to 2):
         | 
| 67 | 
            +
                        Pooling ratio for vision tokens. If not 1, 2D adaptive pooling is applied over projected vision tokens.
         | 
| 68 | 
            +
                """
         | 
| 69 | 
            +
             | 
| 70 | 
            +
                attributes = ["video_processor", "image_processor", "tokenizer"]
         | 
| 71 | 
            +
                image_processor_class = "AutoImageProcessor"
         | 
| 72 | 
            +
                video_processor_class = "AutoVideoProcessor"
         | 
| 73 | 
            +
                tokenizer_class = "AutoTokenizer"
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                def __init__(
         | 
| 76 | 
            +
                    self,
         | 
| 77 | 
            +
                    video_processor=None,
         | 
| 78 | 
            +
                    image_processor=None,
         | 
| 79 | 
            +
                    tokenizer=None,
         | 
| 80 | 
            +
                    patch_size=None,
         | 
| 81 | 
            +
                    chat_template=None,
         | 
| 82 | 
            +
                    pooling_ratio=2,
         | 
| 83 | 
            +
                    **kwargs,
         | 
| 84 | 
            +
                ):
         | 
| 85 | 
            +
                    self.patch_size = patch_size
         | 
| 86 | 
            +
                    self.pooling_ratio = pooling_ratio
         | 
| 87 | 
            +
                    self.image_token = tokenizer.image_token
         | 
| 88 | 
            +
                    self.video_token = tokenizer.video_token
         | 
| 89 | 
            +
                    self.image_token_id = tokenizer.image_token_id
         | 
| 90 | 
            +
                    self.video_token_id = tokenizer.video_token_id
         | 
| 91 | 
            +
                    super().__init__(
         | 
| 92 | 
            +
                        video_processor, image_processor, tokenizer, chat_template=chat_template,
         | 
| 93 | 
            +
                    )
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                def __call__(
         | 
| 96 | 
            +
                    self,
         | 
| 97 | 
            +
                    images: ImageInput = None,
         | 
| 98 | 
            +
                    visual_prompts: ImageInput = None,
         | 
| 99 | 
            +
                    text: Union[
         | 
| 100 | 
            +
                        TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]
         | 
| 101 | 
            +
                    ] = None,
         | 
| 102 | 
            +
                    audio=None,
         | 
| 103 | 
            +
                    videos: VideoInput = None,
         | 
| 104 | 
            +
                    **kwargs: Unpack[PerceptionLMProcessorKwargs],
         | 
| 105 | 
            +
                ) -> BatchFeature:
         | 
| 106 | 
            +
                    """
         | 
| 107 | 
            +
                    Prepares a batch containing one or more sequences of text and/or images and/or videos.
         | 
| 108 | 
            +
             | 
| 109 | 
            +
                    If `text` is provided, it is tokenized using the tokenizer.
         | 
| 110 | 
            +
                    If `images` is provided, they are processed using the image processor.
         | 
| 111 | 
            +
                    If `videos` is provided, they are processed using the video processor.
         | 
| 112 | 
            +
             | 
| 113 | 
            +
                    Args:
         | 
| 114 | 
            +
                        images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`, *optional*):
         | 
| 115 | 
            +
                            The image or batch of images to be processed. Each image can be a PIL image, NumPy array, or PyTorch tensor.
         | 
| 116 | 
            +
                            Both channels-first and channels-last formats are supported.
         | 
| 117 | 
            +
                        text (`str`, `List[str]`, *optional*):
         | 
| 118 | 
            +
                            The sequence or batch of sequences to be tokenized. Each sequence can be a string.
         | 
| 119 | 
            +
                        videos (`Any`, *optional*):
         | 
| 120 | 
            +
                            The video or batch of videos to be processed.
         | 
| 121 | 
            +
                        return_tensors (`str` or [`~utils.TensorType`], *optional*):
         | 
| 122 | 
            +
                            If set, will return tensors of a particular framework. Acceptable values are:
         | 
| 123 | 
            +
                            - `'tf'`: Return TensorFlow `tf.constant` objects.
         | 
| 124 | 
            +
                            - `'pt'`: Return PyTorch `torch.Tensor` objects.
         | 
| 125 | 
            +
                            - `'np'`: Return NumPy `np.ndarray` objects.
         | 
| 126 | 
            +
                            - `'jax'`: Return JAX `jnp.ndarray` objects.
         | 
| 127 | 
            +
             | 
| 128 | 
            +
                    Returns:
         | 
| 129 | 
            +
                        [`BatchFeature`]: A [`BatchFeature`] with the following fields:
         | 
| 130 | 
            +
             | 
| 131 | 
            +
                        - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is provided.
         | 
| 132 | 
            +
                        - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
         | 
| 133 | 
            +
                          `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is provided).
         | 
| 134 | 
            +
                        - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is provided.
         | 
| 135 | 
            +
                        - **pixel_values_videos** -- Video pixel values to be fed to a model. Returned when `videos` is provided.
         | 
| 136 | 
            +
                    """
         | 
| 137 | 
            +
                    if text is None:
         | 
| 138 | 
            +
                        raise ValueError(
         | 
| 139 | 
            +
                            "You have to specify at least `text` input. Optionally, you can also specify `images` or `videos`."
         | 
| 140 | 
            +
                        )
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                    output_kwargs = self._merge_kwargs(
         | 
| 143 | 
            +
                        PerceptionLMProcessorKwargs,
         | 
| 144 | 
            +
                        tokenizer_init_kwargs=self.tokenizer.init_kwargs,
         | 
| 145 | 
            +
                        **kwargs,
         | 
| 146 | 
            +
                    )
         | 
| 147 | 
            +
                    if images is not None:
         | 
| 148 | 
            +
                        image_inputs = self.image_processor(
         | 
| 149 | 
            +
                            images=images, **output_kwargs["images_kwargs"]
         | 
| 150 | 
            +
                        )
         | 
| 151 | 
            +
                    else:
         | 
| 152 | 
            +
                        image_inputs = {}
         | 
| 153 | 
            +
             | 
| 154 | 
            +
                    if visual_prompts is not None:
         | 
| 155 | 
            +
                        visual_prompts_inputs = self.image_processor(
         | 
| 156 | 
            +
                            images=visual_prompts, **output_kwargs["images_kwargs"], resample=PILImageResampling.NEAREST
         | 
| 157 | 
            +
                        )
         | 
| 158 | 
            +
                        image_inputs["mask_values"] = visual_prompts_inputs["pixel_values"]
         | 
| 159 | 
            +
                    else:
         | 
| 160 | 
            +
                        image_inputs["mask_values"] = None
         | 
| 161 | 
            +
             | 
| 162 | 
            +
                    if videos is not None:
         | 
| 163 | 
            +
                        videos_inputs = self.video_processor(
         | 
| 164 | 
            +
                            videos, **output_kwargs["videos_kwargs"]
         | 
| 165 | 
            +
                        )
         | 
| 166 | 
            +
                    else:
         | 
| 167 | 
            +
                        videos_inputs = {}
         | 
| 168 | 
            +
             | 
| 169 | 
            +
                    if isinstance(text, str):
         | 
| 170 | 
            +
                        text = [text]
         | 
| 171 | 
            +
                    elif not isinstance(text, list) and not isinstance(text[0], str):
         | 
| 172 | 
            +
                        raise ValueError(
         | 
| 173 | 
            +
                            "Invalid input text. Please provide a string, or a list of strings"
         | 
| 174 | 
            +
                        )
         | 
| 175 | 
            +
             | 
| 176 | 
            +
                    # try to expand inputs in processing if we have the necessary parts
         | 
| 177 | 
            +
                    prompt_strings = []
         | 
| 178 | 
            +
                    pixel_values = iter(image_inputs.get("pixel_values", []))
         | 
| 179 | 
            +
                    pixel_values_videos = iter(videos_inputs.get("pixel_values_videos", []))
         | 
| 180 | 
            +
                    for sample in text:
         | 
| 181 | 
            +
                        # Replace the media token with the expanded media token sequence
         | 
| 182 | 
            +
                        sample = self._expand_media_tokens(
         | 
| 183 | 
            +
                            sample, self.tokenizer.image_token, pixel_values
         | 
| 184 | 
            +
                        )
         | 
| 185 | 
            +
                        sample = self._expand_media_tokens(
         | 
| 186 | 
            +
                            sample, self.tokenizer.video_token, pixel_values_videos
         | 
| 187 | 
            +
                        )
         | 
| 188 | 
            +
                        prompt_strings.append(sample)
         | 
| 189 | 
            +
             | 
| 190 | 
            +
                    return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None)
         | 
| 191 | 
            +
                    return_mm_token_type_ids = output_kwargs["text_kwargs"].pop(
         | 
| 192 | 
            +
                        "return_mm_token_type_ids", False
         | 
| 193 | 
            +
                    )
         | 
| 194 | 
            +
                    text_inputs = self.tokenizer(
         | 
| 195 | 
            +
                        prompt_strings, **output_kwargs["text_kwargs"], return_tensors=None
         | 
| 196 | 
            +
                    )
         | 
| 197 | 
            +
                    self._check_special_mm_tokens(
         | 
| 198 | 
            +
                        prompt_strings, text_inputs, modalities=["image", "video"]
         | 
| 199 | 
            +
                    )
         | 
| 200 | 
            +
             | 
| 201 | 
            +
                    if return_mm_token_type_ids:
         | 
| 202 | 
            +
                        array_ids = np.array(text_inputs["input_ids"])
         | 
| 203 | 
            +
                        mm_token_type_ids = np.zeros_like(text_inputs["input_ids"])
         | 
| 204 | 
            +
                        mm_token_type_ids[array_ids == self.image_token_id] = 1
         | 
| 205 | 
            +
                        text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist()
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    return BatchFeature(
         | 
| 208 | 
            +
                        data={**text_inputs, **image_inputs, **videos_inputs},
         | 
| 209 | 
            +
                        tensor_type=return_tensors,
         | 
| 210 | 
            +
                    )
         | 
| 211 | 
            +
             | 
| 212 | 
            +
                def _expand_media_tokens(self, sample, media_token: str, media_iter: Iterable):
         | 
| 213 | 
            +
                    media_count = sample.count(media_token)
         | 
| 214 | 
            +
                    if media_count > 0:
         | 
| 215 | 
            +
                        media_list = [next(media_iter) for _ in range(media_count)]
         | 
| 216 | 
            +
                        sample_splits = sample.split(media_token)
         | 
| 217 | 
            +
                        media_token_list = []
         | 
| 218 | 
            +
                        for media in media_list:
         | 
| 219 | 
            +
                            height, width = get_image_size(to_numpy_array(media))
         | 
| 220 | 
            +
                            num_tiles = media.shape[0]
         | 
| 221 | 
            +
                            num_media_tokens = (
         | 
| 222 | 
            +
                                (height // self.patch_size // self.pooling_ratio)
         | 
| 223 | 
            +
                                * (width // self.patch_size // self.pooling_ratio)
         | 
| 224 | 
            +
                                * num_tiles
         | 
| 225 | 
            +
                            )
         | 
| 226 | 
            +
                            media_token_list.append(num_media_tokens)
         | 
| 227 | 
            +
                        sample = ""
         | 
| 228 | 
            +
                        for i, num_media_tokens in enumerate(media_token_list):
         | 
| 229 | 
            +
                            sample += sample_splits[i]
         | 
| 230 | 
            +
                            sample += media_token * num_media_tokens
         | 
| 231 | 
            +
                        sample += sample_splits[-1]
         | 
| 232 | 
            +
                    return sample
         | 
| 233 | 
            +
             | 
| 234 | 
            +
                def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs):
         | 
| 235 | 
            +
                    """
         | 
| 236 | 
            +
                    Computes the number of placeholder tokens needed for multimodal inputs with the given sizes.
         | 
| 237 | 
            +
             | 
| 238 | 
            +
                    Args:
         | 
| 239 | 
            +
                        image_sizes (`list[list[int]]`, *optional*):
         | 
| 240 | 
            +
                            The input sizes formatted as (height, width) per each image.
         | 
| 241 | 
            +
             | 
| 242 | 
            +
                    Returns:
         | 
| 243 | 
            +
                        `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided
         | 
| 244 | 
            +
                        input modalities, along with other useful data.
         | 
| 245 | 
            +
                    """
         | 
| 246 | 
            +
             | 
| 247 | 
            +
                    vision_data = {}
         | 
| 248 | 
            +
                    if image_sizes is not None:
         | 
| 249 | 
            +
                        images_kwargs = PerceptionLMProcessorKwargs._defaults.get(
         | 
| 250 | 
            +
                            "images_kwargs", {}
         | 
| 251 | 
            +
                        )
         | 
| 252 | 
            +
                        images_kwargs.update(kwargs)
         | 
| 253 | 
            +
                        tile_size = (
         | 
| 254 | 
            +
                            images_kwargs.get("tile_size", None) or self.image_processor.tile_size
         | 
| 255 | 
            +
                        )
         | 
| 256 | 
            +
             | 
| 257 | 
            +
                        num_image_tokens = []
         | 
| 258 | 
            +
                        num_image_patches = []
         | 
| 259 | 
            +
                        for height, width in image_sizes:
         | 
| 260 | 
            +
                            if self.image_processor.vision_input_type == "thumb+tile":
         | 
| 261 | 
            +
                                aspect_ratio = self.image_processor._fit_image_to_canvas(
         | 
| 262 | 
            +
                                    img_width=width, img_height=height, tile_size=tile_size
         | 
| 263 | 
            +
                                )
         | 
| 264 | 
            +
                                if aspect_ratio is None:
         | 
| 265 | 
            +
                                    aspect_ratio = self.image_processor._find_closest_aspect_ratio(
         | 
| 266 | 
            +
                                        img_width=width, img_height=height, tile_size=tile_size
         | 
| 267 | 
            +
                                    )
         | 
| 268 | 
            +
                                num_tiles = (
         | 
| 269 | 
            +
                                    aspect_ratio[0] * aspect_ratio[1] + 1
         | 
| 270 | 
            +
                                )  # base image and tiles
         | 
| 271 | 
            +
                            else:
         | 
| 272 | 
            +
                                num_tiles = 1
         | 
| 273 | 
            +
             | 
| 274 | 
            +
                            num_image_tokens.append(
         | 
| 275 | 
            +
                                (tile_size // self.patch_size // self.pooling_ratio)
         | 
| 276 | 
            +
                                * (tile_size // self.patch_size // self.pooling_ratio)
         | 
| 277 | 
            +
                                * num_tiles
         | 
| 278 | 
            +
                            )
         | 
| 279 | 
            +
                            num_image_patches.append(num_tiles)
         | 
| 280 | 
            +
             | 
| 281 | 
            +
                        vision_data.update(
         | 
| 282 | 
            +
                            {
         | 
| 283 | 
            +
                                "num_image_tokens": num_image_tokens,
         | 
| 284 | 
            +
                                "num_image_patches": num_image_patches,
         | 
| 285 | 
            +
                            }
         | 
| 286 | 
            +
                        )
         | 
| 287 | 
            +
                    return MultiModalData(**vision_data)
         | 
| 288 | 
            +
             | 
| 289 | 
            +
                def batch_decode(self, *args, **kwargs):
         | 
| 290 | 
            +
                    """
         | 
| 291 | 
            +
                    This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
         | 
| 292 | 
            +
                    refer to the docstring of this method for more information.
         | 
| 293 | 
            +
                    """
         | 
| 294 | 
            +
                    return self.tokenizer.batch_decode(*args, **kwargs)
         | 
| 295 | 
            +
             | 
| 296 | 
            +
                def decode(self, *args, **kwargs):
         | 
| 297 | 
            +
                    """
         | 
| 298 | 
            +
                    This method forwards all its arguments to PerceptionLMTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
         | 
| 299 | 
            +
                    the docstring of this method for more information.
         | 
| 300 | 
            +
                    """
         | 
| 301 | 
            +
                    return self.tokenizer.decode(*args, **kwargs)
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                @property
         | 
| 304 | 
            +
                def model_input_names(self):
         | 
| 305 | 
            +
                    tokenizer_input_names = self.tokenizer.model_input_names
         | 
| 306 | 
            +
                    image_processor_input_names = self.image_processor.model_input_names
         | 
| 307 | 
            +
                    return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
         | 
| 308 | 
            +
             | 
| 309 | 
            +
            AutoProcessor.register("GARPerceptionLMProcessor", GARPerceptionLMProcessor)
         | 
| 310 | 
            +
            AutoImageProcessor.register(
         | 
| 311 | 
            +
                "GARPerceptionLMImageProcessorFast",
         | 
| 312 | 
            +
                slow_image_processor_class=None,
         | 
| 313 | 
            +
                fast_image_processor_class=PerceptionLMImageProcessorFast
         | 
| 314 | 
            +
            )
         | 
| 315 | 
            +
             | 
| 316 | 
            +
            __all__ = ["GARPerceptionLMProcessor"]
         | 
    	
        processor_config.json
    ADDED
    
    | @@ -0,0 +1,9 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "patch_size": 14,
         | 
| 3 | 
            +
              "pooling_ratio": 2,
         | 
| 4 | 
            +
              "processor_class": "GARPerceptionLMProcessor",
         | 
| 5 | 
            +
              "auto_map": {
         | 
| 6 | 
            +
                "AutoImageProcessor": "image_processing_perception_lm_fast.PerceptionLMImageProcessorFast",
         | 
| 7 | 
            +
                "AutoProcessor": "processing_gar.GARPerceptionLMProcessor"
         | 
| 8 | 
            +
              }
         | 
| 9 | 
            +
            }
         | 
    	
        special_tokens_map.json
    ADDED
    
    | @@ -0,0 +1,19 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "bos_token": {
         | 
| 3 | 
            +
                "content": "<|begin_of_text|>",
         | 
| 4 | 
            +
                "lstrip": false,
         | 
| 5 | 
            +
                "normalized": false,
         | 
| 6 | 
            +
                "rstrip": false,
         | 
| 7 | 
            +
                "single_word": false
         | 
| 8 | 
            +
              },
         | 
| 9 | 
            +
              "eos_token": {
         | 
| 10 | 
            +
                "content": "<|eot_id|>",
         | 
| 11 | 
            +
                "lstrip": false,
         | 
| 12 | 
            +
                "normalized": false,
         | 
| 13 | 
            +
                "rstrip": false,
         | 
| 14 | 
            +
                "single_word": false
         | 
| 15 | 
            +
              },
         | 
| 16 | 
            +
              "image_token": "<|image|>",
         | 
| 17 | 
            +
              "pad_token": "<|end_of_text|>",
         | 
| 18 | 
            +
              "video_token": "<|video|>"
         | 
| 19 | 
            +
            }
         | 
    	
        tokenizer.json
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:a5531cfd169b9f439ecb1339ada499771bf9a7391217dfbb51fd3a03a9fa0ce0
         | 
| 3 | 
            +
            size 17211041
         | 
    	
        tokenizer_config.json
    ADDED
    
    | @@ -0,0 +1,2118 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "added_tokens_decoder": {
         | 
| 3 | 
            +
                "128000": {
         | 
| 4 | 
            +
                  "content": "<|begin_of_text|>",
         | 
| 5 | 
            +
                  "lstrip": false,
         | 
| 6 | 
            +
                  "normalized": false,
         | 
| 7 | 
            +
                  "rstrip": false,
         | 
| 8 | 
            +
                  "single_word": false,
         | 
| 9 | 
            +
                  "special": true
         | 
| 10 | 
            +
                },
         | 
| 11 | 
            +
                "128001": {
         | 
| 12 | 
            +
                  "content": "<|end_of_text|>",
         | 
| 13 | 
            +
                  "lstrip": false,
         | 
| 14 | 
            +
                  "normalized": false,
         | 
| 15 | 
            +
                  "rstrip": false,
         | 
| 16 | 
            +
                  "single_word": false,
         | 
| 17 | 
            +
                  "special": true
         | 
| 18 | 
            +
                },
         | 
| 19 | 
            +
                "128002": {
         | 
| 20 | 
            +
                  "content": "<|image|>",
         | 
| 21 | 
            +
                  "lstrip": false,
         | 
| 22 | 
            +
                  "normalized": false,
         | 
| 23 | 
            +
                  "rstrip": false,
         | 
| 24 | 
            +
                  "single_word": false,
         | 
| 25 | 
            +
                  "special": true
         | 
| 26 | 
            +
                },
         | 
| 27 | 
            +
                "128003": {
         | 
| 28 | 
            +
                  "content": "<|video|>",
         | 
| 29 | 
            +
                  "lstrip": false,
         | 
| 30 | 
            +
                  "normalized": false,
         | 
| 31 | 
            +
                  "rstrip": false,
         | 
| 32 | 
            +
                  "single_word": false,
         | 
| 33 | 
            +
                  "special": true
         | 
| 34 | 
            +
                },
         | 
| 35 | 
            +
                "128004": {
         | 
| 36 | 
            +
                  "content": "<|reserved_special_token_2|>",
         | 
| 37 | 
            +
                  "lstrip": false,
         | 
| 38 | 
            +
                  "normalized": false,
         | 
| 39 | 
            +
                  "rstrip": false,
         | 
| 40 | 
            +
                  "single_word": false,
         | 
| 41 | 
            +
                  "special": true
         | 
| 42 | 
            +
                },
         | 
| 43 | 
            +
                "128005": {
         | 
| 44 | 
            +
                  "content": "<|reserved_special_token_3|>",
         | 
| 45 | 
            +
                  "lstrip": false,
         | 
| 46 | 
            +
                  "normalized": false,
         | 
| 47 | 
            +
                  "rstrip": false,
         | 
| 48 | 
            +
                  "single_word": false,
         | 
| 49 | 
            +
                  "special": true
         | 
| 50 | 
            +
                },
         | 
| 51 | 
            +
                "128006": {
         | 
| 52 | 
            +
                  "content": "<|start_header_id|>",
         | 
| 53 | 
            +
                  "lstrip": false,
         | 
| 54 | 
            +
                  "normalized": false,
         | 
| 55 | 
            +
                  "rstrip": false,
         | 
| 56 | 
            +
                  "single_word": false,
         | 
| 57 | 
            +
                  "special": true
         | 
| 58 | 
            +
                },
         | 
| 59 | 
            +
                "128007": {
         | 
| 60 | 
            +
                  "content": "<|end_header_id|>",
         | 
| 61 | 
            +
                  "lstrip": false,
         | 
| 62 | 
            +
                  "normalized": false,
         | 
| 63 | 
            +
                  "rstrip": false,
         | 
| 64 | 
            +
                  "single_word": false,
         | 
| 65 | 
            +
                  "special": true
         | 
| 66 | 
            +
                },
         | 
| 67 | 
            +
                "128008": {
         | 
| 68 | 
            +
                  "content": "<|reserved_special_token_4|>",
         | 
| 69 | 
            +
                  "lstrip": false,
         | 
| 70 | 
            +
                  "normalized": false,
         | 
| 71 | 
            +
                  "rstrip": false,
         | 
| 72 | 
            +
                  "single_word": false,
         | 
| 73 | 
            +
                  "special": true
         | 
| 74 | 
            +
                },
         | 
| 75 | 
            +
                "128009": {
         | 
| 76 | 
            +
                  "content": "<|eot_id|>",
         | 
| 77 | 
            +
                  "lstrip": false,
         | 
| 78 | 
            +
                  "normalized": false,
         | 
| 79 | 
            +
                  "rstrip": false,
         | 
| 80 | 
            +
                  "single_word": false,
         | 
| 81 | 
            +
                  "special": true
         | 
| 82 | 
            +
                },
         | 
| 83 | 
            +
                "128010": {
         | 
| 84 | 
            +
                  "content": "<|reserved_special_token_5|>",
         | 
| 85 | 
            +
                  "lstrip": false,
         | 
| 86 | 
            +
                  "normalized": false,
         | 
| 87 | 
            +
                  "rstrip": false,
         | 
| 88 | 
            +
                  "single_word": false,
         | 
| 89 | 
            +
                  "special": true
         | 
| 90 | 
            +
                },
         | 
| 91 | 
            +
                "128011": {
         | 
| 92 | 
            +
                  "content": "<|reserved_special_token_6|>",
         | 
| 93 | 
            +
                  "lstrip": false,
         | 
| 94 | 
            +
                  "normalized": false,
         | 
| 95 | 
            +
                  "rstrip": false,
         | 
| 96 | 
            +
                  "single_word": false,
         | 
| 97 | 
            +
                  "special": true
         | 
| 98 | 
            +
                },
         | 
| 99 | 
            +
                "128012": {
         | 
| 100 | 
            +
                  "content": "<|reserved_special_token_7|>",
         | 
| 101 | 
            +
                  "lstrip": false,
         | 
| 102 | 
            +
                  "normalized": false,
         | 
| 103 | 
            +
                  "rstrip": false,
         | 
| 104 | 
            +
                  "single_word": false,
         | 
| 105 | 
            +
                  "special": true
         | 
| 106 | 
            +
                },
         | 
| 107 | 
            +
                "128013": {
         | 
| 108 | 
            +
                  "content": "<|reserved_special_token_8|>",
         | 
| 109 | 
            +
                  "lstrip": false,
         | 
| 110 | 
            +
                  "normalized": false,
         | 
| 111 | 
            +
                  "rstrip": false,
         | 
| 112 | 
            +
                  "single_word": false,
         | 
| 113 | 
            +
                  "special": true
         | 
| 114 | 
            +
                },
         | 
| 115 | 
            +
                "128014": {
         | 
| 116 | 
            +
                  "content": "<|reserved_special_token_9|>",
         | 
| 117 | 
            +
                  "lstrip": false,
         | 
| 118 | 
            +
                  "normalized": false,
         | 
| 119 | 
            +
                  "rstrip": false,
         | 
| 120 | 
            +
                  "single_word": false,
         | 
| 121 | 
            +
                  "special": true
         | 
| 122 | 
            +
                },
         | 
| 123 | 
            +
                "128015": {
         | 
| 124 | 
            +
                  "content": "<|reserved_special_token_10|>",
         | 
| 125 | 
            +
                  "lstrip": false,
         | 
| 126 | 
            +
                  "normalized": false,
         | 
| 127 | 
            +
                  "rstrip": false,
         | 
| 128 | 
            +
                  "single_word": false,
         | 
| 129 | 
            +
                  "special": true
         | 
| 130 | 
            +
                },
         | 
| 131 | 
            +
                "128016": {
         | 
| 132 | 
            +
                  "content": "<|reserved_special_token_11|>",
         | 
| 133 | 
            +
                  "lstrip": false,
         | 
| 134 | 
            +
                  "normalized": false,
         | 
| 135 | 
            +
                  "rstrip": false,
         | 
| 136 | 
            +
                  "single_word": false,
         | 
| 137 | 
            +
                  "special": true
         | 
| 138 | 
            +
                },
         | 
| 139 | 
            +
                "128017": {
         | 
| 140 | 
            +
                  "content": "<|reserved_special_token_12|>",
         | 
| 141 | 
            +
                  "lstrip": false,
         | 
| 142 | 
            +
                  "normalized": false,
         | 
| 143 | 
            +
                  "rstrip": false,
         | 
| 144 | 
            +
                  "single_word": false,
         | 
| 145 | 
            +
                  "special": true
         | 
| 146 | 
            +
                },
         | 
| 147 | 
            +
                "128018": {
         | 
| 148 | 
            +
                  "content": "<|reserved_special_token_13|>",
         | 
| 149 | 
            +
                  "lstrip": false,
         | 
| 150 | 
            +
                  "normalized": false,
         | 
| 151 | 
            +
                  "rstrip": false,
         | 
| 152 | 
            +
                  "single_word": false,
         | 
| 153 | 
            +
                  "special": true
         | 
| 154 | 
            +
                },
         | 
| 155 | 
            +
                "128019": {
         | 
| 156 | 
            +
                  "content": "<|reserved_special_token_14|>",
         | 
| 157 | 
            +
                  "lstrip": false,
         | 
| 158 | 
            +
                  "normalized": false,
         | 
| 159 | 
            +
                  "rstrip": false,
         | 
| 160 | 
            +
                  "single_word": false,
         | 
| 161 | 
            +
                  "special": true
         | 
| 162 | 
            +
                },
         | 
| 163 | 
            +
                "128020": {
         | 
| 164 | 
            +
                  "content": "<|reserved_special_token_15|>",
         | 
| 165 | 
            +
                  "lstrip": false,
         | 
| 166 | 
            +
                  "normalized": false,
         | 
| 167 | 
            +
                  "rstrip": false,
         | 
| 168 | 
            +
                  "single_word": false,
         | 
| 169 | 
            +
                  "special": true
         | 
| 170 | 
            +
                },
         | 
| 171 | 
            +
                "128021": {
         | 
| 172 | 
            +
                  "content": "<|reserved_special_token_16|>",
         | 
| 173 | 
            +
                  "lstrip": false,
         | 
| 174 | 
            +
                  "normalized": false,
         | 
| 175 | 
            +
                  "rstrip": false,
         | 
| 176 | 
            +
                  "single_word": false,
         | 
| 177 | 
            +
                  "special": true
         | 
| 178 | 
            +
                },
         | 
| 179 | 
            +
                "128022": {
         | 
| 180 | 
            +
                  "content": "<|reserved_special_token_17|>",
         | 
| 181 | 
            +
                  "lstrip": false,
         | 
| 182 | 
            +
                  "normalized": false,
         | 
| 183 | 
            +
                  "rstrip": false,
         | 
| 184 | 
            +
                  "single_word": false,
         | 
| 185 | 
            +
                  "special": true
         | 
| 186 | 
            +
                },
         | 
| 187 | 
            +
                "128023": {
         | 
| 188 | 
            +
                  "content": "<|reserved_special_token_18|>",
         | 
| 189 | 
            +
                  "lstrip": false,
         | 
| 190 | 
            +
                  "normalized": false,
         | 
| 191 | 
            +
                  "rstrip": false,
         | 
| 192 | 
            +
                  "single_word": false,
         | 
| 193 | 
            +
                  "special": true
         | 
| 194 | 
            +
                },
         | 
| 195 | 
            +
                "128024": {
         | 
| 196 | 
            +
                  "content": "<|reserved_special_token_19|>",
         | 
| 197 | 
            +
                  "lstrip": false,
         | 
| 198 | 
            +
                  "normalized": false,
         | 
| 199 | 
            +
                  "rstrip": false,
         | 
| 200 | 
            +
                  "single_word": false,
         | 
| 201 | 
            +
                  "special": true
         | 
| 202 | 
            +
                },
         | 
| 203 | 
            +
                "128025": {
         | 
| 204 | 
            +
                  "content": "<|reserved_special_token_20|>",
         | 
| 205 | 
            +
                  "lstrip": false,
         | 
| 206 | 
            +
                  "normalized": false,
         | 
| 207 | 
            +
                  "rstrip": false,
         | 
| 208 | 
            +
                  "single_word": false,
         | 
| 209 | 
            +
                  "special": true
         | 
| 210 | 
            +
                },
         | 
| 211 | 
            +
                "128026": {
         | 
| 212 | 
            +
                  "content": "<|reserved_special_token_21|>",
         | 
| 213 | 
            +
                  "lstrip": false,
         | 
| 214 | 
            +
                  "normalized": false,
         | 
| 215 | 
            +
                  "rstrip": false,
         | 
| 216 | 
            +
                  "single_word": false,
         | 
| 217 | 
            +
                  "special": true
         | 
| 218 | 
            +
                },
         | 
| 219 | 
            +
                "128027": {
         | 
| 220 | 
            +
                  "content": "<|reserved_special_token_22|>",
         | 
| 221 | 
            +
                  "lstrip": false,
         | 
| 222 | 
            +
                  "normalized": false,
         | 
| 223 | 
            +
                  "rstrip": false,
         | 
| 224 | 
            +
                  "single_word": false,
         | 
| 225 | 
            +
                  "special": true
         | 
| 226 | 
            +
                },
         | 
| 227 | 
            +
                "128028": {
         | 
| 228 | 
            +
                  "content": "<|reserved_special_token_23|>",
         | 
| 229 | 
            +
                  "lstrip": false,
         | 
| 230 | 
            +
                  "normalized": false,
         | 
| 231 | 
            +
                  "rstrip": false,
         | 
| 232 | 
            +
                  "single_word": false,
         | 
| 233 | 
            +
                  "special": true
         | 
| 234 | 
            +
                },
         | 
| 235 | 
            +
                "128029": {
         | 
| 236 | 
            +
                  "content": "<|reserved_special_token_24|>",
         | 
| 237 | 
            +
                  "lstrip": false,
         | 
| 238 | 
            +
                  "normalized": false,
         | 
| 239 | 
            +
                  "rstrip": false,
         | 
| 240 | 
            +
                  "single_word": false,
         | 
| 241 | 
            +
                  "special": true
         | 
| 242 | 
            +
                },
         | 
| 243 | 
            +
                "128030": {
         | 
| 244 | 
            +
                  "content": "<|reserved_special_token_25|>",
         | 
| 245 | 
            +
                  "lstrip": false,
         | 
| 246 | 
            +
                  "normalized": false,
         | 
| 247 | 
            +
                  "rstrip": false,
         | 
| 248 | 
            +
                  "single_word": false,
         | 
| 249 | 
            +
                  "special": true
         | 
| 250 | 
            +
                },
         | 
| 251 | 
            +
                "128031": {
         | 
| 252 | 
            +
                  "content": "<|reserved_special_token_26|>",
         | 
| 253 | 
            +
                  "lstrip": false,
         | 
| 254 | 
            +
                  "normalized": false,
         | 
| 255 | 
            +
                  "rstrip": false,
         | 
| 256 | 
            +
                  "single_word": false,
         | 
| 257 | 
            +
                  "special": true
         | 
| 258 | 
            +
                },
         | 
| 259 | 
            +
                "128032": {
         | 
| 260 | 
            +
                  "content": "<|reserved_special_token_27|>",
         | 
| 261 | 
            +
                  "lstrip": false,
         | 
| 262 | 
            +
                  "normalized": false,
         | 
| 263 | 
            +
                  "rstrip": false,
         | 
| 264 | 
            +
                  "single_word": false,
         | 
| 265 | 
            +
                  "special": true
         | 
| 266 | 
            +
                },
         | 
| 267 | 
            +
                "128033": {
         | 
| 268 | 
            +
                  "content": "<|reserved_special_token_28|>",
         | 
| 269 | 
            +
                  "lstrip": false,
         | 
| 270 | 
            +
                  "normalized": false,
         | 
| 271 | 
            +
                  "rstrip": false,
         | 
| 272 | 
            +
                  "single_word": false,
         | 
| 273 | 
            +
                  "special": true
         | 
| 274 | 
            +
                },
         | 
| 275 | 
            +
                "128034": {
         | 
| 276 | 
            +
                  "content": "<|reserved_special_token_29|>",
         | 
| 277 | 
            +
                  "lstrip": false,
         | 
| 278 | 
            +
                  "normalized": false,
         | 
| 279 | 
            +
                  "rstrip": false,
         | 
| 280 | 
            +
                  "single_word": false,
         | 
| 281 | 
            +
                  "special": true
         | 
| 282 | 
            +
                },
         | 
| 283 | 
            +
                "128035": {
         | 
| 284 | 
            +
                  "content": "<|reserved_special_token_30|>",
         | 
| 285 | 
            +
                  "lstrip": false,
         | 
| 286 | 
            +
                  "normalized": false,
         | 
| 287 | 
            +
                  "rstrip": false,
         | 
| 288 | 
            +
                  "single_word": false,
         | 
| 289 | 
            +
                  "special": true
         | 
| 290 | 
            +
                },
         | 
| 291 | 
            +
                "128036": {
         | 
| 292 | 
            +
                  "content": "<|reserved_special_token_31|>",
         | 
| 293 | 
            +
                  "lstrip": false,
         | 
| 294 | 
            +
                  "normalized": false,
         | 
| 295 | 
            +
                  "rstrip": false,
         | 
| 296 | 
            +
                  "single_word": false,
         | 
| 297 | 
            +
                  "special": true
         | 
| 298 | 
            +
                },
         | 
| 299 | 
            +
                "128037": {
         | 
| 300 | 
            +
                  "content": "<|reserved_special_token_32|>",
         | 
| 301 | 
            +
                  "lstrip": false,
         | 
| 302 | 
            +
                  "normalized": false,
         | 
| 303 | 
            +
                  "rstrip": false,
         | 
| 304 | 
            +
                  "single_word": false,
         | 
| 305 | 
            +
                  "special": true
         | 
| 306 | 
            +
                },
         | 
| 307 | 
            +
                "128038": {
         | 
| 308 | 
            +
                  "content": "<|reserved_special_token_33|>",
         | 
| 309 | 
            +
                  "lstrip": false,
         | 
| 310 | 
            +
                  "normalized": false,
         | 
| 311 | 
            +
                  "rstrip": false,
         | 
| 312 | 
            +
                  "single_word": false,
         | 
| 313 | 
            +
                  "special": true
         | 
| 314 | 
            +
                },
         | 
| 315 | 
            +
                "128039": {
         | 
| 316 | 
            +
                  "content": "<|reserved_special_token_34|>",
         | 
| 317 | 
            +
                  "lstrip": false,
         | 
| 318 | 
            +
                  "normalized": false,
         | 
| 319 | 
            +
                  "rstrip": false,
         | 
| 320 | 
            +
                  "single_word": false,
         | 
| 321 | 
            +
                  "special": true
         | 
| 322 | 
            +
                },
         | 
| 323 | 
            +
                "128040": {
         | 
| 324 | 
            +
                  "content": "<|reserved_special_token_35|>",
         | 
| 325 | 
            +
                  "lstrip": false,
         | 
| 326 | 
            +
                  "normalized": false,
         | 
| 327 | 
            +
                  "rstrip": false,
         | 
| 328 | 
            +
                  "single_word": false,
         | 
| 329 | 
            +
                  "special": true
         | 
| 330 | 
            +
                },
         | 
| 331 | 
            +
                "128041": {
         | 
| 332 | 
            +
                  "content": "<|reserved_special_token_36|>",
         | 
| 333 | 
            +
                  "lstrip": false,
         | 
| 334 | 
            +
                  "normalized": false,
         | 
| 335 | 
            +
                  "rstrip": false,
         | 
| 336 | 
            +
                  "single_word": false,
         | 
| 337 | 
            +
                  "special": true
         | 
| 338 | 
            +
                },
         | 
| 339 | 
            +
                "128042": {
         | 
| 340 | 
            +
                  "content": "<|reserved_special_token_37|>",
         | 
| 341 | 
            +
                  "lstrip": false,
         | 
| 342 | 
            +
                  "normalized": false,
         | 
| 343 | 
            +
                  "rstrip": false,
         | 
| 344 | 
            +
                  "single_word": false,
         | 
| 345 | 
            +
                  "special": true
         | 
| 346 | 
            +
                },
         | 
| 347 | 
            +
                "128043": {
         | 
| 348 | 
            +
                  "content": "<|reserved_special_token_38|>",
         | 
| 349 | 
            +
                  "lstrip": false,
         | 
| 350 | 
            +
                  "normalized": false,
         | 
| 351 | 
            +
                  "rstrip": false,
         | 
| 352 | 
            +
                  "single_word": false,
         | 
| 353 | 
            +
                  "special": true
         | 
| 354 | 
            +
                },
         | 
| 355 | 
            +
                "128044": {
         | 
| 356 | 
            +
                  "content": "<|reserved_special_token_39|>",
         | 
| 357 | 
            +
                  "lstrip": false,
         | 
| 358 | 
            +
                  "normalized": false,
         | 
| 359 | 
            +
                  "rstrip": false,
         | 
| 360 | 
            +
                  "single_word": false,
         | 
| 361 | 
            +
                  "special": true
         | 
| 362 | 
            +
                },
         | 
| 363 | 
            +
                "128045": {
         | 
| 364 | 
            +
                  "content": "<|reserved_special_token_40|>",
         | 
| 365 | 
            +
                  "lstrip": false,
         | 
| 366 | 
            +
                  "normalized": false,
         | 
| 367 | 
            +
                  "rstrip": false,
         | 
| 368 | 
            +
                  "single_word": false,
         | 
| 369 | 
            +
                  "special": true
         | 
| 370 | 
            +
                },
         | 
| 371 | 
            +
                "128046": {
         | 
| 372 | 
            +
                  "content": "<|reserved_special_token_41|>",
         | 
| 373 | 
            +
                  "lstrip": false,
         | 
| 374 | 
            +
                  "normalized": false,
         | 
| 375 | 
            +
                  "rstrip": false,
         | 
| 376 | 
            +
                  "single_word": false,
         | 
| 377 | 
            +
                  "special": true
         | 
| 378 | 
            +
                },
         | 
| 379 | 
            +
                "128047": {
         | 
| 380 | 
            +
                  "content": "<|reserved_special_token_42|>",
         | 
| 381 | 
            +
                  "lstrip": false,
         | 
| 382 | 
            +
                  "normalized": false,
         | 
| 383 | 
            +
                  "rstrip": false,
         | 
| 384 | 
            +
                  "single_word": false,
         | 
| 385 | 
            +
                  "special": true
         | 
| 386 | 
            +
                },
         | 
| 387 | 
            +
                "128048": {
         | 
| 388 | 
            +
                  "content": "<|reserved_special_token_43|>",
         | 
| 389 | 
            +
                  "lstrip": false,
         | 
| 390 | 
            +
                  "normalized": false,
         | 
| 391 | 
            +
                  "rstrip": false,
         | 
| 392 | 
            +
                  "single_word": false,
         | 
| 393 | 
            +
                  "special": true
         | 
| 394 | 
            +
                },
         | 
| 395 | 
            +
                "128049": {
         | 
| 396 | 
            +
                  "content": "<|reserved_special_token_44|>",
         | 
| 397 | 
            +
                  "lstrip": false,
         | 
| 398 | 
            +
                  "normalized": false,
         | 
| 399 | 
            +
                  "rstrip": false,
         | 
| 400 | 
            +
                  "single_word": false,
         | 
| 401 | 
            +
                  "special": true
         | 
| 402 | 
            +
                },
         | 
| 403 | 
            +
                "128050": {
         | 
| 404 | 
            +
                  "content": "<|reserved_special_token_45|>",
         | 
| 405 | 
            +
                  "lstrip": false,
         | 
| 406 | 
            +
                  "normalized": false,
         | 
| 407 | 
            +
                  "rstrip": false,
         | 
| 408 | 
            +
                  "single_word": false,
         | 
| 409 | 
            +
                  "special": true
         | 
| 410 | 
            +
                },
         | 
| 411 | 
            +
                "128051": {
         | 
| 412 | 
            +
                  "content": "<|reserved_special_token_46|>",
         | 
| 413 | 
            +
                  "lstrip": false,
         | 
| 414 | 
            +
                  "normalized": false,
         | 
| 415 | 
            +
                  "rstrip": false,
         | 
| 416 | 
            +
                  "single_word": false,
         | 
| 417 | 
            +
                  "special": true
         | 
| 418 | 
            +
                },
         | 
| 419 | 
            +
                "128052": {
         | 
| 420 | 
            +
                  "content": "<|reserved_special_token_47|>",
         | 
| 421 | 
            +
                  "lstrip": false,
         | 
| 422 | 
            +
                  "normalized": false,
         | 
| 423 | 
            +
                  "rstrip": false,
         | 
| 424 | 
            +
                  "single_word": false,
         | 
| 425 | 
            +
                  "special": true
         | 
| 426 | 
            +
                },
         | 
| 427 | 
            +
                "128053": {
         | 
| 428 | 
            +
                  "content": "<|reserved_special_token_48|>",
         | 
| 429 | 
            +
                  "lstrip": false,
         | 
| 430 | 
            +
                  "normalized": false,
         | 
| 431 | 
            +
                  "rstrip": false,
         | 
| 432 | 
            +
                  "single_word": false,
         | 
| 433 | 
            +
                  "special": true
         | 
| 434 | 
            +
                },
         | 
| 435 | 
            +
                "128054": {
         | 
| 436 | 
            +
                  "content": "<|reserved_special_token_49|>",
         | 
| 437 | 
            +
                  "lstrip": false,
         | 
| 438 | 
            +
                  "normalized": false,
         | 
| 439 | 
            +
                  "rstrip": false,
         | 
| 440 | 
            +
                  "single_word": false,
         | 
| 441 | 
            +
                  "special": true
         | 
| 442 | 
            +
                },
         | 
| 443 | 
            +
                "128055": {
         | 
| 444 | 
            +
                  "content": "<|reserved_special_token_50|>",
         | 
| 445 | 
            +
                  "lstrip": false,
         | 
| 446 | 
            +
                  "normalized": false,
         | 
| 447 | 
            +
                  "rstrip": false,
         | 
| 448 | 
            +
                  "single_word": false,
         | 
| 449 | 
            +
                  "special": true
         | 
| 450 | 
            +
                },
         | 
| 451 | 
            +
                "128056": {
         | 
| 452 | 
            +
                  "content": "<|reserved_special_token_51|>",
         | 
| 453 | 
            +
                  "lstrip": false,
         | 
| 454 | 
            +
                  "normalized": false,
         | 
| 455 | 
            +
                  "rstrip": false,
         | 
| 456 | 
            +
                  "single_word": false,
         | 
| 457 | 
            +
                  "special": true
         | 
| 458 | 
            +
                },
         | 
| 459 | 
            +
                "128057": {
         | 
| 460 | 
            +
                  "content": "<|reserved_special_token_52|>",
         | 
| 461 | 
            +
                  "lstrip": false,
         | 
| 462 | 
            +
                  "normalized": false,
         | 
| 463 | 
            +
                  "rstrip": false,
         | 
| 464 | 
            +
                  "single_word": false,
         | 
| 465 | 
            +
                  "special": true
         | 
| 466 | 
            +
                },
         | 
| 467 | 
            +
                "128058": {
         | 
| 468 | 
            +
                  "content": "<|reserved_special_token_53|>",
         | 
| 469 | 
            +
                  "lstrip": false,
         | 
| 470 | 
            +
                  "normalized": false,
         | 
| 471 | 
            +
                  "rstrip": false,
         | 
| 472 | 
            +
                  "single_word": false,
         | 
| 473 | 
            +
                  "special": true
         | 
| 474 | 
            +
                },
         | 
| 475 | 
            +
                "128059": {
         | 
| 476 | 
            +
                  "content": "<|reserved_special_token_54|>",
         | 
| 477 | 
            +
                  "lstrip": false,
         | 
| 478 | 
            +
                  "normalized": false,
         | 
| 479 | 
            +
                  "rstrip": false,
         | 
| 480 | 
            +
                  "single_word": false,
         | 
| 481 | 
            +
                  "special": true
         | 
| 482 | 
            +
                },
         | 
| 483 | 
            +
                "128060": {
         | 
| 484 | 
            +
                  "content": "<|reserved_special_token_55|>",
         | 
| 485 | 
            +
                  "lstrip": false,
         | 
| 486 | 
            +
                  "normalized": false,
         | 
| 487 | 
            +
                  "rstrip": false,
         | 
| 488 | 
            +
                  "single_word": false,
         | 
| 489 | 
            +
                  "special": true
         | 
| 490 | 
            +
                },
         | 
| 491 | 
            +
                "128061": {
         | 
| 492 | 
            +
                  "content": "<|reserved_special_token_56|>",
         | 
| 493 | 
            +
                  "lstrip": false,
         | 
| 494 | 
            +
                  "normalized": false,
         | 
| 495 | 
            +
                  "rstrip": false,
         | 
| 496 | 
            +
                  "single_word": false,
         | 
| 497 | 
            +
                  "special": true
         | 
| 498 | 
            +
                },
         | 
| 499 | 
            +
                "128062": {
         | 
| 500 | 
            +
                  "content": "<|reserved_special_token_57|>",
         | 
| 501 | 
            +
                  "lstrip": false,
         | 
| 502 | 
            +
                  "normalized": false,
         | 
| 503 | 
            +
                  "rstrip": false,
         | 
| 504 | 
            +
                  "single_word": false,
         | 
| 505 | 
            +
                  "special": true
         | 
| 506 | 
            +
                },
         | 
| 507 | 
            +
                "128063": {
         | 
| 508 | 
            +
                  "content": "<|reserved_special_token_58|>",
         | 
| 509 | 
            +
                  "lstrip": false,
         | 
| 510 | 
            +
                  "normalized": false,
         | 
| 511 | 
            +
                  "rstrip": false,
         | 
| 512 | 
            +
                  "single_word": false,
         | 
| 513 | 
            +
                  "special": true
         | 
| 514 | 
            +
                },
         | 
| 515 | 
            +
                "128064": {
         | 
| 516 | 
            +
                  "content": "<|reserved_special_token_59|>",
         | 
| 517 | 
            +
                  "lstrip": false,
         | 
| 518 | 
            +
                  "normalized": false,
         | 
| 519 | 
            +
                  "rstrip": false,
         | 
| 520 | 
            +
                  "single_word": false,
         | 
| 521 | 
            +
                  "special": true
         | 
| 522 | 
            +
                },
         | 
| 523 | 
            +
                "128065": {
         | 
| 524 | 
            +
                  "content": "<|reserved_special_token_60|>",
         | 
| 525 | 
            +
                  "lstrip": false,
         | 
| 526 | 
            +
                  "normalized": false,
         | 
| 527 | 
            +
                  "rstrip": false,
         | 
| 528 | 
            +
                  "single_word": false,
         | 
| 529 | 
            +
                  "special": true
         | 
| 530 | 
            +
                },
         | 
| 531 | 
            +
                "128066": {
         | 
| 532 | 
            +
                  "content": "<|reserved_special_token_61|>",
         | 
| 533 | 
            +
                  "lstrip": false,
         | 
| 534 | 
            +
                  "normalized": false,
         | 
| 535 | 
            +
                  "rstrip": false,
         | 
| 536 | 
            +
                  "single_word": false,
         | 
| 537 | 
            +
                  "special": true
         | 
| 538 | 
            +
                },
         | 
| 539 | 
            +
                "128067": {
         | 
| 540 | 
            +
                  "content": "<|reserved_special_token_62|>",
         | 
| 541 | 
            +
                  "lstrip": false,
         | 
| 542 | 
            +
                  "normalized": false,
         | 
| 543 | 
            +
                  "rstrip": false,
         | 
| 544 | 
            +
                  "single_word": false,
         | 
| 545 | 
            +
                  "special": true
         | 
| 546 | 
            +
                },
         | 
| 547 | 
            +
                "128068": {
         | 
| 548 | 
            +
                  "content": "<|reserved_special_token_63|>",
         | 
| 549 | 
            +
                  "lstrip": false,
         | 
| 550 | 
            +
                  "normalized": false,
         | 
| 551 | 
            +
                  "rstrip": false,
         | 
| 552 | 
            +
                  "single_word": false,
         | 
| 553 | 
            +
                  "special": true
         | 
| 554 | 
            +
                },
         | 
| 555 | 
            +
                "128069": {
         | 
| 556 | 
            +
                  "content": "<|reserved_special_token_64|>",
         | 
| 557 | 
            +
                  "lstrip": false,
         | 
| 558 | 
            +
                  "normalized": false,
         | 
| 559 | 
            +
                  "rstrip": false,
         | 
| 560 | 
            +
                  "single_word": false,
         | 
| 561 | 
            +
                  "special": true
         | 
| 562 | 
            +
                },
         | 
| 563 | 
            +
                "128070": {
         | 
| 564 | 
            +
                  "content": "<|reserved_special_token_65|>",
         | 
| 565 | 
            +
                  "lstrip": false,
         | 
| 566 | 
            +
                  "normalized": false,
         | 
| 567 | 
            +
                  "rstrip": false,
         | 
| 568 | 
            +
                  "single_word": false,
         | 
| 569 | 
            +
                  "special": true
         | 
| 570 | 
            +
                },
         | 
| 571 | 
            +
                "128071": {
         | 
| 572 | 
            +
                  "content": "<|reserved_special_token_66|>",
         | 
| 573 | 
            +
                  "lstrip": false,
         | 
| 574 | 
            +
                  "normalized": false,
         | 
| 575 | 
            +
                  "rstrip": false,
         | 
| 576 | 
            +
                  "single_word": false,
         | 
| 577 | 
            +
                  "special": true
         | 
| 578 | 
            +
                },
         | 
| 579 | 
            +
                "128072": {
         | 
| 580 | 
            +
                  "content": "<|reserved_special_token_67|>",
         | 
| 581 | 
            +
                  "lstrip": false,
         | 
| 582 | 
            +
                  "normalized": false,
         | 
| 583 | 
            +
                  "rstrip": false,
         | 
| 584 | 
            +
                  "single_word": false,
         | 
| 585 | 
            +
                  "special": true
         | 
| 586 | 
            +
                },
         | 
| 587 | 
            +
                "128073": {
         | 
| 588 | 
            +
                  "content": "<|reserved_special_token_68|>",
         | 
| 589 | 
            +
                  "lstrip": false,
         | 
| 590 | 
            +
                  "normalized": false,
         | 
| 591 | 
            +
                  "rstrip": false,
         | 
| 592 | 
            +
                  "single_word": false,
         | 
| 593 | 
            +
                  "special": true
         | 
| 594 | 
            +
                },
         | 
| 595 | 
            +
                "128074": {
         | 
| 596 | 
            +
                  "content": "<|reserved_special_token_69|>",
         | 
| 597 | 
            +
                  "lstrip": false,
         | 
| 598 | 
            +
                  "normalized": false,
         | 
| 599 | 
            +
                  "rstrip": false,
         | 
| 600 | 
            +
                  "single_word": false,
         | 
| 601 | 
            +
                  "special": true
         | 
| 602 | 
            +
                },
         | 
| 603 | 
            +
                "128075": {
         | 
| 604 | 
            +
                  "content": "<|reserved_special_token_70|>",
         | 
| 605 | 
            +
                  "lstrip": false,
         | 
| 606 | 
            +
                  "normalized": false,
         | 
| 607 | 
            +
                  "rstrip": false,
         | 
| 608 | 
            +
                  "single_word": false,
         | 
| 609 | 
            +
                  "special": true
         | 
| 610 | 
            +
                },
         | 
| 611 | 
            +
                "128076": {
         | 
| 612 | 
            +
                  "content": "<|reserved_special_token_71|>",
         | 
| 613 | 
            +
                  "lstrip": false,
         | 
| 614 | 
            +
                  "normalized": false,
         | 
| 615 | 
            +
                  "rstrip": false,
         | 
| 616 | 
            +
                  "single_word": false,
         | 
| 617 | 
            +
                  "special": true
         | 
| 618 | 
            +
                },
         | 
| 619 | 
            +
                "128077": {
         | 
| 620 | 
            +
                  "content": "<|reserved_special_token_72|>",
         | 
| 621 | 
            +
                  "lstrip": false,
         | 
| 622 | 
            +
                  "normalized": false,
         | 
| 623 | 
            +
                  "rstrip": false,
         | 
| 624 | 
            +
                  "single_word": false,
         | 
| 625 | 
            +
                  "special": true
         | 
| 626 | 
            +
                },
         | 
| 627 | 
            +
                "128078": {
         | 
| 628 | 
            +
                  "content": "<|reserved_special_token_73|>",
         | 
| 629 | 
            +
                  "lstrip": false,
         | 
| 630 | 
            +
                  "normalized": false,
         | 
| 631 | 
            +
                  "rstrip": false,
         | 
| 632 | 
            +
                  "single_word": false,
         | 
| 633 | 
            +
                  "special": true
         | 
| 634 | 
            +
                },
         | 
| 635 | 
            +
                "128079": {
         | 
| 636 | 
            +
                  "content": "<|reserved_special_token_74|>",
         | 
| 637 | 
            +
                  "lstrip": false,
         | 
| 638 | 
            +
                  "normalized": false,
         | 
| 639 | 
            +
                  "rstrip": false,
         | 
| 640 | 
            +
                  "single_word": false,
         | 
| 641 | 
            +
                  "special": true
         | 
| 642 | 
            +
                },
         | 
| 643 | 
            +
                "128080": {
         | 
| 644 | 
            +
                  "content": "<|reserved_special_token_75|>",
         | 
| 645 | 
            +
                  "lstrip": false,
         | 
| 646 | 
            +
                  "normalized": false,
         | 
| 647 | 
            +
                  "rstrip": false,
         | 
| 648 | 
            +
                  "single_word": false,
         | 
| 649 | 
            +
                  "special": true
         | 
| 650 | 
            +
                },
         | 
| 651 | 
            +
                "128081": {
         | 
| 652 | 
            +
                  "content": "<|reserved_special_token_76|>",
         | 
| 653 | 
            +
                  "lstrip": false,
         | 
| 654 | 
            +
                  "normalized": false,
         | 
| 655 | 
            +
                  "rstrip": false,
         | 
| 656 | 
            +
                  "single_word": false,
         | 
| 657 | 
            +
                  "special": true
         | 
| 658 | 
            +
                },
         | 
| 659 | 
            +
                "128082": {
         | 
| 660 | 
            +
                  "content": "<|reserved_special_token_77|>",
         | 
| 661 | 
            +
                  "lstrip": false,
         | 
| 662 | 
            +
                  "normalized": false,
         | 
| 663 | 
            +
                  "rstrip": false,
         | 
| 664 | 
            +
                  "single_word": false,
         | 
| 665 | 
            +
                  "special": true
         | 
| 666 | 
            +
                },
         | 
| 667 | 
            +
                "128083": {
         | 
| 668 | 
            +
                  "content": "<|reserved_special_token_78|>",
         | 
| 669 | 
            +
                  "lstrip": false,
         | 
| 670 | 
            +
                  "normalized": false,
         | 
| 671 | 
            +
                  "rstrip": false,
         | 
| 672 | 
            +
                  "single_word": false,
         | 
| 673 | 
            +
                  "special": true
         | 
| 674 | 
            +
                },
         | 
| 675 | 
            +
                "128084": {
         | 
| 676 | 
            +
                  "content": "<|reserved_special_token_79|>",
         | 
| 677 | 
            +
                  "lstrip": false,
         | 
| 678 | 
            +
                  "normalized": false,
         | 
| 679 | 
            +
                  "rstrip": false,
         | 
| 680 | 
            +
                  "single_word": false,
         | 
| 681 | 
            +
                  "special": true
         | 
| 682 | 
            +
                },
         | 
| 683 | 
            +
                "128085": {
         | 
| 684 | 
            +
                  "content": "<|reserved_special_token_80|>",
         | 
| 685 | 
            +
                  "lstrip": false,
         | 
| 686 | 
            +
                  "normalized": false,
         | 
| 687 | 
            +
                  "rstrip": false,
         | 
| 688 | 
            +
                  "single_word": false,
         | 
| 689 | 
            +
                  "special": true
         | 
| 690 | 
            +
                },
         | 
| 691 | 
            +
                "128086": {
         | 
| 692 | 
            +
                  "content": "<|reserved_special_token_81|>",
         | 
| 693 | 
            +
                  "lstrip": false,
         | 
| 694 | 
            +
                  "normalized": false,
         | 
| 695 | 
            +
                  "rstrip": false,
         | 
| 696 | 
            +
                  "single_word": false,
         | 
| 697 | 
            +
                  "special": true
         | 
| 698 | 
            +
                },
         | 
| 699 | 
            +
                "128087": {
         | 
| 700 | 
            +
                  "content": "<|reserved_special_token_82|>",
         | 
| 701 | 
            +
                  "lstrip": false,
         | 
| 702 | 
            +
                  "normalized": false,
         | 
| 703 | 
            +
                  "rstrip": false,
         | 
| 704 | 
            +
                  "single_word": false,
         | 
| 705 | 
            +
                  "special": true
         | 
| 706 | 
            +
                },
         | 
| 707 | 
            +
                "128088": {
         | 
| 708 | 
            +
                  "content": "<|reserved_special_token_83|>",
         | 
| 709 | 
            +
                  "lstrip": false,
         | 
| 710 | 
            +
                  "normalized": false,
         | 
| 711 | 
            +
                  "rstrip": false,
         | 
| 712 | 
            +
                  "single_word": false,
         | 
| 713 | 
            +
                  "special": true
         | 
| 714 | 
            +
                },
         | 
| 715 | 
            +
                "128089": {
         | 
| 716 | 
            +
                  "content": "<|reserved_special_token_84|>",
         | 
| 717 | 
            +
                  "lstrip": false,
         | 
| 718 | 
            +
                  "normalized": false,
         | 
| 719 | 
            +
                  "rstrip": false,
         | 
| 720 | 
            +
                  "single_word": false,
         | 
| 721 | 
            +
                  "special": true
         | 
| 722 | 
            +
                },
         | 
| 723 | 
            +
                "128090": {
         | 
| 724 | 
            +
                  "content": "<|reserved_special_token_85|>",
         | 
| 725 | 
            +
                  "lstrip": false,
         | 
| 726 | 
            +
                  "normalized": false,
         | 
| 727 | 
            +
                  "rstrip": false,
         | 
| 728 | 
            +
                  "single_word": false,
         | 
| 729 | 
            +
                  "special": true
         | 
| 730 | 
            +
                },
         | 
| 731 | 
            +
                "128091": {
         | 
| 732 | 
            +
                  "content": "<|reserved_special_token_86|>",
         | 
| 733 | 
            +
                  "lstrip": false,
         | 
| 734 | 
            +
                  "normalized": false,
         | 
| 735 | 
            +
                  "rstrip": false,
         | 
| 736 | 
            +
                  "single_word": false,
         | 
| 737 | 
            +
                  "special": true
         | 
| 738 | 
            +
                },
         | 
| 739 | 
            +
                "128092": {
         | 
| 740 | 
            +
                  "content": "<|reserved_special_token_87|>",
         | 
| 741 | 
            +
                  "lstrip": false,
         | 
| 742 | 
            +
                  "normalized": false,
         | 
| 743 | 
            +
                  "rstrip": false,
         | 
| 744 | 
            +
                  "single_word": false,
         | 
| 745 | 
            +
                  "special": true
         | 
| 746 | 
            +
                },
         | 
| 747 | 
            +
                "128093": {
         | 
| 748 | 
            +
                  "content": "<|reserved_special_token_88|>",
         | 
| 749 | 
            +
                  "lstrip": false,
         | 
| 750 | 
            +
                  "normalized": false,
         | 
| 751 | 
            +
                  "rstrip": false,
         | 
| 752 | 
            +
                  "single_word": false,
         | 
| 753 | 
            +
                  "special": true
         | 
| 754 | 
            +
                },
         | 
| 755 | 
            +
                "128094": {
         | 
| 756 | 
            +
                  "content": "<|reserved_special_token_89|>",
         | 
| 757 | 
            +
                  "lstrip": false,
         | 
| 758 | 
            +
                  "normalized": false,
         | 
| 759 | 
            +
                  "rstrip": false,
         | 
| 760 | 
            +
                  "single_word": false,
         | 
| 761 | 
            +
                  "special": true
         | 
| 762 | 
            +
                },
         | 
| 763 | 
            +
                "128095": {
         | 
| 764 | 
            +
                  "content": "<|reserved_special_token_90|>",
         | 
| 765 | 
            +
                  "lstrip": false,
         | 
| 766 | 
            +
                  "normalized": false,
         | 
| 767 | 
            +
                  "rstrip": false,
         | 
| 768 | 
            +
                  "single_word": false,
         | 
| 769 | 
            +
                  "special": true
         | 
| 770 | 
            +
                },
         | 
| 771 | 
            +
                "128096": {
         | 
| 772 | 
            +
                  "content": "<|reserved_special_token_91|>",
         | 
| 773 | 
            +
                  "lstrip": false,
         | 
| 774 | 
            +
                  "normalized": false,
         | 
| 775 | 
            +
                  "rstrip": false,
         | 
| 776 | 
            +
                  "single_word": false,
         | 
| 777 | 
            +
                  "special": true
         | 
| 778 | 
            +
                },
         | 
| 779 | 
            +
                "128097": {
         | 
| 780 | 
            +
                  "content": "<|reserved_special_token_92|>",
         | 
| 781 | 
            +
                  "lstrip": false,
         | 
| 782 | 
            +
                  "normalized": false,
         | 
| 783 | 
            +
                  "rstrip": false,
         | 
| 784 | 
            +
                  "single_word": false,
         | 
| 785 | 
            +
                  "special": true
         | 
| 786 | 
            +
                },
         | 
| 787 | 
            +
                "128098": {
         | 
| 788 | 
            +
                  "content": "<|reserved_special_token_93|>",
         | 
| 789 | 
            +
                  "lstrip": false,
         | 
| 790 | 
            +
                  "normalized": false,
         | 
| 791 | 
            +
                  "rstrip": false,
         | 
| 792 | 
            +
                  "single_word": false,
         | 
| 793 | 
            +
                  "special": true
         | 
| 794 | 
            +
                },
         | 
| 795 | 
            +
                "128099": {
         | 
| 796 | 
            +
                  "content": "<|reserved_special_token_94|>",
         | 
| 797 | 
            +
                  "lstrip": false,
         | 
| 798 | 
            +
                  "normalized": false,
         | 
| 799 | 
            +
                  "rstrip": false,
         | 
| 800 | 
            +
                  "single_word": false,
         | 
| 801 | 
            +
                  "special": true
         | 
| 802 | 
            +
                },
         | 
| 803 | 
            +
                "128100": {
         | 
| 804 | 
            +
                  "content": "<|reserved_special_token_95|>",
         | 
| 805 | 
            +
                  "lstrip": false,
         | 
| 806 | 
            +
                  "normalized": false,
         | 
| 807 | 
            +
                  "rstrip": false,
         | 
| 808 | 
            +
                  "single_word": false,
         | 
| 809 | 
            +
                  "special": true
         | 
| 810 | 
            +
                },
         | 
| 811 | 
            +
                "128101": {
         | 
| 812 | 
            +
                  "content": "<|reserved_special_token_96|>",
         | 
| 813 | 
            +
                  "lstrip": false,
         | 
| 814 | 
            +
                  "normalized": false,
         | 
| 815 | 
            +
                  "rstrip": false,
         | 
| 816 | 
            +
                  "single_word": false,
         | 
| 817 | 
            +
                  "special": true
         | 
| 818 | 
            +
                },
         | 
| 819 | 
            +
                "128102": {
         | 
| 820 | 
            +
                  "content": "<|reserved_special_token_97|>",
         | 
| 821 | 
            +
                  "lstrip": false,
         | 
| 822 | 
            +
                  "normalized": false,
         | 
| 823 | 
            +
                  "rstrip": false,
         | 
| 824 | 
            +
                  "single_word": false,
         | 
| 825 | 
            +
                  "special": true
         | 
| 826 | 
            +
                },
         | 
| 827 | 
            +
                "128103": {
         | 
| 828 | 
            +
                  "content": "<|reserved_special_token_98|>",
         | 
| 829 | 
            +
                  "lstrip": false,
         | 
| 830 | 
            +
                  "normalized": false,
         | 
| 831 | 
            +
                  "rstrip": false,
         | 
| 832 | 
            +
                  "single_word": false,
         | 
| 833 | 
            +
                  "special": true
         | 
| 834 | 
            +
                },
         | 
| 835 | 
            +
                "128104": {
         | 
| 836 | 
            +
                  "content": "<|reserved_special_token_99|>",
         | 
| 837 | 
            +
                  "lstrip": false,
         | 
| 838 | 
            +
                  "normalized": false,
         | 
| 839 | 
            +
                  "rstrip": false,
         | 
| 840 | 
            +
                  "single_word": false,
         | 
| 841 | 
            +
                  "special": true
         | 
| 842 | 
            +
                },
         | 
| 843 | 
            +
                "128105": {
         | 
| 844 | 
            +
                  "content": "<|reserved_special_token_100|>",
         | 
| 845 | 
            +
                  "lstrip": false,
         | 
| 846 | 
            +
                  "normalized": false,
         | 
| 847 | 
            +
                  "rstrip": false,
         | 
| 848 | 
            +
                  "single_word": false,
         | 
| 849 | 
            +
                  "special": true
         | 
| 850 | 
            +
                },
         | 
| 851 | 
            +
                "128106": {
         | 
| 852 | 
            +
                  "content": "<|reserved_special_token_101|>",
         | 
| 853 | 
            +
                  "lstrip": false,
         | 
| 854 | 
            +
                  "normalized": false,
         | 
| 855 | 
            +
                  "rstrip": false,
         | 
| 856 | 
            +
                  "single_word": false,
         | 
| 857 | 
            +
                  "special": true
         | 
| 858 | 
            +
                },
         | 
| 859 | 
            +
                "128107": {
         | 
| 860 | 
            +
                  "content": "<|reserved_special_token_102|>",
         | 
| 861 | 
            +
                  "lstrip": false,
         | 
| 862 | 
            +
                  "normalized": false,
         | 
| 863 | 
            +
                  "rstrip": false,
         | 
| 864 | 
            +
                  "single_word": false,
         | 
| 865 | 
            +
                  "special": true
         | 
| 866 | 
            +
                },
         | 
| 867 | 
            +
                "128108": {
         | 
| 868 | 
            +
                  "content": "<|reserved_special_token_103|>",
         | 
| 869 | 
            +
                  "lstrip": false,
         | 
| 870 | 
            +
                  "normalized": false,
         | 
| 871 | 
            +
                  "rstrip": false,
         | 
| 872 | 
            +
                  "single_word": false,
         | 
| 873 | 
            +
                  "special": true
         | 
| 874 | 
            +
                },
         | 
| 875 | 
            +
                "128109": {
         | 
| 876 | 
            +
                  "content": "<|reserved_special_token_104|>",
         | 
| 877 | 
            +
                  "lstrip": false,
         | 
| 878 | 
            +
                  "normalized": false,
         | 
| 879 | 
            +
                  "rstrip": false,
         | 
| 880 | 
            +
                  "single_word": false,
         | 
| 881 | 
            +
                  "special": true
         | 
| 882 | 
            +
                },
         | 
| 883 | 
            +
                "128110": {
         | 
| 884 | 
            +
                  "content": "<|reserved_special_token_105|>",
         | 
| 885 | 
            +
                  "lstrip": false,
         | 
| 886 | 
            +
                  "normalized": false,
         | 
| 887 | 
            +
                  "rstrip": false,
         | 
| 888 | 
            +
                  "single_word": false,
         | 
| 889 | 
            +
                  "special": true
         | 
| 890 | 
            +
                },
         | 
| 891 | 
            +
                "128111": {
         | 
| 892 | 
            +
                  "content": "<|reserved_special_token_106|>",
         | 
| 893 | 
            +
                  "lstrip": false,
         | 
| 894 | 
            +
                  "normalized": false,
         | 
| 895 | 
            +
                  "rstrip": false,
         | 
| 896 | 
            +
                  "single_word": false,
         | 
| 897 | 
            +
                  "special": true
         | 
| 898 | 
            +
                },
         | 
| 899 | 
            +
                "128112": {
         | 
| 900 | 
            +
                  "content": "<|reserved_special_token_107|>",
         | 
| 901 | 
            +
                  "lstrip": false,
         | 
| 902 | 
            +
                  "normalized": false,
         | 
| 903 | 
            +
                  "rstrip": false,
         | 
| 904 | 
            +
                  "single_word": false,
         | 
| 905 | 
            +
                  "special": true
         | 
| 906 | 
            +
                },
         | 
| 907 | 
            +
                "128113": {
         | 
| 908 | 
            +
                  "content": "<|reserved_special_token_108|>",
         | 
| 909 | 
            +
                  "lstrip": false,
         | 
| 910 | 
            +
                  "normalized": false,
         | 
| 911 | 
            +
                  "rstrip": false,
         | 
| 912 | 
            +
                  "single_word": false,
         | 
| 913 | 
            +
                  "special": true
         | 
| 914 | 
            +
                },
         | 
| 915 | 
            +
                "128114": {
         | 
| 916 | 
            +
                  "content": "<|reserved_special_token_109|>",
         | 
| 917 | 
            +
                  "lstrip": false,
         | 
| 918 | 
            +
                  "normalized": false,
         | 
| 919 | 
            +
                  "rstrip": false,
         | 
| 920 | 
            +
                  "single_word": false,
         | 
| 921 | 
            +
                  "special": true
         | 
| 922 | 
            +
                },
         | 
| 923 | 
            +
                "128115": {
         | 
| 924 | 
            +
                  "content": "<|reserved_special_token_110|>",
         | 
| 925 | 
            +
                  "lstrip": false,
         | 
| 926 | 
            +
                  "normalized": false,
         | 
| 927 | 
            +
                  "rstrip": false,
         | 
| 928 | 
            +
                  "single_word": false,
         | 
| 929 | 
            +
                  "special": true
         | 
| 930 | 
            +
                },
         | 
| 931 | 
            +
                "128116": {
         | 
| 932 | 
            +
                  "content": "<|reserved_special_token_111|>",
         | 
| 933 | 
            +
                  "lstrip": false,
         | 
| 934 | 
            +
                  "normalized": false,
         | 
| 935 | 
            +
                  "rstrip": false,
         | 
| 936 | 
            +
                  "single_word": false,
         | 
| 937 | 
            +
                  "special": true
         | 
| 938 | 
            +
                },
         | 
| 939 | 
            +
                "128117": {
         | 
| 940 | 
            +
                  "content": "<|reserved_special_token_112|>",
         | 
| 941 | 
            +
                  "lstrip": false,
         | 
| 942 | 
            +
                  "normalized": false,
         | 
| 943 | 
            +
                  "rstrip": false,
         | 
| 944 | 
            +
                  "single_word": false,
         | 
| 945 | 
            +
                  "special": true
         | 
| 946 | 
            +
                },
         | 
| 947 | 
            +
                "128118": {
         | 
| 948 | 
            +
                  "content": "<|reserved_special_token_113|>",
         | 
| 949 | 
            +
                  "lstrip": false,
         | 
| 950 | 
            +
                  "normalized": false,
         | 
| 951 | 
            +
                  "rstrip": false,
         | 
| 952 | 
            +
                  "single_word": false,
         | 
| 953 | 
            +
                  "special": true
         | 
| 954 | 
            +
                },
         | 
| 955 | 
            +
                "128119": {
         | 
| 956 | 
            +
                  "content": "<|reserved_special_token_114|>",
         | 
| 957 | 
            +
                  "lstrip": false,
         | 
| 958 | 
            +
                  "normalized": false,
         | 
| 959 | 
            +
                  "rstrip": false,
         | 
| 960 | 
            +
                  "single_word": false,
         | 
| 961 | 
            +
                  "special": true
         | 
| 962 | 
            +
                },
         | 
| 963 | 
            +
                "128120": {
         | 
| 964 | 
            +
                  "content": "<|reserved_special_token_115|>",
         | 
| 965 | 
            +
                  "lstrip": false,
         | 
| 966 | 
            +
                  "normalized": false,
         | 
| 967 | 
            +
                  "rstrip": false,
         | 
| 968 | 
            +
                  "single_word": false,
         | 
| 969 | 
            +
                  "special": true
         | 
| 970 | 
            +
                },
         | 
| 971 | 
            +
                "128121": {
         | 
| 972 | 
            +
                  "content": "<|reserved_special_token_116|>",
         | 
| 973 | 
            +
                  "lstrip": false,
         | 
| 974 | 
            +
                  "normalized": false,
         | 
| 975 | 
            +
                  "rstrip": false,
         | 
| 976 | 
            +
                  "single_word": false,
         | 
| 977 | 
            +
                  "special": true
         | 
| 978 | 
            +
                },
         | 
| 979 | 
            +
                "128122": {
         | 
| 980 | 
            +
                  "content": "<|reserved_special_token_117|>",
         | 
| 981 | 
            +
                  "lstrip": false,
         | 
| 982 | 
            +
                  "normalized": false,
         | 
| 983 | 
            +
                  "rstrip": false,
         | 
| 984 | 
            +
                  "single_word": false,
         | 
| 985 | 
            +
                  "special": true
         | 
| 986 | 
            +
                },
         | 
| 987 | 
            +
                "128123": {
         | 
| 988 | 
            +
                  "content": "<|reserved_special_token_118|>",
         | 
| 989 | 
            +
                  "lstrip": false,
         | 
| 990 | 
            +
                  "normalized": false,
         | 
| 991 | 
            +
                  "rstrip": false,
         | 
| 992 | 
            +
                  "single_word": false,
         | 
| 993 | 
            +
                  "special": true
         | 
| 994 | 
            +
                },
         | 
| 995 | 
            +
                "128124": {
         | 
| 996 | 
            +
                  "content": "<|reserved_special_token_119|>",
         | 
| 997 | 
            +
                  "lstrip": false,
         | 
| 998 | 
            +
                  "normalized": false,
         | 
| 999 | 
            +
                  "rstrip": false,
         | 
| 1000 | 
            +
                  "single_word": false,
         | 
| 1001 | 
            +
                  "special": true
         | 
| 1002 | 
            +
                },
         | 
| 1003 | 
            +
                "128125": {
         | 
| 1004 | 
            +
                  "content": "<|reserved_special_token_120|>",
         | 
| 1005 | 
            +
                  "lstrip": false,
         | 
| 1006 | 
            +
                  "normalized": false,
         | 
| 1007 | 
            +
                  "rstrip": false,
         | 
| 1008 | 
            +
                  "single_word": false,
         | 
| 1009 | 
            +
                  "special": true
         | 
| 1010 | 
            +
                },
         | 
| 1011 | 
            +
                "128126": {
         | 
| 1012 | 
            +
                  "content": "<|reserved_special_token_121|>",
         | 
| 1013 | 
            +
                  "lstrip": false,
         | 
| 1014 | 
            +
                  "normalized": false,
         | 
| 1015 | 
            +
                  "rstrip": false,
         | 
| 1016 | 
            +
                  "single_word": false,
         | 
| 1017 | 
            +
                  "special": true
         | 
| 1018 | 
            +
                },
         | 
| 1019 | 
            +
                "128127": {
         | 
| 1020 | 
            +
                  "content": "<|reserved_special_token_122|>",
         | 
| 1021 | 
            +
                  "lstrip": false,
         | 
| 1022 | 
            +
                  "normalized": false,
         | 
| 1023 | 
            +
                  "rstrip": false,
         | 
| 1024 | 
            +
                  "single_word": false,
         | 
| 1025 | 
            +
                  "special": true
         | 
| 1026 | 
            +
                },
         | 
| 1027 | 
            +
                "128128": {
         | 
| 1028 | 
            +
                  "content": "<|reserved_special_token_123|>",
         | 
| 1029 | 
            +
                  "lstrip": false,
         | 
| 1030 | 
            +
                  "normalized": false,
         | 
| 1031 | 
            +
                  "rstrip": false,
         | 
| 1032 | 
            +
                  "single_word": false,
         | 
| 1033 | 
            +
                  "special": true
         | 
| 1034 | 
            +
                },
         | 
| 1035 | 
            +
                "128129": {
         | 
| 1036 | 
            +
                  "content": "<|reserved_special_token_124|>",
         | 
| 1037 | 
            +
                  "lstrip": false,
         | 
| 1038 | 
            +
                  "normalized": false,
         | 
| 1039 | 
            +
                  "rstrip": false,
         | 
| 1040 | 
            +
                  "single_word": false,
         | 
| 1041 | 
            +
                  "special": true
         | 
| 1042 | 
            +
                },
         | 
| 1043 | 
            +
                "128130": {
         | 
| 1044 | 
            +
                  "content": "<|reserved_special_token_125|>",
         | 
| 1045 | 
            +
                  "lstrip": false,
         | 
| 1046 | 
            +
                  "normalized": false,
         | 
| 1047 | 
            +
                  "rstrip": false,
         | 
| 1048 | 
            +
                  "single_word": false,
         | 
| 1049 | 
            +
                  "special": true
         | 
| 1050 | 
            +
                },
         | 
| 1051 | 
            +
                "128131": {
         | 
| 1052 | 
            +
                  "content": "<|reserved_special_token_126|>",
         | 
| 1053 | 
            +
                  "lstrip": false,
         | 
| 1054 | 
            +
                  "normalized": false,
         | 
| 1055 | 
            +
                  "rstrip": false,
         | 
| 1056 | 
            +
                  "single_word": false,
         | 
| 1057 | 
            +
                  "special": true
         | 
| 1058 | 
            +
                },
         | 
| 1059 | 
            +
                "128132": {
         | 
| 1060 | 
            +
                  "content": "<|reserved_special_token_127|>",
         | 
| 1061 | 
            +
                  "lstrip": false,
         | 
| 1062 | 
            +
                  "normalized": false,
         | 
| 1063 | 
            +
                  "rstrip": false,
         | 
| 1064 | 
            +
                  "single_word": false,
         | 
| 1065 | 
            +
                  "special": true
         | 
| 1066 | 
            +
                },
         | 
| 1067 | 
            +
                "128133": {
         | 
| 1068 | 
            +
                  "content": "<|reserved_special_token_128|>",
         | 
| 1069 | 
            +
                  "lstrip": false,
         | 
| 1070 | 
            +
                  "normalized": false,
         | 
| 1071 | 
            +
                  "rstrip": false,
         | 
| 1072 | 
            +
                  "single_word": false,
         | 
| 1073 | 
            +
                  "special": true
         | 
| 1074 | 
            +
                },
         | 
| 1075 | 
            +
                "128134": {
         | 
| 1076 | 
            +
                  "content": "<|reserved_special_token_129|>",
         | 
| 1077 | 
            +
                  "lstrip": false,
         | 
| 1078 | 
            +
                  "normalized": false,
         | 
| 1079 | 
            +
                  "rstrip": false,
         | 
| 1080 | 
            +
                  "single_word": false,
         | 
| 1081 | 
            +
                  "special": true
         | 
| 1082 | 
            +
                },
         | 
| 1083 | 
            +
                "128135": {
         | 
| 1084 | 
            +
                  "content": "<|reserved_special_token_130|>",
         | 
| 1085 | 
            +
                  "lstrip": false,
         | 
| 1086 | 
            +
                  "normalized": false,
         | 
| 1087 | 
            +
                  "rstrip": false,
         | 
| 1088 | 
            +
                  "single_word": false,
         | 
| 1089 | 
            +
                  "special": true
         | 
| 1090 | 
            +
                },
         | 
| 1091 | 
            +
                "128136": {
         | 
| 1092 | 
            +
                  "content": "<|reserved_special_token_131|>",
         | 
| 1093 | 
            +
                  "lstrip": false,
         | 
| 1094 | 
            +
                  "normalized": false,
         | 
| 1095 | 
            +
                  "rstrip": false,
         | 
| 1096 | 
            +
                  "single_word": false,
         | 
| 1097 | 
            +
                  "special": true
         | 
| 1098 | 
            +
                },
         | 
| 1099 | 
            +
                "128137": {
         | 
| 1100 | 
            +
                  "content": "<|reserved_special_token_132|>",
         | 
| 1101 | 
            +
                  "lstrip": false,
         | 
| 1102 | 
            +
                  "normalized": false,
         | 
| 1103 | 
            +
                  "rstrip": false,
         | 
| 1104 | 
            +
                  "single_word": false,
         | 
| 1105 | 
            +
                  "special": true
         | 
| 1106 | 
            +
                },
         | 
| 1107 | 
            +
                "128138": {
         | 
| 1108 | 
            +
                  "content": "<|reserved_special_token_133|>",
         | 
| 1109 | 
            +
                  "lstrip": false,
         | 
| 1110 | 
            +
                  "normalized": false,
         | 
| 1111 | 
            +
                  "rstrip": false,
         | 
| 1112 | 
            +
                  "single_word": false,
         | 
| 1113 | 
            +
                  "special": true
         | 
| 1114 | 
            +
                },
         | 
| 1115 | 
            +
                "128139": {
         | 
| 1116 | 
            +
                  "content": "<|reserved_special_token_134|>",
         | 
| 1117 | 
            +
                  "lstrip": false,
         | 
| 1118 | 
            +
                  "normalized": false,
         | 
| 1119 | 
            +
                  "rstrip": false,
         | 
| 1120 | 
            +
                  "single_word": false,
         | 
| 1121 | 
            +
                  "special": true
         | 
| 1122 | 
            +
                },
         | 
| 1123 | 
            +
                "128140": {
         | 
| 1124 | 
            +
                  "content": "<|reserved_special_token_135|>",
         | 
| 1125 | 
            +
                  "lstrip": false,
         | 
| 1126 | 
            +
                  "normalized": false,
         | 
| 1127 | 
            +
                  "rstrip": false,
         | 
| 1128 | 
            +
                  "single_word": false,
         | 
| 1129 | 
            +
                  "special": true
         | 
| 1130 | 
            +
                },
         | 
| 1131 | 
            +
                "128141": {
         | 
| 1132 | 
            +
                  "content": "<|reserved_special_token_136|>",
         | 
| 1133 | 
            +
                  "lstrip": false,
         | 
| 1134 | 
            +
                  "normalized": false,
         | 
| 1135 | 
            +
                  "rstrip": false,
         | 
| 1136 | 
            +
                  "single_word": false,
         | 
| 1137 | 
            +
                  "special": true
         | 
| 1138 | 
            +
                },
         | 
| 1139 | 
            +
                "128142": {
         | 
| 1140 | 
            +
                  "content": "<|reserved_special_token_137|>",
         | 
| 1141 | 
            +
                  "lstrip": false,
         | 
| 1142 | 
            +
                  "normalized": false,
         | 
| 1143 | 
            +
                  "rstrip": false,
         | 
| 1144 | 
            +
                  "single_word": false,
         | 
| 1145 | 
            +
                  "special": true
         | 
| 1146 | 
            +
                },
         | 
| 1147 | 
            +
                "128143": {
         | 
| 1148 | 
            +
                  "content": "<|reserved_special_token_138|>",
         | 
| 1149 | 
            +
                  "lstrip": false,
         | 
| 1150 | 
            +
                  "normalized": false,
         | 
| 1151 | 
            +
                  "rstrip": false,
         | 
| 1152 | 
            +
                  "single_word": false,
         | 
| 1153 | 
            +
                  "special": true
         | 
| 1154 | 
            +
                },
         | 
| 1155 | 
            +
                "128144": {
         | 
| 1156 | 
            +
                  "content": "<|reserved_special_token_139|>",
         | 
| 1157 | 
            +
                  "lstrip": false,
         | 
| 1158 | 
            +
                  "normalized": false,
         | 
| 1159 | 
            +
                  "rstrip": false,
         | 
| 1160 | 
            +
                  "single_word": false,
         | 
| 1161 | 
            +
                  "special": true
         | 
| 1162 | 
            +
                },
         | 
| 1163 | 
            +
                "128145": {
         | 
| 1164 | 
            +
                  "content": "<|reserved_special_token_140|>",
         | 
| 1165 | 
            +
                  "lstrip": false,
         | 
| 1166 | 
            +
                  "normalized": false,
         | 
| 1167 | 
            +
                  "rstrip": false,
         | 
| 1168 | 
            +
                  "single_word": false,
         | 
| 1169 | 
            +
                  "special": true
         | 
| 1170 | 
            +
                },
         | 
| 1171 | 
            +
                "128146": {
         | 
| 1172 | 
            +
                  "content": "<|reserved_special_token_141|>",
         | 
| 1173 | 
            +
                  "lstrip": false,
         | 
| 1174 | 
            +
                  "normalized": false,
         | 
| 1175 | 
            +
                  "rstrip": false,
         | 
| 1176 | 
            +
                  "single_word": false,
         | 
| 1177 | 
            +
                  "special": true
         | 
| 1178 | 
            +
                },
         | 
| 1179 | 
            +
                "128147": {
         | 
| 1180 | 
            +
                  "content": "<|reserved_special_token_142|>",
         | 
| 1181 | 
            +
                  "lstrip": false,
         | 
| 1182 | 
            +
                  "normalized": false,
         | 
| 1183 | 
            +
                  "rstrip": false,
         | 
| 1184 | 
            +
                  "single_word": false,
         | 
| 1185 | 
            +
                  "special": true
         | 
| 1186 | 
            +
                },
         | 
| 1187 | 
            +
                "128148": {
         | 
| 1188 | 
            +
                  "content": "<|reserved_special_token_143|>",
         | 
| 1189 | 
            +
                  "lstrip": false,
         | 
| 1190 | 
            +
                  "normalized": false,
         | 
| 1191 | 
            +
                  "rstrip": false,
         | 
| 1192 | 
            +
                  "single_word": false,
         | 
| 1193 | 
            +
                  "special": true
         | 
| 1194 | 
            +
                },
         | 
| 1195 | 
            +
                "128149": {
         | 
| 1196 | 
            +
                  "content": "<|reserved_special_token_144|>",
         | 
| 1197 | 
            +
                  "lstrip": false,
         | 
| 1198 | 
            +
                  "normalized": false,
         | 
| 1199 | 
            +
                  "rstrip": false,
         | 
| 1200 | 
            +
                  "single_word": false,
         | 
| 1201 | 
            +
                  "special": true
         | 
| 1202 | 
            +
                },
         | 
| 1203 | 
            +
                "128150": {
         | 
| 1204 | 
            +
                  "content": "<|reserved_special_token_145|>",
         | 
| 1205 | 
            +
                  "lstrip": false,
         | 
| 1206 | 
            +
                  "normalized": false,
         | 
| 1207 | 
            +
                  "rstrip": false,
         | 
| 1208 | 
            +
                  "single_word": false,
         | 
| 1209 | 
            +
                  "special": true
         | 
| 1210 | 
            +
                },
         | 
| 1211 | 
            +
                "128151": {
         | 
| 1212 | 
            +
                  "content": "<|reserved_special_token_146|>",
         | 
| 1213 | 
            +
                  "lstrip": false,
         | 
| 1214 | 
            +
                  "normalized": false,
         | 
| 1215 | 
            +
                  "rstrip": false,
         | 
| 1216 | 
            +
                  "single_word": false,
         | 
| 1217 | 
            +
                  "special": true
         | 
| 1218 | 
            +
                },
         | 
| 1219 | 
            +
                "128152": {
         | 
| 1220 | 
            +
                  "content": "<|reserved_special_token_147|>",
         | 
| 1221 | 
            +
                  "lstrip": false,
         | 
| 1222 | 
            +
                  "normalized": false,
         | 
| 1223 | 
            +
                  "rstrip": false,
         | 
| 1224 | 
            +
                  "single_word": false,
         | 
| 1225 | 
            +
                  "special": true
         | 
| 1226 | 
            +
                },
         | 
| 1227 | 
            +
                "128153": {
         | 
| 1228 | 
            +
                  "content": "<|reserved_special_token_148|>",
         | 
| 1229 | 
            +
                  "lstrip": false,
         | 
| 1230 | 
            +
                  "normalized": false,
         | 
| 1231 | 
            +
                  "rstrip": false,
         | 
| 1232 | 
            +
                  "single_word": false,
         | 
| 1233 | 
            +
                  "special": true
         | 
| 1234 | 
            +
                },
         | 
| 1235 | 
            +
                "128154": {
         | 
| 1236 | 
            +
                  "content": "<|reserved_special_token_149|>",
         | 
| 1237 | 
            +
                  "lstrip": false,
         | 
| 1238 | 
            +
                  "normalized": false,
         | 
| 1239 | 
            +
                  "rstrip": false,
         | 
| 1240 | 
            +
                  "single_word": false,
         | 
| 1241 | 
            +
                  "special": true
         | 
| 1242 | 
            +
                },
         | 
| 1243 | 
            +
                "128155": {
         | 
| 1244 | 
            +
                  "content": "<|reserved_special_token_150|>",
         | 
| 1245 | 
            +
                  "lstrip": false,
         | 
| 1246 | 
            +
                  "normalized": false,
         | 
| 1247 | 
            +
                  "rstrip": false,
         | 
| 1248 | 
            +
                  "single_word": false,
         | 
| 1249 | 
            +
                  "special": true
         | 
| 1250 | 
            +
                },
         | 
| 1251 | 
            +
                "128156": {
         | 
| 1252 | 
            +
                  "content": "<|reserved_special_token_151|>",
         | 
| 1253 | 
            +
                  "lstrip": false,
         | 
| 1254 | 
            +
                  "normalized": false,
         | 
| 1255 | 
            +
                  "rstrip": false,
         | 
| 1256 | 
            +
                  "single_word": false,
         | 
| 1257 | 
            +
                  "special": true
         | 
| 1258 | 
            +
                },
         | 
| 1259 | 
            +
                "128157": {
         | 
| 1260 | 
            +
                  "content": "<|reserved_special_token_152|>",
         | 
| 1261 | 
            +
                  "lstrip": false,
         | 
| 1262 | 
            +
                  "normalized": false,
         | 
| 1263 | 
            +
                  "rstrip": false,
         | 
| 1264 | 
            +
                  "single_word": false,
         | 
| 1265 | 
            +
                  "special": true
         | 
| 1266 | 
            +
                },
         | 
| 1267 | 
            +
                "128158": {
         | 
| 1268 | 
            +
                  "content": "<|reserved_special_token_153|>",
         | 
| 1269 | 
            +
                  "lstrip": false,
         | 
| 1270 | 
            +
                  "normalized": false,
         | 
| 1271 | 
            +
                  "rstrip": false,
         | 
| 1272 | 
            +
                  "single_word": false,
         | 
| 1273 | 
            +
                  "special": true
         | 
| 1274 | 
            +
                },
         | 
| 1275 | 
            +
                "128159": {
         | 
| 1276 | 
            +
                  "content": "<|reserved_special_token_154|>",
         | 
| 1277 | 
            +
                  "lstrip": false,
         | 
| 1278 | 
            +
                  "normalized": false,
         | 
| 1279 | 
            +
                  "rstrip": false,
         | 
| 1280 | 
            +
                  "single_word": false,
         | 
| 1281 | 
            +
                  "special": true
         | 
| 1282 | 
            +
                },
         | 
| 1283 | 
            +
                "128160": {
         | 
| 1284 | 
            +
                  "content": "<|reserved_special_token_155|>",
         | 
| 1285 | 
            +
                  "lstrip": false,
         | 
| 1286 | 
            +
                  "normalized": false,
         | 
| 1287 | 
            +
                  "rstrip": false,
         | 
| 1288 | 
            +
                  "single_word": false,
         | 
| 1289 | 
            +
                  "special": true
         | 
| 1290 | 
            +
                },
         | 
| 1291 | 
            +
                "128161": {
         | 
| 1292 | 
            +
                  "content": "<|reserved_special_token_156|>",
         | 
| 1293 | 
            +
                  "lstrip": false,
         | 
| 1294 | 
            +
                  "normalized": false,
         | 
| 1295 | 
            +
                  "rstrip": false,
         | 
| 1296 | 
            +
                  "single_word": false,
         | 
| 1297 | 
            +
                  "special": true
         | 
| 1298 | 
            +
                },
         | 
| 1299 | 
            +
                "128162": {
         | 
| 1300 | 
            +
                  "content": "<|reserved_special_token_157|>",
         | 
| 1301 | 
            +
                  "lstrip": false,
         | 
| 1302 | 
            +
                  "normalized": false,
         | 
| 1303 | 
            +
                  "rstrip": false,
         | 
| 1304 | 
            +
                  "single_word": false,
         | 
| 1305 | 
            +
                  "special": true
         | 
| 1306 | 
            +
                },
         | 
| 1307 | 
            +
                "128163": {
         | 
| 1308 | 
            +
                  "content": "<|reserved_special_token_158|>",
         | 
| 1309 | 
            +
                  "lstrip": false,
         | 
| 1310 | 
            +
                  "normalized": false,
         | 
| 1311 | 
            +
                  "rstrip": false,
         | 
| 1312 | 
            +
                  "single_word": false,
         | 
| 1313 | 
            +
                  "special": true
         | 
| 1314 | 
            +
                },
         | 
| 1315 | 
            +
                "128164": {
         | 
| 1316 | 
            +
                  "content": "<|reserved_special_token_159|>",
         | 
| 1317 | 
            +
                  "lstrip": false,
         | 
| 1318 | 
            +
                  "normalized": false,
         | 
| 1319 | 
            +
                  "rstrip": false,
         | 
| 1320 | 
            +
                  "single_word": false,
         | 
| 1321 | 
            +
                  "special": true
         | 
| 1322 | 
            +
                },
         | 
| 1323 | 
            +
                "128165": {
         | 
| 1324 | 
            +
                  "content": "<|reserved_special_token_160|>",
         | 
| 1325 | 
            +
                  "lstrip": false,
         | 
| 1326 | 
            +
                  "normalized": false,
         | 
| 1327 | 
            +
                  "rstrip": false,
         | 
| 1328 | 
            +
                  "single_word": false,
         | 
| 1329 | 
            +
                  "special": true
         | 
| 1330 | 
            +
                },
         | 
| 1331 | 
            +
                "128166": {
         | 
| 1332 | 
            +
                  "content": "<|reserved_special_token_161|>",
         | 
| 1333 | 
            +
                  "lstrip": false,
         | 
| 1334 | 
            +
                  "normalized": false,
         | 
| 1335 | 
            +
                  "rstrip": false,
         | 
| 1336 | 
            +
                  "single_word": false,
         | 
| 1337 | 
            +
                  "special": true
         | 
| 1338 | 
            +
                },
         | 
| 1339 | 
            +
                "128167": {
         | 
| 1340 | 
            +
                  "content": "<|reserved_special_token_162|>",
         | 
| 1341 | 
            +
                  "lstrip": false,
         | 
| 1342 | 
            +
                  "normalized": false,
         | 
| 1343 | 
            +
                  "rstrip": false,
         | 
| 1344 | 
            +
                  "single_word": false,
         | 
| 1345 | 
            +
                  "special": true
         | 
| 1346 | 
            +
                },
         | 
| 1347 | 
            +
                "128168": {
         | 
| 1348 | 
            +
                  "content": "<|reserved_special_token_163|>",
         | 
| 1349 | 
            +
                  "lstrip": false,
         | 
| 1350 | 
            +
                  "normalized": false,
         | 
| 1351 | 
            +
                  "rstrip": false,
         | 
| 1352 | 
            +
                  "single_word": false,
         | 
| 1353 | 
            +
                  "special": true
         | 
| 1354 | 
            +
                },
         | 
| 1355 | 
            +
                "128169": {
         | 
| 1356 | 
            +
                  "content": "<|reserved_special_token_164|>",
         | 
| 1357 | 
            +
                  "lstrip": false,
         | 
| 1358 | 
            +
                  "normalized": false,
         | 
| 1359 | 
            +
                  "rstrip": false,
         | 
| 1360 | 
            +
                  "single_word": false,
         | 
| 1361 | 
            +
                  "special": true
         | 
| 1362 | 
            +
                },
         | 
| 1363 | 
            +
                "128170": {
         | 
| 1364 | 
            +
                  "content": "<|reserved_special_token_165|>",
         | 
| 1365 | 
            +
                  "lstrip": false,
         | 
| 1366 | 
            +
                  "normalized": false,
         | 
| 1367 | 
            +
                  "rstrip": false,
         | 
| 1368 | 
            +
                  "single_word": false,
         | 
| 1369 | 
            +
                  "special": true
         | 
| 1370 | 
            +
                },
         | 
| 1371 | 
            +
                "128171": {
         | 
| 1372 | 
            +
                  "content": "<|reserved_special_token_166|>",
         | 
| 1373 | 
            +
                  "lstrip": false,
         | 
| 1374 | 
            +
                  "normalized": false,
         | 
| 1375 | 
            +
                  "rstrip": false,
         | 
| 1376 | 
            +
                  "single_word": false,
         | 
| 1377 | 
            +
                  "special": true
         | 
| 1378 | 
            +
                },
         | 
| 1379 | 
            +
                "128172": {
         | 
| 1380 | 
            +
                  "content": "<|reserved_special_token_167|>",
         | 
| 1381 | 
            +
                  "lstrip": false,
         | 
| 1382 | 
            +
                  "normalized": false,
         | 
| 1383 | 
            +
                  "rstrip": false,
         | 
| 1384 | 
            +
                  "single_word": false,
         | 
| 1385 | 
            +
                  "special": true
         | 
| 1386 | 
            +
                },
         | 
| 1387 | 
            +
                "128173": {
         | 
| 1388 | 
            +
                  "content": "<|reserved_special_token_168|>",
         | 
| 1389 | 
            +
                  "lstrip": false,
         | 
| 1390 | 
            +
                  "normalized": false,
         | 
| 1391 | 
            +
                  "rstrip": false,
         | 
| 1392 | 
            +
                  "single_word": false,
         | 
| 1393 | 
            +
                  "special": true
         | 
| 1394 | 
            +
                },
         | 
| 1395 | 
            +
                "128174": {
         | 
| 1396 | 
            +
                  "content": "<|reserved_special_token_169|>",
         | 
| 1397 | 
            +
                  "lstrip": false,
         | 
| 1398 | 
            +
                  "normalized": false,
         | 
| 1399 | 
            +
                  "rstrip": false,
         | 
| 1400 | 
            +
                  "single_word": false,
         | 
| 1401 | 
            +
                  "special": true
         | 
| 1402 | 
            +
                },
         | 
| 1403 | 
            +
                "128175": {
         | 
| 1404 | 
            +
                  "content": "<|reserved_special_token_170|>",
         | 
| 1405 | 
            +
                  "lstrip": false,
         | 
| 1406 | 
            +
                  "normalized": false,
         | 
| 1407 | 
            +
                  "rstrip": false,
         | 
| 1408 | 
            +
                  "single_word": false,
         | 
| 1409 | 
            +
                  "special": true
         | 
| 1410 | 
            +
                },
         | 
| 1411 | 
            +
                "128176": {
         | 
| 1412 | 
            +
                  "content": "<|reserved_special_token_171|>",
         | 
| 1413 | 
            +
                  "lstrip": false,
         | 
| 1414 | 
            +
                  "normalized": false,
         | 
| 1415 | 
            +
                  "rstrip": false,
         | 
| 1416 | 
            +
                  "single_word": false,
         | 
| 1417 | 
            +
                  "special": true
         | 
| 1418 | 
            +
                },
         | 
| 1419 | 
            +
                "128177": {
         | 
| 1420 | 
            +
                  "content": "<|reserved_special_token_172|>",
         | 
| 1421 | 
            +
                  "lstrip": false,
         | 
| 1422 | 
            +
                  "normalized": false,
         | 
| 1423 | 
            +
                  "rstrip": false,
         | 
| 1424 | 
            +
                  "single_word": false,
         | 
| 1425 | 
            +
                  "special": true
         | 
| 1426 | 
            +
                },
         | 
| 1427 | 
            +
                "128178": {
         | 
| 1428 | 
            +
                  "content": "<|reserved_special_token_173|>",
         | 
| 1429 | 
            +
                  "lstrip": false,
         | 
| 1430 | 
            +
                  "normalized": false,
         | 
| 1431 | 
            +
                  "rstrip": false,
         | 
| 1432 | 
            +
                  "single_word": false,
         | 
| 1433 | 
            +
                  "special": true
         | 
| 1434 | 
            +
                },
         | 
| 1435 | 
            +
                "128179": {
         | 
| 1436 | 
            +
                  "content": "<|reserved_special_token_174|>",
         | 
| 1437 | 
            +
                  "lstrip": false,
         | 
| 1438 | 
            +
                  "normalized": false,
         | 
| 1439 | 
            +
                  "rstrip": false,
         | 
| 1440 | 
            +
                  "single_word": false,
         | 
| 1441 | 
            +
                  "special": true
         | 
| 1442 | 
            +
                },
         | 
| 1443 | 
            +
                "128180": {
         | 
| 1444 | 
            +
                  "content": "<|reserved_special_token_175|>",
         | 
| 1445 | 
            +
                  "lstrip": false,
         | 
| 1446 | 
            +
                  "normalized": false,
         | 
| 1447 | 
            +
                  "rstrip": false,
         | 
| 1448 | 
            +
                  "single_word": false,
         | 
| 1449 | 
            +
                  "special": true
         | 
| 1450 | 
            +
                },
         | 
| 1451 | 
            +
                "128181": {
         | 
| 1452 | 
            +
                  "content": "<|reserved_special_token_176|>",
         | 
| 1453 | 
            +
                  "lstrip": false,
         | 
| 1454 | 
            +
                  "normalized": false,
         | 
| 1455 | 
            +
                  "rstrip": false,
         | 
| 1456 | 
            +
                  "single_word": false,
         | 
| 1457 | 
            +
                  "special": true
         | 
| 1458 | 
            +
                },
         | 
| 1459 | 
            +
                "128182": {
         | 
| 1460 | 
            +
                  "content": "<|reserved_special_token_177|>",
         | 
| 1461 | 
            +
                  "lstrip": false,
         | 
| 1462 | 
            +
                  "normalized": false,
         | 
| 1463 | 
            +
                  "rstrip": false,
         | 
| 1464 | 
            +
                  "single_word": false,
         | 
| 1465 | 
            +
                  "special": true
         | 
| 1466 | 
            +
                },
         | 
| 1467 | 
            +
                "128183": {
         | 
| 1468 | 
            +
                  "content": "<|reserved_special_token_178|>",
         | 
| 1469 | 
            +
                  "lstrip": false,
         | 
| 1470 | 
            +
                  "normalized": false,
         | 
| 1471 | 
            +
                  "rstrip": false,
         | 
| 1472 | 
            +
                  "single_word": false,
         | 
| 1473 | 
            +
                  "special": true
         | 
| 1474 | 
            +
                },
         | 
| 1475 | 
            +
                "128184": {
         | 
| 1476 | 
            +
                  "content": "<|reserved_special_token_179|>",
         | 
| 1477 | 
            +
                  "lstrip": false,
         | 
| 1478 | 
            +
                  "normalized": false,
         | 
| 1479 | 
            +
                  "rstrip": false,
         | 
| 1480 | 
            +
                  "single_word": false,
         | 
| 1481 | 
            +
                  "special": true
         | 
| 1482 | 
            +
                },
         | 
| 1483 | 
            +
                "128185": {
         | 
| 1484 | 
            +
                  "content": "<|reserved_special_token_180|>",
         | 
| 1485 | 
            +
                  "lstrip": false,
         | 
| 1486 | 
            +
                  "normalized": false,
         | 
| 1487 | 
            +
                  "rstrip": false,
         | 
| 1488 | 
            +
                  "single_word": false,
         | 
| 1489 | 
            +
                  "special": true
         | 
| 1490 | 
            +
                },
         | 
| 1491 | 
            +
                "128186": {
         | 
| 1492 | 
            +
                  "content": "<|reserved_special_token_181|>",
         | 
| 1493 | 
            +
                  "lstrip": false,
         | 
| 1494 | 
            +
                  "normalized": false,
         | 
| 1495 | 
            +
                  "rstrip": false,
         | 
| 1496 | 
            +
                  "single_word": false,
         | 
| 1497 | 
            +
                  "special": true
         | 
| 1498 | 
            +
                },
         | 
| 1499 | 
            +
                "128187": {
         | 
| 1500 | 
            +
                  "content": "<|reserved_special_token_182|>",
         | 
| 1501 | 
            +
                  "lstrip": false,
         | 
| 1502 | 
            +
                  "normalized": false,
         | 
| 1503 | 
            +
                  "rstrip": false,
         | 
| 1504 | 
            +
                  "single_word": false,
         | 
| 1505 | 
            +
                  "special": true
         | 
| 1506 | 
            +
                },
         | 
| 1507 | 
            +
                "128188": {
         | 
| 1508 | 
            +
                  "content": "<|reserved_special_token_183|>",
         | 
| 1509 | 
            +
                  "lstrip": false,
         | 
| 1510 | 
            +
                  "normalized": false,
         | 
| 1511 | 
            +
                  "rstrip": false,
         | 
| 1512 | 
            +
                  "single_word": false,
         | 
| 1513 | 
            +
                  "special": true
         | 
| 1514 | 
            +
                },
         | 
| 1515 | 
            +
                "128189": {
         | 
| 1516 | 
            +
                  "content": "<|reserved_special_token_184|>",
         | 
| 1517 | 
            +
                  "lstrip": false,
         | 
| 1518 | 
            +
                  "normalized": false,
         | 
| 1519 | 
            +
                  "rstrip": false,
         | 
| 1520 | 
            +
                  "single_word": false,
         | 
| 1521 | 
            +
                  "special": true
         | 
| 1522 | 
            +
                },
         | 
| 1523 | 
            +
                "128190": {
         | 
| 1524 | 
            +
                  "content": "<|reserved_special_token_185|>",
         | 
| 1525 | 
            +
                  "lstrip": false,
         | 
| 1526 | 
            +
                  "normalized": false,
         | 
| 1527 | 
            +
                  "rstrip": false,
         | 
| 1528 | 
            +
                  "single_word": false,
         | 
| 1529 | 
            +
                  "special": true
         | 
| 1530 | 
            +
                },
         | 
| 1531 | 
            +
                "128191": {
         | 
| 1532 | 
            +
                  "content": "<|reserved_special_token_186|>",
         | 
| 1533 | 
            +
                  "lstrip": false,
         | 
| 1534 | 
            +
                  "normalized": false,
         | 
| 1535 | 
            +
                  "rstrip": false,
         | 
| 1536 | 
            +
                  "single_word": false,
         | 
| 1537 | 
            +
                  "special": true
         | 
| 1538 | 
            +
                },
         | 
| 1539 | 
            +
                "128192": {
         | 
| 1540 | 
            +
                  "content": "<|reserved_special_token_187|>",
         | 
| 1541 | 
            +
                  "lstrip": false,
         | 
| 1542 | 
            +
                  "normalized": false,
         | 
| 1543 | 
            +
                  "rstrip": false,
         | 
| 1544 | 
            +
                  "single_word": false,
         | 
| 1545 | 
            +
                  "special": true
         | 
| 1546 | 
            +
                },
         | 
| 1547 | 
            +
                "128193": {
         | 
| 1548 | 
            +
                  "content": "<|reserved_special_token_188|>",
         | 
| 1549 | 
            +
                  "lstrip": false,
         | 
| 1550 | 
            +
                  "normalized": false,
         | 
| 1551 | 
            +
                  "rstrip": false,
         | 
| 1552 | 
            +
                  "single_word": false,
         | 
| 1553 | 
            +
                  "special": true
         | 
| 1554 | 
            +
                },
         | 
| 1555 | 
            +
                "128194": {
         | 
| 1556 | 
            +
                  "content": "<|reserved_special_token_189|>",
         | 
| 1557 | 
            +
                  "lstrip": false,
         | 
| 1558 | 
            +
                  "normalized": false,
         | 
| 1559 | 
            +
                  "rstrip": false,
         | 
| 1560 | 
            +
                  "single_word": false,
         | 
| 1561 | 
            +
                  "special": true
         | 
| 1562 | 
            +
                },
         | 
| 1563 | 
            +
                "128195": {
         | 
| 1564 | 
            +
                  "content": "<|reserved_special_token_190|>",
         | 
| 1565 | 
            +
                  "lstrip": false,
         | 
| 1566 | 
            +
                  "normalized": false,
         | 
| 1567 | 
            +
                  "rstrip": false,
         | 
| 1568 | 
            +
                  "single_word": false,
         | 
| 1569 | 
            +
                  "special": true
         | 
| 1570 | 
            +
                },
         | 
| 1571 | 
            +
                "128196": {
         | 
| 1572 | 
            +
                  "content": "<|reserved_special_token_191|>",
         | 
| 1573 | 
            +
                  "lstrip": false,
         | 
| 1574 | 
            +
                  "normalized": false,
         | 
| 1575 | 
            +
                  "rstrip": false,
         | 
| 1576 | 
            +
                  "single_word": false,
         | 
| 1577 | 
            +
                  "special": true
         | 
| 1578 | 
            +
                },
         | 
| 1579 | 
            +
                "128197": {
         | 
| 1580 | 
            +
                  "content": "<|reserved_special_token_192|>",
         | 
| 1581 | 
            +
                  "lstrip": false,
         | 
| 1582 | 
            +
                  "normalized": false,
         | 
| 1583 | 
            +
                  "rstrip": false,
         | 
| 1584 | 
            +
                  "single_word": false,
         | 
| 1585 | 
            +
                  "special": true
         | 
| 1586 | 
            +
                },
         | 
| 1587 | 
            +
                "128198": {
         | 
| 1588 | 
            +
                  "content": "<|reserved_special_token_193|>",
         | 
| 1589 | 
            +
                  "lstrip": false,
         | 
| 1590 | 
            +
                  "normalized": false,
         | 
| 1591 | 
            +
                  "rstrip": false,
         | 
| 1592 | 
            +
                  "single_word": false,
         | 
| 1593 | 
            +
                  "special": true
         | 
| 1594 | 
            +
                },
         | 
| 1595 | 
            +
                "128199": {
         | 
| 1596 | 
            +
                  "content": "<|reserved_special_token_194|>",
         | 
| 1597 | 
            +
                  "lstrip": false,
         | 
| 1598 | 
            +
                  "normalized": false,
         | 
| 1599 | 
            +
                  "rstrip": false,
         | 
| 1600 | 
            +
                  "single_word": false,
         | 
| 1601 | 
            +
                  "special": true
         | 
| 1602 | 
            +
                },
         | 
| 1603 | 
            +
                "128200": {
         | 
| 1604 | 
            +
                  "content": "<|reserved_special_token_195|>",
         | 
| 1605 | 
            +
                  "lstrip": false,
         | 
| 1606 | 
            +
                  "normalized": false,
         | 
| 1607 | 
            +
                  "rstrip": false,
         | 
| 1608 | 
            +
                  "single_word": false,
         | 
| 1609 | 
            +
                  "special": true
         | 
| 1610 | 
            +
                },
         | 
| 1611 | 
            +
                "128201": {
         | 
| 1612 | 
            +
                  "content": "<|reserved_special_token_196|>",
         | 
| 1613 | 
            +
                  "lstrip": false,
         | 
| 1614 | 
            +
                  "normalized": false,
         | 
| 1615 | 
            +
                  "rstrip": false,
         | 
| 1616 | 
            +
                  "single_word": false,
         | 
| 1617 | 
            +
                  "special": true
         | 
| 1618 | 
            +
                },
         | 
| 1619 | 
            +
                "128202": {
         | 
| 1620 | 
            +
                  "content": "<|reserved_special_token_197|>",
         | 
| 1621 | 
            +
                  "lstrip": false,
         | 
| 1622 | 
            +
                  "normalized": false,
         | 
| 1623 | 
            +
                  "rstrip": false,
         | 
| 1624 | 
            +
                  "single_word": false,
         | 
| 1625 | 
            +
                  "special": true
         | 
| 1626 | 
            +
                },
         | 
| 1627 | 
            +
                "128203": {
         | 
| 1628 | 
            +
                  "content": "<|reserved_special_token_198|>",
         | 
| 1629 | 
            +
                  "lstrip": false,
         | 
| 1630 | 
            +
                  "normalized": false,
         | 
| 1631 | 
            +
                  "rstrip": false,
         | 
| 1632 | 
            +
                  "single_word": false,
         | 
| 1633 | 
            +
                  "special": true
         | 
| 1634 | 
            +
                },
         | 
| 1635 | 
            +
                "128204": {
         | 
| 1636 | 
            +
                  "content": "<|reserved_special_token_199|>",
         | 
| 1637 | 
            +
                  "lstrip": false,
         | 
| 1638 | 
            +
                  "normalized": false,
         | 
| 1639 | 
            +
                  "rstrip": false,
         | 
| 1640 | 
            +
                  "single_word": false,
         | 
| 1641 | 
            +
                  "special": true
         | 
| 1642 | 
            +
                },
         | 
| 1643 | 
            +
                "128205": {
         | 
| 1644 | 
            +
                  "content": "<|reserved_special_token_200|>",
         | 
| 1645 | 
            +
                  "lstrip": false,
         | 
| 1646 | 
            +
                  "normalized": false,
         | 
| 1647 | 
            +
                  "rstrip": false,
         | 
| 1648 | 
            +
                  "single_word": false,
         | 
| 1649 | 
            +
                  "special": true
         | 
| 1650 | 
            +
                },
         | 
| 1651 | 
            +
                "128206": {
         | 
| 1652 | 
            +
                  "content": "<|reserved_special_token_201|>",
         | 
| 1653 | 
            +
                  "lstrip": false,
         | 
| 1654 | 
            +
                  "normalized": false,
         | 
| 1655 | 
            +
                  "rstrip": false,
         | 
| 1656 | 
            +
                  "single_word": false,
         | 
| 1657 | 
            +
                  "special": true
         | 
| 1658 | 
            +
                },
         | 
| 1659 | 
            +
                "128207": {
         | 
| 1660 | 
            +
                  "content": "<|reserved_special_token_202|>",
         | 
| 1661 | 
            +
                  "lstrip": false,
         | 
| 1662 | 
            +
                  "normalized": false,
         | 
| 1663 | 
            +
                  "rstrip": false,
         | 
| 1664 | 
            +
                  "single_word": false,
         | 
| 1665 | 
            +
                  "special": true
         | 
| 1666 | 
            +
                },
         | 
| 1667 | 
            +
                "128208": {
         | 
| 1668 | 
            +
                  "content": "<|reserved_special_token_203|>",
         | 
| 1669 | 
            +
                  "lstrip": false,
         | 
| 1670 | 
            +
                  "normalized": false,
         | 
| 1671 | 
            +
                  "rstrip": false,
         | 
| 1672 | 
            +
                  "single_word": false,
         | 
| 1673 | 
            +
                  "special": true
         | 
| 1674 | 
            +
                },
         | 
| 1675 | 
            +
                "128209": {
         | 
| 1676 | 
            +
                  "content": "<|reserved_special_token_204|>",
         | 
| 1677 | 
            +
                  "lstrip": false,
         | 
| 1678 | 
            +
                  "normalized": false,
         | 
| 1679 | 
            +
                  "rstrip": false,
         | 
| 1680 | 
            +
                  "single_word": false,
         | 
| 1681 | 
            +
                  "special": true
         | 
| 1682 | 
            +
                },
         | 
| 1683 | 
            +
                "128210": {
         | 
| 1684 | 
            +
                  "content": "<|reserved_special_token_205|>",
         | 
| 1685 | 
            +
                  "lstrip": false,
         | 
| 1686 | 
            +
                  "normalized": false,
         | 
| 1687 | 
            +
                  "rstrip": false,
         | 
| 1688 | 
            +
                  "single_word": false,
         | 
| 1689 | 
            +
                  "special": true
         | 
| 1690 | 
            +
                },
         | 
| 1691 | 
            +
                "128211": {
         | 
| 1692 | 
            +
                  "content": "<|reserved_special_token_206|>",
         | 
| 1693 | 
            +
                  "lstrip": false,
         | 
| 1694 | 
            +
                  "normalized": false,
         | 
| 1695 | 
            +
                  "rstrip": false,
         | 
| 1696 | 
            +
                  "single_word": false,
         | 
| 1697 | 
            +
                  "special": true
         | 
| 1698 | 
            +
                },
         | 
| 1699 | 
            +
                "128212": {
         | 
| 1700 | 
            +
                  "content": "<|reserved_special_token_207|>",
         | 
| 1701 | 
            +
                  "lstrip": false,
         | 
| 1702 | 
            +
                  "normalized": false,
         | 
| 1703 | 
            +
                  "rstrip": false,
         | 
| 1704 | 
            +
                  "single_word": false,
         | 
| 1705 | 
            +
                  "special": true
         | 
| 1706 | 
            +
                },
         | 
| 1707 | 
            +
                "128213": {
         | 
| 1708 | 
            +
                  "content": "<|reserved_special_token_208|>",
         | 
| 1709 | 
            +
                  "lstrip": false,
         | 
| 1710 | 
            +
                  "normalized": false,
         | 
| 1711 | 
            +
                  "rstrip": false,
         | 
| 1712 | 
            +
                  "single_word": false,
         | 
| 1713 | 
            +
                  "special": true
         | 
| 1714 | 
            +
                },
         | 
| 1715 | 
            +
                "128214": {
         | 
| 1716 | 
            +
                  "content": "<|reserved_special_token_209|>",
         | 
| 1717 | 
            +
                  "lstrip": false,
         | 
| 1718 | 
            +
                  "normalized": false,
         | 
| 1719 | 
            +
                  "rstrip": false,
         | 
| 1720 | 
            +
                  "single_word": false,
         | 
| 1721 | 
            +
                  "special": true
         | 
| 1722 | 
            +
                },
         | 
| 1723 | 
            +
                "128215": {
         | 
| 1724 | 
            +
                  "content": "<|reserved_special_token_210|>",
         | 
| 1725 | 
            +
                  "lstrip": false,
         | 
| 1726 | 
            +
                  "normalized": false,
         | 
| 1727 | 
            +
                  "rstrip": false,
         | 
| 1728 | 
            +
                  "single_word": false,
         | 
| 1729 | 
            +
                  "special": true
         | 
| 1730 | 
            +
                },
         | 
| 1731 | 
            +
                "128216": {
         | 
| 1732 | 
            +
                  "content": "<|reserved_special_token_211|>",
         | 
| 1733 | 
            +
                  "lstrip": false,
         | 
| 1734 | 
            +
                  "normalized": false,
         | 
| 1735 | 
            +
                  "rstrip": false,
         | 
| 1736 | 
            +
                  "single_word": false,
         | 
| 1737 | 
            +
                  "special": true
         | 
| 1738 | 
            +
                },
         | 
| 1739 | 
            +
                "128217": {
         | 
| 1740 | 
            +
                  "content": "<|reserved_special_token_212|>",
         | 
| 1741 | 
            +
                  "lstrip": false,
         | 
| 1742 | 
            +
                  "normalized": false,
         | 
| 1743 | 
            +
                  "rstrip": false,
         | 
| 1744 | 
            +
                  "single_word": false,
         | 
| 1745 | 
            +
                  "special": true
         | 
| 1746 | 
            +
                },
         | 
| 1747 | 
            +
                "128218": {
         | 
| 1748 | 
            +
                  "content": "<|reserved_special_token_213|>",
         | 
| 1749 | 
            +
                  "lstrip": false,
         | 
| 1750 | 
            +
                  "normalized": false,
         | 
| 1751 | 
            +
                  "rstrip": false,
         | 
| 1752 | 
            +
                  "single_word": false,
         | 
| 1753 | 
            +
                  "special": true
         | 
| 1754 | 
            +
                },
         | 
| 1755 | 
            +
                "128219": {
         | 
| 1756 | 
            +
                  "content": "<|reserved_special_token_214|>",
         | 
| 1757 | 
            +
                  "lstrip": false,
         | 
| 1758 | 
            +
                  "normalized": false,
         | 
| 1759 | 
            +
                  "rstrip": false,
         | 
| 1760 | 
            +
                  "single_word": false,
         | 
| 1761 | 
            +
                  "special": true
         | 
| 1762 | 
            +
                },
         | 
| 1763 | 
            +
                "128220": {
         | 
| 1764 | 
            +
                  "content": "<|reserved_special_token_215|>",
         | 
| 1765 | 
            +
                  "lstrip": false,
         | 
| 1766 | 
            +
                  "normalized": false,
         | 
| 1767 | 
            +
                  "rstrip": false,
         | 
| 1768 | 
            +
                  "single_word": false,
         | 
| 1769 | 
            +
                  "special": true
         | 
| 1770 | 
            +
                },
         | 
| 1771 | 
            +
                "128221": {
         | 
| 1772 | 
            +
                  "content": "<|reserved_special_token_216|>",
         | 
| 1773 | 
            +
                  "lstrip": false,
         | 
| 1774 | 
            +
                  "normalized": false,
         | 
| 1775 | 
            +
                  "rstrip": false,
         | 
| 1776 | 
            +
                  "single_word": false,
         | 
| 1777 | 
            +
                  "special": true
         | 
| 1778 | 
            +
                },
         | 
| 1779 | 
            +
                "128222": {
         | 
| 1780 | 
            +
                  "content": "<|reserved_special_token_217|>",
         | 
| 1781 | 
            +
                  "lstrip": false,
         | 
| 1782 | 
            +
                  "normalized": false,
         | 
| 1783 | 
            +
                  "rstrip": false,
         | 
| 1784 | 
            +
                  "single_word": false,
         | 
| 1785 | 
            +
                  "special": true
         | 
| 1786 | 
            +
                },
         | 
| 1787 | 
            +
                "128223": {
         | 
| 1788 | 
            +
                  "content": "<|reserved_special_token_218|>",
         | 
| 1789 | 
            +
                  "lstrip": false,
         | 
| 1790 | 
            +
                  "normalized": false,
         | 
| 1791 | 
            +
                  "rstrip": false,
         | 
| 1792 | 
            +
                  "single_word": false,
         | 
| 1793 | 
            +
                  "special": true
         | 
| 1794 | 
            +
                },
         | 
| 1795 | 
            +
                "128224": {
         | 
| 1796 | 
            +
                  "content": "<|reserved_special_token_219|>",
         | 
| 1797 | 
            +
                  "lstrip": false,
         | 
| 1798 | 
            +
                  "normalized": false,
         | 
| 1799 | 
            +
                  "rstrip": false,
         | 
| 1800 | 
            +
                  "single_word": false,
         | 
| 1801 | 
            +
                  "special": true
         | 
| 1802 | 
            +
                },
         | 
| 1803 | 
            +
                "128225": {
         | 
| 1804 | 
            +
                  "content": "<|reserved_special_token_220|>",
         | 
| 1805 | 
            +
                  "lstrip": false,
         | 
| 1806 | 
            +
                  "normalized": false,
         | 
| 1807 | 
            +
                  "rstrip": false,
         | 
| 1808 | 
            +
                  "single_word": false,
         | 
| 1809 | 
            +
                  "special": true
         | 
| 1810 | 
            +
                },
         | 
| 1811 | 
            +
                "128226": {
         | 
| 1812 | 
            +
                  "content": "<|reserved_special_token_221|>",
         | 
| 1813 | 
            +
                  "lstrip": false,
         | 
| 1814 | 
            +
                  "normalized": false,
         | 
| 1815 | 
            +
                  "rstrip": false,
         | 
| 1816 | 
            +
                  "single_word": false,
         | 
| 1817 | 
            +
                  "special": true
         | 
| 1818 | 
            +
                },
         | 
| 1819 | 
            +
                "128227": {
         | 
| 1820 | 
            +
                  "content": "<|reserved_special_token_222|>",
         | 
| 1821 | 
            +
                  "lstrip": false,
         | 
| 1822 | 
            +
                  "normalized": false,
         | 
| 1823 | 
            +
                  "rstrip": false,
         | 
| 1824 | 
            +
                  "single_word": false,
         | 
| 1825 | 
            +
                  "special": true
         | 
| 1826 | 
            +
                },
         | 
| 1827 | 
            +
                "128228": {
         | 
| 1828 | 
            +
                  "content": "<|reserved_special_token_223|>",
         | 
| 1829 | 
            +
                  "lstrip": false,
         | 
| 1830 | 
            +
                  "normalized": false,
         | 
| 1831 | 
            +
                  "rstrip": false,
         | 
| 1832 | 
            +
                  "single_word": false,
         | 
| 1833 | 
            +
                  "special": true
         | 
| 1834 | 
            +
                },
         | 
| 1835 | 
            +
                "128229": {
         | 
| 1836 | 
            +
                  "content": "<|reserved_special_token_224|>",
         | 
| 1837 | 
            +
                  "lstrip": false,
         | 
| 1838 | 
            +
                  "normalized": false,
         | 
| 1839 | 
            +
                  "rstrip": false,
         | 
| 1840 | 
            +
                  "single_word": false,
         | 
| 1841 | 
            +
                  "special": true
         | 
| 1842 | 
            +
                },
         | 
| 1843 | 
            +
                "128230": {
         | 
| 1844 | 
            +
                  "content": "<|reserved_special_token_225|>",
         | 
| 1845 | 
            +
                  "lstrip": false,
         | 
| 1846 | 
            +
                  "normalized": false,
         | 
| 1847 | 
            +
                  "rstrip": false,
         | 
| 1848 | 
            +
                  "single_word": false,
         | 
| 1849 | 
            +
                  "special": true
         | 
| 1850 | 
            +
                },
         | 
| 1851 | 
            +
                "128231": {
         | 
| 1852 | 
            +
                  "content": "<|reserved_special_token_226|>",
         | 
| 1853 | 
            +
                  "lstrip": false,
         | 
| 1854 | 
            +
                  "normalized": false,
         | 
| 1855 | 
            +
                  "rstrip": false,
         | 
| 1856 | 
            +
                  "single_word": false,
         | 
| 1857 | 
            +
                  "special": true
         | 
| 1858 | 
            +
                },
         | 
| 1859 | 
            +
                "128232": {
         | 
| 1860 | 
            +
                  "content": "<|reserved_special_token_227|>",
         | 
| 1861 | 
            +
                  "lstrip": false,
         | 
| 1862 | 
            +
                  "normalized": false,
         | 
| 1863 | 
            +
                  "rstrip": false,
         | 
| 1864 | 
            +
                  "single_word": false,
         | 
| 1865 | 
            +
                  "special": true
         | 
| 1866 | 
            +
                },
         | 
| 1867 | 
            +
                "128233": {
         | 
| 1868 | 
            +
                  "content": "<|reserved_special_token_228|>",
         | 
| 1869 | 
            +
                  "lstrip": false,
         | 
| 1870 | 
            +
                  "normalized": false,
         | 
| 1871 | 
            +
                  "rstrip": false,
         | 
| 1872 | 
            +
                  "single_word": false,
         | 
| 1873 | 
            +
                  "special": true
         | 
| 1874 | 
            +
                },
         | 
| 1875 | 
            +
                "128234": {
         | 
| 1876 | 
            +
                  "content": "<|reserved_special_token_229|>",
         | 
| 1877 | 
            +
                  "lstrip": false,
         | 
| 1878 | 
            +
                  "normalized": false,
         | 
| 1879 | 
            +
                  "rstrip": false,
         | 
| 1880 | 
            +
                  "single_word": false,
         | 
| 1881 | 
            +
                  "special": true
         | 
| 1882 | 
            +
                },
         | 
| 1883 | 
            +
                "128235": {
         | 
| 1884 | 
            +
                  "content": "<|reserved_special_token_230|>",
         | 
| 1885 | 
            +
                  "lstrip": false,
         | 
| 1886 | 
            +
                  "normalized": false,
         | 
| 1887 | 
            +
                  "rstrip": false,
         | 
| 1888 | 
            +
                  "single_word": false,
         | 
| 1889 | 
            +
                  "special": true
         | 
| 1890 | 
            +
                },
         | 
| 1891 | 
            +
                "128236": {
         | 
| 1892 | 
            +
                  "content": "<|reserved_special_token_231|>",
         | 
| 1893 | 
            +
                  "lstrip": false,
         | 
| 1894 | 
            +
                  "normalized": false,
         | 
| 1895 | 
            +
                  "rstrip": false,
         | 
| 1896 | 
            +
                  "single_word": false,
         | 
| 1897 | 
            +
                  "special": true
         | 
| 1898 | 
            +
                },
         | 
| 1899 | 
            +
                "128237": {
         | 
| 1900 | 
            +
                  "content": "<|reserved_special_token_232|>",
         | 
| 1901 | 
            +
                  "lstrip": false,
         | 
| 1902 | 
            +
                  "normalized": false,
         | 
| 1903 | 
            +
                  "rstrip": false,
         | 
| 1904 | 
            +
                  "single_word": false,
         | 
| 1905 | 
            +
                  "special": true
         | 
| 1906 | 
            +
                },
         | 
| 1907 | 
            +
                "128238": {
         | 
| 1908 | 
            +
                  "content": "<|reserved_special_token_233|>",
         | 
| 1909 | 
            +
                  "lstrip": false,
         | 
| 1910 | 
            +
                  "normalized": false,
         | 
| 1911 | 
            +
                  "rstrip": false,
         | 
| 1912 | 
            +
                  "single_word": false,
         | 
| 1913 | 
            +
                  "special": true
         | 
| 1914 | 
            +
                },
         | 
| 1915 | 
            +
                "128239": {
         | 
| 1916 | 
            +
                  "content": "<|reserved_special_token_234|>",
         | 
| 1917 | 
            +
                  "lstrip": false,
         | 
| 1918 | 
            +
                  "normalized": false,
         | 
| 1919 | 
            +
                  "rstrip": false,
         | 
| 1920 | 
            +
                  "single_word": false,
         | 
| 1921 | 
            +
                  "special": true
         | 
| 1922 | 
            +
                },
         | 
| 1923 | 
            +
                "128240": {
         | 
| 1924 | 
            +
                  "content": "<|reserved_special_token_235|>",
         | 
| 1925 | 
            +
                  "lstrip": false,
         | 
| 1926 | 
            +
                  "normalized": false,
         | 
| 1927 | 
            +
                  "rstrip": false,
         | 
| 1928 | 
            +
                  "single_word": false,
         | 
| 1929 | 
            +
                  "special": true
         | 
| 1930 | 
            +
                },
         | 
| 1931 | 
            +
                "128241": {
         | 
| 1932 | 
            +
                  "content": "<|reserved_special_token_236|>",
         | 
| 1933 | 
            +
                  "lstrip": false,
         | 
| 1934 | 
            +
                  "normalized": false,
         | 
| 1935 | 
            +
                  "rstrip": false,
         | 
| 1936 | 
            +
                  "single_word": false,
         | 
| 1937 | 
            +
                  "special": true
         | 
| 1938 | 
            +
                },
         | 
| 1939 | 
            +
                "128242": {
         | 
| 1940 | 
            +
                  "content": "<|reserved_special_token_237|>",
         | 
| 1941 | 
            +
                  "lstrip": false,
         | 
| 1942 | 
            +
                  "normalized": false,
         | 
| 1943 | 
            +
                  "rstrip": false,
         | 
| 1944 | 
            +
                  "single_word": false,
         | 
| 1945 | 
            +
                  "special": true
         | 
| 1946 | 
            +
                },
         | 
| 1947 | 
            +
                "128243": {
         | 
| 1948 | 
            +
                  "content": "<|reserved_special_token_238|>",
         | 
| 1949 | 
            +
                  "lstrip": false,
         | 
| 1950 | 
            +
                  "normalized": false,
         | 
| 1951 | 
            +
                  "rstrip": false,
         | 
| 1952 | 
            +
                  "single_word": false,
         | 
| 1953 | 
            +
                  "special": true
         | 
| 1954 | 
            +
                },
         | 
| 1955 | 
            +
                "128244": {
         | 
| 1956 | 
            +
                  "content": "<|reserved_special_token_239|>",
         | 
| 1957 | 
            +
                  "lstrip": false,
         | 
| 1958 | 
            +
                  "normalized": false,
         | 
| 1959 | 
            +
                  "rstrip": false,
         | 
| 1960 | 
            +
                  "single_word": false,
         | 
| 1961 | 
            +
                  "special": true
         | 
| 1962 | 
            +
                },
         | 
| 1963 | 
            +
                "128245": {
         | 
| 1964 | 
            +
                  "content": "<|reserved_special_token_240|>",
         | 
| 1965 | 
            +
                  "lstrip": false,
         | 
| 1966 | 
            +
                  "normalized": false,
         | 
| 1967 | 
            +
                  "rstrip": false,
         | 
| 1968 | 
            +
                  "single_word": false,
         | 
| 1969 | 
            +
                  "special": true
         | 
| 1970 | 
            +
                },
         | 
| 1971 | 
            +
                "128246": {
         | 
| 1972 | 
            +
                  "content": "<|reserved_special_token_241|>",
         | 
| 1973 | 
            +
                  "lstrip": false,
         | 
| 1974 | 
            +
                  "normalized": false,
         | 
| 1975 | 
            +
                  "rstrip": false,
         | 
| 1976 | 
            +
                  "single_word": false,
         | 
| 1977 | 
            +
                  "special": true
         | 
| 1978 | 
            +
                },
         | 
| 1979 | 
            +
                "128247": {
         | 
| 1980 | 
            +
                  "content": "<|reserved_special_token_242|>",
         | 
| 1981 | 
            +
                  "lstrip": false,
         | 
| 1982 | 
            +
                  "normalized": false,
         | 
| 1983 | 
            +
                  "rstrip": false,
         | 
| 1984 | 
            +
                  "single_word": false,
         | 
| 1985 | 
            +
                  "special": true
         | 
| 1986 | 
            +
                },
         | 
| 1987 | 
            +
                "128248": {
         | 
| 1988 | 
            +
                  "content": "<|reserved_special_token_243|>",
         | 
| 1989 | 
            +
                  "lstrip": false,
         | 
| 1990 | 
            +
                  "normalized": false,
         | 
| 1991 | 
            +
                  "rstrip": false,
         | 
| 1992 | 
            +
                  "single_word": false,
         | 
| 1993 | 
            +
                  "special": true
         | 
| 1994 | 
            +
                },
         | 
| 1995 | 
            +
                "128249": {
         | 
| 1996 | 
            +
                  "content": "<|reserved_special_token_244|>",
         | 
| 1997 | 
            +
                  "lstrip": false,
         | 
| 1998 | 
            +
                  "normalized": false,
         | 
| 1999 | 
            +
                  "rstrip": false,
         | 
| 2000 | 
            +
                  "single_word": false,
         | 
| 2001 | 
            +
                  "special": true
         | 
| 2002 | 
            +
                },
         | 
| 2003 | 
            +
                "128250": {
         | 
| 2004 | 
            +
                  "content": "<|reserved_special_token_245|>",
         | 
| 2005 | 
            +
                  "lstrip": false,
         | 
| 2006 | 
            +
                  "normalized": false,
         | 
| 2007 | 
            +
                  "rstrip": false,
         | 
| 2008 | 
            +
                  "single_word": false,
         | 
| 2009 | 
            +
                  "special": true
         | 
| 2010 | 
            +
                },
         | 
| 2011 | 
            +
                "128251": {
         | 
| 2012 | 
            +
                  "content": "<|reserved_special_token_246|>",
         | 
| 2013 | 
            +
                  "lstrip": false,
         | 
| 2014 | 
            +
                  "normalized": false,
         | 
| 2015 | 
            +
                  "rstrip": false,
         | 
| 2016 | 
            +
                  "single_word": false,
         | 
| 2017 | 
            +
                  "special": true
         | 
| 2018 | 
            +
                },
         | 
| 2019 | 
            +
                "128252": {
         | 
| 2020 | 
            +
                  "content": "<|reserved_special_token_247|>",
         | 
| 2021 | 
            +
                  "lstrip": false,
         | 
| 2022 | 
            +
                  "normalized": false,
         | 
| 2023 | 
            +
                  "rstrip": false,
         | 
| 2024 | 
            +
                  "single_word": false,
         | 
| 2025 | 
            +
                  "special": true
         | 
| 2026 | 
            +
                },
         | 
| 2027 | 
            +
                "128253": {
         | 
| 2028 | 
            +
                  "content": "<|reserved_special_token_248|>",
         | 
| 2029 | 
            +
                  "lstrip": false,
         | 
| 2030 | 
            +
                  "normalized": false,
         | 
| 2031 | 
            +
                  "rstrip": false,
         | 
| 2032 | 
            +
                  "single_word": false,
         | 
| 2033 | 
            +
                  "special": true
         | 
| 2034 | 
            +
                },
         | 
| 2035 | 
            +
                "128254": {
         | 
| 2036 | 
            +
                  "content": "<|reserved_special_token_249|>",
         | 
| 2037 | 
            +
                  "lstrip": false,
         | 
| 2038 | 
            +
                  "normalized": false,
         | 
| 2039 | 
            +
                  "rstrip": false,
         | 
| 2040 | 
            +
                  "single_word": false,
         | 
| 2041 | 
            +
                  "special": true
         | 
| 2042 | 
            +
                },
         | 
| 2043 | 
            +
                "128255": {
         | 
| 2044 | 
            +
                  "content": "<|reserved_special_token_250|>",
         | 
| 2045 | 
            +
                  "lstrip": false,
         | 
| 2046 | 
            +
                  "normalized": false,
         | 
| 2047 | 
            +
                  "rstrip": false,
         | 
| 2048 | 
            +
                  "single_word": false,
         | 
| 2049 | 
            +
                  "special": true
         | 
| 2050 | 
            +
                },
         | 
| 2051 | 
            +
                "128256": {
         | 
| 2052 | 
            +
                  "content": "<Prompt0>",
         | 
| 2053 | 
            +
                  "lstrip": false,
         | 
| 2054 | 
            +
                  "normalized": false,
         | 
| 2055 | 
            +
                  "rstrip": false,
         | 
| 2056 | 
            +
                  "single_word": false,
         | 
| 2057 | 
            +
                  "special": true
         | 
| 2058 | 
            +
                },
         | 
| 2059 | 
            +
                "128257": {
         | 
| 2060 | 
            +
                  "content": "<Prompt1>",
         | 
| 2061 | 
            +
                  "lstrip": false,
         | 
| 2062 | 
            +
                  "normalized": false,
         | 
| 2063 | 
            +
                  "rstrip": false,
         | 
| 2064 | 
            +
                  "single_word": false,
         | 
| 2065 | 
            +
                  "special": true
         | 
| 2066 | 
            +
                },
         | 
| 2067 | 
            +
                "128258": {
         | 
| 2068 | 
            +
                  "content": "<Prompt2>",
         | 
| 2069 | 
            +
                  "lstrip": false,
         | 
| 2070 | 
            +
                  "normalized": false,
         | 
| 2071 | 
            +
                  "rstrip": false,
         | 
| 2072 | 
            +
                  "single_word": false,
         | 
| 2073 | 
            +
                  "special": true
         | 
| 2074 | 
            +
                },
         | 
| 2075 | 
            +
                "128259": {
         | 
| 2076 | 
            +
                  "content": "<Prompt3>",
         | 
| 2077 | 
            +
                  "lstrip": false,
         | 
| 2078 | 
            +
                  "normalized": false,
         | 
| 2079 | 
            +
                  "rstrip": false,
         | 
| 2080 | 
            +
                  "single_word": false,
         | 
| 2081 | 
            +
                  "special": true
         | 
| 2082 | 
            +
                },
         | 
| 2083 | 
            +
                "128260": {
         | 
| 2084 | 
            +
                  "content": "<Prompt4>",
         | 
| 2085 | 
            +
                  "lstrip": false,
         | 
| 2086 | 
            +
                  "normalized": false,
         | 
| 2087 | 
            +
                  "rstrip": false,
         | 
| 2088 | 
            +
                  "single_word": false,
         | 
| 2089 | 
            +
                  "special": true
         | 
| 2090 | 
            +
                },
         | 
| 2091 | 
            +
                "128261": {
         | 
| 2092 | 
            +
                  "content": "<NO_Prompt>",
         | 
| 2093 | 
            +
                  "lstrip": false,
         | 
| 2094 | 
            +
                  "normalized": false,
         | 
| 2095 | 
            +
                  "rstrip": false,
         | 
| 2096 | 
            +
                  "single_word": false,
         | 
| 2097 | 
            +
                  "special": true
         | 
| 2098 | 
            +
                }
         | 
| 2099 | 
            +
              },
         | 
| 2100 | 
            +
              "bos_token": "<|begin_of_text|>",
         | 
| 2101 | 
            +
              "clean_up_tokenization_spaces": true,
         | 
| 2102 | 
            +
              "eos_token": "<|eot_id|>",
         | 
| 2103 | 
            +
              "extra_special_tokens": {
         | 
| 2104 | 
            +
                "image_token": "<|image|>",
         | 
| 2105 | 
            +
                "pad_token": "<|end_of_text|>",
         | 
| 2106 | 
            +
                "video_token": "<|video|>"
         | 
| 2107 | 
            +
              },
         | 
| 2108 | 
            +
              "image_token": "<|image|>",
         | 
| 2109 | 
            +
              "model_input_names": [
         | 
| 2110 | 
            +
                "input_ids",
         | 
| 2111 | 
            +
                "attention_mask"
         | 
| 2112 | 
            +
              ],
         | 
| 2113 | 
            +
              "model_max_length": 11520,
         | 
| 2114 | 
            +
              "pad_token": "<|end_of_text|>",
         | 
| 2115 | 
            +
              "processor_class": "GARPerceptionLMProcessor",
         | 
| 2116 | 
            +
              "tokenizer_class": "PreTrainedTokenizerFast",
         | 
| 2117 | 
            +
              "video_token": "<|video|>"
         | 
| 2118 | 
            +
            }
         | 
    	
        video_preprocessor_config.json
    ADDED
    
    | @@ -0,0 +1,37 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "crop_size": null,
         | 
| 3 | 
            +
              "data_format": "channels_first",
         | 
| 4 | 
            +
              "default_to_square": true,
         | 
| 5 | 
            +
              "device": null,
         | 
| 6 | 
            +
              "do_center_crop": false,
         | 
| 7 | 
            +
              "do_convert_rgb": true,
         | 
| 8 | 
            +
              "do_normalize": true,
         | 
| 9 | 
            +
              "do_pad": null,
         | 
| 10 | 
            +
              "do_rescale": true,
         | 
| 11 | 
            +
              "do_resize": true,
         | 
| 12 | 
            +
              "do_sample_frames": null,
         | 
| 13 | 
            +
              "fps": null,
         | 
| 14 | 
            +
              "image_mean": [
         | 
| 15 | 
            +
                0.5,
         | 
| 16 | 
            +
                0.5,
         | 
| 17 | 
            +
                0.5
         | 
| 18 | 
            +
              ],
         | 
| 19 | 
            +
              "image_std": [
         | 
| 20 | 
            +
                0.5,
         | 
| 21 | 
            +
                0.5,
         | 
| 22 | 
            +
                0.5
         | 
| 23 | 
            +
              ],
         | 
| 24 | 
            +
              "input_data_format": null,
         | 
| 25 | 
            +
              "num_frames": null,
         | 
| 26 | 
            +
              "processor_class": "GARPerceptionLMProcessor",
         | 
| 27 | 
            +
              "resample": 3,
         | 
| 28 | 
            +
              "rescale_factor": 0.00392156862745098,
         | 
| 29 | 
            +
              "return_metadata": false,
         | 
| 30 | 
            +
              "size": {
         | 
| 31 | 
            +
                "height": 448,
         | 
| 32 | 
            +
                "width": 448
         | 
| 33 | 
            +
              },
         | 
| 34 | 
            +
              "size_divisor": null,
         | 
| 35 | 
            +
              "video_metadata": null,
         | 
| 36 | 
            +
              "video_processor_type": "PerceptionLMVideoProcessor"
         | 
| 37 | 
            +
            }
         |