Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: fa
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# ParsBERT (v2.0)
|
| 7 |
+
A Transformer-based Model for Persian Language Understanding
|
| 8 |
+
|
| 9 |
+
We reconstructed the vocabulary and fine-tuned the ParsBERT v1.1 on the new Persian corpora in order to provide some functionalities for using ParsBERT in other scopes!
|
| 10 |
+
Please follow the [ParsBERT](https://github.com/hooshvare/parsbert) repo for the latest information about previous and current models.
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
## Persian Sentiment [Digikala, SnappFood, DeepSentiPers]
|
| 14 |
+
|
| 15 |
+
It aims to classify text, such as comments, based on their emotional bias. We tested three well-known datasets for this task: `Digikala` user comments, `SnappFood` user comments, and `DeepSentiPers` in two binary-form and multi-form types.
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
|
| 19 |
+
### SnappFood
|
| 20 |
+
|
| 21 |
+
[Snappfood](https://snappfood.ir/) (an online food delivery company) user comments containing 70,000 comments with two labels (i.e. polarity classification):
|
| 22 |
+
|
| 23 |
+
1. Happy
|
| 24 |
+
2. Sad
|
| 25 |
+
|
| 26 |
+
| Label | # |
|
| 27 |
+
|:--------:|:-----:|
|
| 28 |
+
| Negative | 35000 |
|
| 29 |
+
| Positive | 35000 |
|
| 30 |
+
|
| 31 |
+
**Download**
|
| 32 |
+
You can download the dataset from [here](https://drive.google.com/uc?id=15J4zPN1BD7Q_ZIQ39VeFquwSoW8qTxgu)
|
| 33 |
+
|
| 34 |
+
## Results
|
| 35 |
+
|
| 36 |
+
The following table summarizes the F1 score obtained by ParsBERT as compared to other models and architectures.
|
| 37 |
+
|
| 38 |
+
| Dataset | ParsBERT v2 | ParsBERT v1 | mBERT | DeepSentiPers |
|
| 39 |
+
|:------------------------:|:-----------:|:-----------:|:-----:|:-------------:|
|
| 40 |
+
| SnappFood User Comments | 87.98 | 88.12* | 87.87 | - |
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
## How to use :hugs:
|
| 44 |
+
|
| 45 |
+
| Task | Notebook |
|
| 46 |
+
|---------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 47 |
+
| Sentiment Analysis | [](https://colab.research.google.com/github/hooshvare/parsbert/blob/master/notebooks/Taaghche_Sentiment_Analysis.ipynb) |
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
### BibTeX entry and citation info
|
| 51 |
+
|
| 52 |
+
Please cite in publications as the following:
|
| 53 |
+
|
| 54 |
+
```bibtex
|
| 55 |
+
@article{ParsBERT,
|
| 56 |
+
title={ParsBERT: Transformer-based Model for Persian Language Understanding},
|
| 57 |
+
author={Mehrdad Farahani, Mohammad Gharachorloo, Marzieh Farahani, Mohammad Manthouri},
|
| 58 |
+
journal={ArXiv},
|
| 59 |
+
year={2020},
|
| 60 |
+
volume={abs/2005.12515}
|
| 61 |
+
}
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
## Questions?
|
| 65 |
+
Post a Github issue on the [ParsBERT Issues](https://github.com/hooshvare/parsbert/issues) repo.
|