|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """ | 
					
						
						|  | Image/Text processor class for SigLIP. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | from typing import List, Optional, Union | 
					
						
						|  |  | 
					
						
						|  | from transformers.feature_extraction_utils import BatchFeature | 
					
						
						|  | from transformers.image_utils import ImageInput | 
					
						
						|  | from transformers.processing_utils import ProcessorMixin | 
					
						
						|  | from transformers.tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy | 
					
						
						|  | from transformers.utils import TensorType | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SiglipProcessor(ProcessorMixin): | 
					
						
						|  | r""" | 
					
						
						|  | Constructs a Siglip processor which wraps a Siglip image processor and a Siglip tokenizer into a single processor. | 
					
						
						|  |  | 
					
						
						|  | [`SiglipProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`SiglipTokenizer`]. See the | 
					
						
						|  | [`~SiglipProcessor.__call__`] and [`~SiglipProcessor.decode`] for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | image_processor ([`SiglipImageProcessor`]): | 
					
						
						|  | The image processor is a required input. | 
					
						
						|  | tokenizer ([`SiglipTokenizer`]): | 
					
						
						|  | The tokenizer is a required input. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | attributes = ["image_processor", "tokenizer"] | 
					
						
						|  | image_processor_class = "SiglipImageProcessor" | 
					
						
						|  | tokenizer_class = "SiglipTokenizer" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, image_processor, tokenizer): | 
					
						
						|  | super().__init__(image_processor, tokenizer) | 
					
						
						|  |  | 
					
						
						|  | def __call__( | 
					
						
						|  | self, | 
					
						
						|  | text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None, | 
					
						
						|  | images: ImageInput = None, | 
					
						
						|  | padding: Union[bool, str, PaddingStrategy] = False, | 
					
						
						|  | truncation: Union[bool, str, TruncationStrategy] = None, | 
					
						
						|  | max_length: int = None, | 
					
						
						|  | return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH, | 
					
						
						|  | ) -> BatchFeature: | 
					
						
						|  | """ | 
					
						
						|  | Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` | 
					
						
						|  | and `kwargs` arguments to SiglipTokenizer's [`~SiglipTokenizer.__call__`] if `text` is not `None` to encode | 
					
						
						|  | the text. To prepare the image(s), this method forwards the `images` argument to | 
					
						
						|  | SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring | 
					
						
						|  | of the above two methods for more information. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | text (`str`, `List[str]`, `List[List[str]]`): | 
					
						
						|  | The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings | 
					
						
						|  | (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set | 
					
						
						|  | `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). | 
					
						
						|  | images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`): | 
					
						
						|  | The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch | 
					
						
						|  | tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a | 
					
						
						|  | number of channels, H and W are image height and width. | 
					
						
						|  | padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`): | 
					
						
						|  | Select a strategy to pad the returned sequences (according to the model's padding side and padding | 
					
						
						|  | index) among: | 
					
						
						|  | - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single | 
					
						
						|  | sequence if provided). | 
					
						
						|  | - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum | 
					
						
						|  | acceptable input length for the model if that argument is not provided. | 
					
						
						|  | - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different | 
					
						
						|  | lengths). | 
					
						
						|  | max_length (`int`, *optional*): | 
					
						
						|  | Maximum length of the returned list and optionally padding length (see above). | 
					
						
						|  | truncation (`bool`, *optional*): | 
					
						
						|  | Activates truncation to cut input sequences longer than `max_length` to `max_length`. | 
					
						
						|  | return_tensors (`str` or [`~utils.TensorType`], *optional*): | 
					
						
						|  | If set, will return tensors of a particular framework. Acceptable values are: | 
					
						
						|  |  | 
					
						
						|  | - `'tf'`: Return TensorFlow `tf.constant` objects. | 
					
						
						|  | - `'pt'`: Return PyTorch `torch.Tensor` objects. | 
					
						
						|  | - `'np'`: Return NumPy `np.ndarray` objects. | 
					
						
						|  | - `'jax'`: Return JAX `jnp.ndarray` objects. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | [`BatchFeature`]: A [`BatchFeature`] with the following fields: | 
					
						
						|  |  | 
					
						
						|  | - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. | 
					
						
						|  | - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when | 
					
						
						|  | `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not | 
					
						
						|  | `None`). | 
					
						
						|  | - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | if text is None and images is None: | 
					
						
						|  | raise ValueError("You have to specify either text or images. Both cannot be none.") | 
					
						
						|  |  | 
					
						
						|  | if text is not None: | 
					
						
						|  | encoding = self.tokenizer( | 
					
						
						|  | text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if images is not None: | 
					
						
						|  | image_features = self.image_processor(images, return_tensors=return_tensors) | 
					
						
						|  |  | 
					
						
						|  | if text is not None and images is not None: | 
					
						
						|  | encoding["pixel_values"] = image_features.pixel_values | 
					
						
						|  | return encoding | 
					
						
						|  | elif text is not None: | 
					
						
						|  | return encoding | 
					
						
						|  | else: | 
					
						
						|  | return BatchFeature(data=dict(**image_features), tensor_type=return_tensors) | 
					
						
						|  |  | 
					
						
						|  | def decode(self, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to | 
					
						
						|  | the docstring of this method for more information. | 
					
						
						|  | """ | 
					
						
						|  | return self.tokenizer.decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | def batch_decode(self, *args, **kwargs): | 
					
						
						|  | """ | 
					
						
						|  | This method forwards all its arguments to SiglipTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please | 
					
						
						|  | refer to the docstring of this method for more information. | 
					
						
						|  | """ | 
					
						
						|  | return self.tokenizer.batch_decode(*args, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  |  | 
					
						
						|  | def model_input_names(self): | 
					
						
						|  | tokenizer_input_names = self.tokenizer.model_input_names | 
					
						
						|  | image_processor_input_names = self.image_processor.model_input_names | 
					
						
						|  | return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) | 
					
						
						|  |  |