|
|
""" |
|
|
Modified MIT License |
|
|
|
|
|
Software Copyright© 2025 IQuest Research |
|
|
|
|
|
Our only modification is that, if the Software (or any derivative works |
|
|
thereof) is used for any of your commercial products or services, you shall |
|
|
prominently display "IQuest Coder" on the user interface of such product or |
|
|
service. |
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy |
|
|
of this software and associated documentation files (the "Software"), to deal |
|
|
in the Software without restriction, including without limitation the rights |
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
|
|
copies of the Software, and to permit persons to whom the Software is |
|
|
furnished to do so, subject to the following conditions: |
|
|
|
|
|
The above copyright notice and this permission notice shall be included in all |
|
|
copies or substantial portions of the Software. |
|
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. |
|
|
""" |
|
|
|
|
|
import logging |
|
|
from typing import Any, Callable, Optional, Union, Tuple, List |
|
|
|
|
|
import torch |
|
|
from torch import nn |
|
|
|
|
|
from transformers.activations import ACT2FN |
|
|
from transformers.cache_utils import Cache |
|
|
from transformers.generation import GenerationMixin |
|
|
from transformers.integrations import use_kernel_forward_from_hub |
|
|
from transformers.masking_utils import ( |
|
|
create_causal_mask, |
|
|
create_sliding_window_causal_mask, |
|
|
) |
|
|
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs |
|
|
from transformers.modeling_layers import ( |
|
|
GenericForQuestionAnswering, |
|
|
GenericForSequenceClassification, |
|
|
GenericForTokenClassification, |
|
|
GradientCheckpointingLayer, |
|
|
) |
|
|
from transformers.modeling_outputs import ( |
|
|
BaseModelOutputWithPast, |
|
|
CausalLMOutputWithPast, |
|
|
) |
|
|
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update |
|
|
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel |
|
|
from transformers.processing_utils import Unpack |
|
|
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple |
|
|
from transformers.utils.generic import check_model_inputs |
|
|
from .configuration_iquestloopcoder import IQuestLoopCoderConfig |
|
|
|
|
|
|
|
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
|
|
|
def needs_iquestloopcoder_cache( |
|
|
cache: Optional[Cache] |
|
|
) -> bool: |
|
|
|
|
|
if cache is None: |
|
|
return True |
|
|
if isinstance(cache, IQuestLoopCoderCache): |
|
|
return False |
|
|
return True |
|
|
|
|
|
class IQuestLoopCoderMLP(nn.Module): |
|
|
def __init__(self, config): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
self.hidden_size = config.hidden_size |
|
|
self.intermediate_size = config.intermediate_size |
|
|
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) |
|
|
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) |
|
|
self.act_fn = ACT2FN[config.hidden_act] |
|
|
|
|
|
def forward(self, x): |
|
|
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) |
|
|
return down_proj |
|
|
|
|
|
|
|
|
def rotate_half(x): |
|
|
"""Rotates half the hidden dims of the input.""" |
|
|
x1 = x[..., : x.shape[-1] // 2] |
|
|
x2 = x[..., x.shape[-1] // 2 :] |
|
|
return torch.cat((-x2, x1), dim=-1) |
|
|
|
|
|
|
|
|
def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): |
|
|
"""Applies Rotary Position Embedding to the query and key tensors. |
|
|
|
|
|
Args: |
|
|
q (`torch.Tensor`): The query tensor. |
|
|
k (`torch.Tensor`): The key tensor. |
|
|
cos (`torch.Tensor`): The cosine part of the rotary embedding. |
|
|
sin (`torch.Tensor`): The sine part of the rotary embedding. |
|
|
position_ids (`torch.Tensor`, *optional*): |
|
|
Deprecated and unused. |
|
|
unsqueeze_dim (`int`, *optional*, defaults to 1): |
|
|
The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and |
|
|
sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note |
|
|
that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and |
|
|
k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes |
|
|
cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have |
|
|
the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. |
|
|
Returns: |
|
|
`tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. |
|
|
""" |
|
|
cos = cos.unsqueeze(unsqueeze_dim) |
|
|
sin = sin.unsqueeze(unsqueeze_dim) |
|
|
q_embed = (q * cos) + (rotate_half(q) * sin) |
|
|
k_embed = (k * cos) + (rotate_half(k) * sin) |
|
|
return q_embed, k_embed |
|
|
|
|
|
|
|
|
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
|
""" |
|
|
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, |
|
|
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) |
|
|
""" |
|
|
batch, num_key_value_heads, slen, head_dim = hidden_states.shape |
|
|
if n_rep == 1: |
|
|
return hidden_states |
|
|
hidden_states = hidden_states[:, :, None, :, :].expand( |
|
|
batch, num_key_value_heads, n_rep, slen, head_dim |
|
|
) |
|
|
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) |
|
|
|
|
|
|
|
|
class IQuestLoopCoderCache(Cache): |
|
|
"""Cache implementation for IQuestLoopCoder that manages shared and local KV caches. |
|
|
|
|
|
- shared_key_cache/shared_value_cache: Stores KV from Loop 1 (global context) |
|
|
- local_key_cache/local_value_cache: Stores KV from Loop 2+ (local window, only window_size tokens) |
|
|
""" |
|
|
|
|
|
def __init__(self, window_size: int, num_layers: int, loop_num: int=2): |
|
|
|
|
|
self.window_size = window_size |
|
|
self.num_layers = num_layers |
|
|
self.loop_num = loop_num |
|
|
|
|
|
|
|
|
self.shared_key_cache: List[Optional[torch.Tensor]] = [None] * self.num_layers |
|
|
self.shared_value_cache: List[Optional[torch.Tensor]] = [None] * self.num_layers |
|
|
|
|
|
|
|
|
self.local_key_cache: List[Optional[torch.Tensor]] = [None] * (self.loop_num-1) * self.num_layers |
|
|
self.local_value_cache: List[Optional[torch.Tensor]] = [None] * (self.loop_num-1) * self.num_layers |
|
|
|
|
|
self.layers: List[Any] = [] |
|
|
self._seen_tokens = 0 |
|
|
|
|
|
def update_shared( |
|
|
self, |
|
|
key_states: torch.Tensor, |
|
|
value_states: torch.Tensor, |
|
|
layer_idx: int, |
|
|
cache_kwargs: Optional[dict] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Update shared cache (Loop 1 KV).""" |
|
|
|
|
|
loop_idx = cache_kwargs.get("loop_idx", 0) |
|
|
assert loop_idx == 0 |
|
|
if layer_idx < 0 or layer_idx >= self.num_layers: |
|
|
raise ValueError(f"layer_idx must be in [0, {self.num_layers}), got {layer_idx}") |
|
|
|
|
|
cached_key = self.shared_key_cache[layer_idx] |
|
|
cached_value = self.shared_value_cache[layer_idx] |
|
|
|
|
|
if cached_key is None: |
|
|
self.shared_key_cache[layer_idx] = key_states |
|
|
self.shared_value_cache[layer_idx] = value_states |
|
|
else: |
|
|
if ( |
|
|
key_states.shape[0] != cached_key.shape[0] |
|
|
or key_states.shape[1] != cached_key.shape[1] |
|
|
or key_states.shape[3] != cached_key.shape[3] |
|
|
): |
|
|
raise ValueError( |
|
|
"Cached and incoming key/value tensors must match on batch, head, and head_dim dimensions." |
|
|
) |
|
|
assert key_states.shape[2] == 1 |
|
|
assert value_states.shape[2] == 1 |
|
|
self.shared_key_cache[layer_idx] = torch.cat([cached_key, key_states], dim=2) |
|
|
self.shared_value_cache[layer_idx] = torch.cat([cached_value, value_states], dim=2) |
|
|
|
|
|
result_key = self.shared_key_cache[layer_idx] |
|
|
result_value = self.shared_value_cache[layer_idx] |
|
|
assert result_key is not None and result_value is not None |
|
|
|
|
|
|
|
|
self._seen_tokens = result_key.shape[2] |
|
|
return result_key, result_value |
|
|
|
|
|
def update_local( |
|
|
self, |
|
|
key_states: torch.Tensor, |
|
|
value_states: torch.Tensor, |
|
|
layer_idx: int, |
|
|
cache_kwargs: Optional[dict] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Update local cache (Loop 2+ KV) with sliding window management. |
|
|
|
|
|
Ensures the local cache always contains at most window_size tokens. |
|
|
Local cache only stores loop_idx > 0 (i.e., loop_idx = 1, 2, ...). |
|
|
For loop_idx = 1, cache_idx = layer_idx + 0 * num_layers = layer_idx (0 to num_layers-1) |
|
|
For loop_idx = 2, cache_idx = layer_idx + 1 * num_layers (num_layers to 2*num_layers-1) |
|
|
""" |
|
|
|
|
|
loop_idx = cache_kwargs.get("loop_idx", 0) |
|
|
assert loop_idx > 0, f"update_local should only be called for loop_idx > 0, got {loop_idx}" |
|
|
if layer_idx < 0 or layer_idx >= self.num_layers: |
|
|
raise ValueError(f"layer_idx must be in [0, {self.num_layers}), got {layer_idx}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache_idx = layer_idx + (loop_idx - 1) * self.num_layers |
|
|
|
|
|
|
|
|
max_cache_idx = (self.loop_num - 1) * self.num_layers |
|
|
if cache_idx >= max_cache_idx: |
|
|
raise IndexError( |
|
|
f"cache_idx {cache_idx} out of range. " |
|
|
f"loop_idx={loop_idx}, layer_idx={layer_idx}, " |
|
|
f"max_cache_idx={max_cache_idx - 1}" |
|
|
) |
|
|
cached_key = self.local_key_cache[cache_idx] |
|
|
cached_value = self.local_value_cache[cache_idx] |
|
|
|
|
|
if cached_key is None: |
|
|
|
|
|
|
|
|
seq_len = key_states.shape[2] |
|
|
if seq_len > self.window_size: |
|
|
|
|
|
start_idx = seq_len - self.window_size |
|
|
self.local_key_cache[cache_idx] = key_states[:, :, start_idx:, :] |
|
|
self.local_value_cache[cache_idx] = value_states[:, :, start_idx:, :] |
|
|
else: |
|
|
self.local_key_cache[cache_idx] = key_states |
|
|
self.local_value_cache[cache_idx] = value_states |
|
|
else: |
|
|
|
|
|
if ( |
|
|
key_states.shape[0] != cached_key.shape[0] |
|
|
or key_states.shape[1] != cached_key.shape[1] |
|
|
or key_states.shape[3] != cached_key.shape[3] |
|
|
): |
|
|
raise ValueError( |
|
|
"Cached and incoming key/value tensors must match on batch, head, and head_dim dimensions." |
|
|
) |
|
|
assert cached_value is not None |
|
|
assert key_states.shape[2] == 1 |
|
|
assert value_states.shape[2] == 1 |
|
|
|
|
|
new_key = torch.cat([cached_key, key_states], dim=2) |
|
|
new_value = torch.cat([cached_value, value_states], dim=2) |
|
|
|
|
|
|
|
|
total_len = new_key.shape[2] |
|
|
if total_len > self.window_size: |
|
|
|
|
|
self.local_key_cache[cache_idx] = new_key[:, :, -self.window_size:, :] |
|
|
self.local_value_cache[cache_idx] = new_value[:, :, -self.window_size:, :] |
|
|
else: |
|
|
self.local_key_cache[cache_idx] = new_key |
|
|
self.local_value_cache[cache_idx] = new_value |
|
|
|
|
|
result_key = self.local_key_cache[cache_idx] |
|
|
result_value = self.local_value_cache[cache_idx] |
|
|
assert result_key is not None and result_value is not None |
|
|
|
|
|
assert result_key.shape[2] <= self.window_size, f"Local cache size {result_key.shape[2]} exceeds window_size {self.window_size}" |
|
|
|
|
|
return result_key, result_value |
|
|
|
|
|
def get_shared(self, layer_idx: int|List[int]) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
|
"""Get shared cache for some layer.""" |
|
|
if isinstance(layer_idx, list): |
|
|
return [self.get_shared(layer_idx) for layer_idx in layer_idx] |
|
|
if layer_idx < 0 or layer_idx >= self.num_layers: |
|
|
raise ValueError(f"layer_idx must be in [0, {self.num_layers}), got {layer_idx}") |
|
|
return self.shared_key_cache[layer_idx], self.shared_value_cache[layer_idx] |
|
|
|
|
|
def get_local(self, layer_idx: int|List[int], loop_idx: int) -> Tuple[Optional[torch.Tensor], Optional[torch.Tensor]]: |
|
|
"""Get local cache for a layer.""" |
|
|
assert loop_idx > 0, f"get_local should only be called for loop_idx > 0, got {loop_idx}" |
|
|
if isinstance(layer_idx, list): |
|
|
return [self.get_local(layer_idx, loop_idx) for layer_idx in layer_idx] |
|
|
if layer_idx < 0 or layer_idx >= self.num_layers: |
|
|
raise ValueError(f"layer_idx must be in [0, {self.num_layers}), got {layer_idx}") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
cache_idx = layer_idx + (loop_idx - 1) * self.num_layers |
|
|
|
|
|
|
|
|
max_cache_idx = (self.loop_num - 1) * self.num_layers |
|
|
if cache_idx >= max_cache_idx: |
|
|
raise IndexError( |
|
|
f"cache_idx {cache_idx} out of range. " |
|
|
f"loop_idx={loop_idx}, layer_idx={layer_idx}, " |
|
|
f"max_cache_idx={max_cache_idx - 1}" |
|
|
) |
|
|
|
|
|
return self.local_key_cache[cache_idx], self.local_value_cache[cache_idx] |
|
|
|
|
|
def update( |
|
|
self, |
|
|
key_states: torch.Tensor, |
|
|
value_states: torch.Tensor, |
|
|
layer_idx: int, |
|
|
cache_kwargs: Optional[dict] = None, |
|
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
|
"""Default update method (for compatibility, updates shared cache).""" |
|
|
loop_idx = cache_kwargs.get("loop_idx", 0) |
|
|
assert loop_idx < self.loop_num |
|
|
if loop_idx == 0: |
|
|
return self.update_shared(key_states, value_states, layer_idx, cache_kwargs) |
|
|
else: |
|
|
return self.update_local(key_states, value_states, layer_idx, cache_kwargs) |
|
|
|
|
|
def get_seq_length(self, layer_idx: Optional[int] = 0) -> int: |
|
|
"""Get sequence length from shared cache.""" |
|
|
if layer_idx is None: |
|
|
layer_idx = 0 |
|
|
if layer_idx < 0 or layer_idx >= self.loop_num * self.num_layers: |
|
|
return 0 |
|
|
cached_key = self.shared_key_cache[layer_idx] |
|
|
if cached_key is None: |
|
|
return 0 |
|
|
return cached_key.shape[2] |
|
|
|
|
|
def get_max_length(self) -> Optional[int]: |
|
|
return None |
|
|
|
|
|
def get_usable_length( |
|
|
self, new_seq_length: int, layer_idx: Optional[int] = 0 |
|
|
) -> int: |
|
|
return self.get_seq_length(layer_idx) |
|
|
|
|
|
def reorder_cache(self, beam_idx: torch.LongTensor) -> None: |
|
|
|
|
|
raise NotImplementedError("Reorder cache for beam search is not implemented") |
|
|
"""Reorder cache for beam search. |
|
|
|
|
|
Reorders both shared cache (Loop 1) and local cache (Loop 2+) according to beam_idx. |
|
|
""" |
|
|
|
|
|
for layer_idx in range(self.num_layers): |
|
|
if self.shared_key_cache[layer_idx] is not None: |
|
|
device = self.shared_key_cache[layer_idx].device |
|
|
self.shared_key_cache[layer_idx] = self.shared_key_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
self.shared_value_cache[layer_idx] = self.shared_value_cache[layer_idx].index_select(0, beam_idx.to(device)) |
|
|
|
|
|
|
|
|
|
|
|
for cache_idx in range(len(self.local_key_cache)): |
|
|
if self.local_key_cache[cache_idx] is not None: |
|
|
device = self.local_key_cache[cache_idx].device |
|
|
self.local_key_cache[cache_idx] = self.local_key_cache[cache_idx].index_select(0, beam_idx.to(device)) |
|
|
self.local_value_cache[cache_idx] = self.local_value_cache[cache_idx].index_select(0, beam_idx.to(device)) |
|
|
|
|
|
@property |
|
|
def is_compileable(self) -> bool: |
|
|
return False |
|
|
|
|
|
def clear(self) -> None: |
|
|
"""Clear all caches.""" |
|
|
logger.debug("Clearing IQuestLoopCoderCache") |
|
|
self.shared_key_cache = [None] * self.num_layers |
|
|
self.shared_value_cache = [None] * self.num_layers |
|
|
self.local_key_cache = [None] * self.num_layers * (self.loop_num-1) |
|
|
self.local_value_cache = [None] * self.num_layers * (self.loop_num-1) |
|
|
self._seen_tokens = 0 |
|
|
|
|
|
|
|
|
def eager_attention_forward( |
|
|
module: nn.Module, |
|
|
query: torch.Tensor, |
|
|
key: torch.Tensor, |
|
|
value: torch.Tensor, |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
scaling: float, |
|
|
dropout: float = 0.0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
): |
|
|
key_states = repeat_kv(key, module.num_key_value_groups) |
|
|
value_states = repeat_kv(value, module.num_key_value_groups) |
|
|
|
|
|
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling |
|
|
if attention_mask is not None: |
|
|
causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] |
|
|
attn_weights = attn_weights + causal_mask |
|
|
|
|
|
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to( |
|
|
query.dtype |
|
|
) |
|
|
attn_weights = nn.functional.dropout( |
|
|
attn_weights, p=dropout, training=module.training |
|
|
) |
|
|
attn_output = torch.matmul(attn_weights, value_states) |
|
|
attn_output = attn_output.transpose(1, 2).contiguous() |
|
|
|
|
|
return attn_output, attn_weights |
|
|
|
|
|
class LoopGateProjection(nn.Module): |
|
|
"""Gate projection for mixed attention in Loop 2+. |
|
|
|
|
|
Computes: g = sigmoid(linear(Q)) for each head independently. |
|
|
This gate determines how much to use Loop1's KV (global) vs current loop's KV (local). |
|
|
""" |
|
|
|
|
|
def __init__(self, num_heads: int, head_dim: int): |
|
|
super().__init__() |
|
|
self.num_heads = num_heads |
|
|
self.head_dim = head_dim |
|
|
|
|
|
|
|
|
self.weight = nn.Parameter(torch.zeros(num_heads, head_dim)) |
|
|
self.bias = nn.Parameter(torch.zeros(num_heads)) |
|
|
|
|
|
def forward(self, query: torch.Tensor) -> torch.Tensor: |
|
|
"""Compute gate values from query tensor. |
|
|
|
|
|
Args: |
|
|
query: [batch, num_heads, seq_len, head_dim] |
|
|
|
|
|
Returns: |
|
|
gate: [batch, num_heads, seq_len, 1] |
|
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
gate_logits = torch.einsum('bhsd,hd->bhs', query, self.weight) |
|
|
gate_logits = gate_logits + self.bias[None, :, None] |
|
|
gate = torch.sigmoid(gate_logits) |
|
|
return gate.unsqueeze(-1) |
|
|
|
|
|
class IQuestLoopCoderAttention(nn.Module): |
|
|
"""Multi-headed attention from 'Attention Is All You Need' paper""" |
|
|
|
|
|
def __init__(self, config: IQuestLoopCoderConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.config = config |
|
|
assert layer_idx >= 0 and layer_idx < config.num_hidden_layers |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
self.head_dim = getattr( |
|
|
config, "head_dim", config.hidden_size // config.num_attention_heads |
|
|
) |
|
|
self.num_key_value_groups = ( |
|
|
config.num_attention_heads // config.num_key_value_heads |
|
|
) |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.attention_dropout = config.attention_dropout |
|
|
self.is_causal = True |
|
|
self.q_proj = nn.Linear( |
|
|
config.hidden_size, config.num_attention_heads * self.head_dim, bias=False |
|
|
) |
|
|
self.k_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False |
|
|
) |
|
|
self.v_proj = nn.Linear( |
|
|
config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False |
|
|
) |
|
|
self.o_proj = nn.Linear( |
|
|
config.num_attention_heads * self.head_dim, config.hidden_size, bias=False |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[Cache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
loop_idx: int = 0, |
|
|
gate_proj: Optional[LoopGateProjection] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs], |
|
|
) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
if loop_idx == 0: |
|
|
return self.forward_loop1(hidden_states, loop_idx, position_embeddings, attention_mask, past_key_value, cache_position, **kwargs) |
|
|
else: |
|
|
return self.forward_loop2(hidden_states, loop_idx, position_embeddings, attention_mask, past_key_value, cache_position, gate_proj, **kwargs) |
|
|
|
|
|
def forward_loop1( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
loop_idx: int, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[IQuestLoopCoderCache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs]) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states = apply_rotary_pos_emb( |
|
|
query_states, key_states, cos, sin |
|
|
) |
|
|
|
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "loop_idx": loop_idx} |
|
|
key_states, value_states = past_key_value.update( |
|
|
key_states, |
|
|
value_states, |
|
|
self.layer_idx, |
|
|
cache_kwargs, |
|
|
) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[ |
|
|
self.config._attn_implementation |
|
|
] |
|
|
|
|
|
attn_output, attn_weights = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states, |
|
|
value_states, |
|
|
attention_mask, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
attn_output = attn_output.reshape(*input_shape, -1).contiguous() |
|
|
attn_output = self.o_proj(attn_output) |
|
|
return attn_output, (attn_weights) |
|
|
|
|
|
|
|
|
def forward_loop2( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
loop_idx: int, |
|
|
position_embeddings: tuple[torch.Tensor, torch.Tensor], |
|
|
attention_mask: Optional[torch.Tensor], |
|
|
past_key_value: Optional[IQuestLoopCoderCache] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
gate_proj: Optional[LoopGateProjection] = None, |
|
|
**kwargs: Unpack[FlashAttentionKwargs]) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: |
|
|
|
|
|
input_shape = hidden_states.shape[:-1] |
|
|
hidden_shape = (*input_shape, -1, self.head_dim) |
|
|
|
|
|
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
key_states_local = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
value_states_local = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) |
|
|
|
|
|
cos, sin = position_embeddings |
|
|
query_states, key_states_local = apply_rotary_pos_emb( |
|
|
query_states, key_states_local, cos, sin |
|
|
) |
|
|
|
|
|
key_states_share, value_states_share = None, None |
|
|
if past_key_value is not None: |
|
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position, "loop_idx": loop_idx} |
|
|
key_states_share, value_states_share = past_key_value.get_shared(self.layer_idx) |
|
|
key_states_local, value_states_local = past_key_value.update( |
|
|
key_states_local, |
|
|
value_states_local, |
|
|
self.layer_idx, |
|
|
cache_kwargs, |
|
|
) |
|
|
|
|
|
attention_interface: Callable = eager_attention_forward |
|
|
if self.config._attn_implementation != "eager": |
|
|
attention_interface = ALL_ATTENTION_FUNCTIONS[ |
|
|
self.config._attn_implementation |
|
|
] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask_global = attention_mask |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
attention_mask_local = None |
|
|
if key_states_local is not None and value_states_local is not None: |
|
|
|
|
|
|
|
|
local_seq_len = key_states_local.shape[2] |
|
|
bsz = query_states.shape[0] |
|
|
q_len = query_states.shape[2] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
device = query_states.device |
|
|
dtype = query_states.dtype |
|
|
|
|
|
if attention_mask is not None: |
|
|
|
|
|
|
|
|
|
|
|
global_kv_len = attention_mask.shape[-1] |
|
|
|
|
|
if global_kv_len >= local_seq_len: |
|
|
|
|
|
|
|
|
attention_mask_local = attention_mask[..., -local_seq_len:] |
|
|
else: |
|
|
|
|
|
|
|
|
attention_mask_local = torch.triu( |
|
|
torch.ones((q_len, local_seq_len), device=device, dtype=dtype) * float("-inf"), |
|
|
diagonal=1 |
|
|
).unsqueeze(0).expand(bsz, -1, -1, -1) |
|
|
else: |
|
|
|
|
|
|
|
|
attention_mask_local = torch.triu( |
|
|
torch.ones((q_len, local_seq_len), device=device, dtype=dtype) * float("-inf"), |
|
|
diagonal=1 |
|
|
).unsqueeze(0).expand(bsz, -1, -1, -1) |
|
|
|
|
|
|
|
|
attn_output_global, attn_weights_global = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states_share, |
|
|
value_states_share, |
|
|
attention_mask_global, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
attn_output_local, attn_weights_local = attention_interface( |
|
|
self, |
|
|
query_states, |
|
|
key_states_local, |
|
|
value_states_local, |
|
|
attention_mask_local, |
|
|
dropout=0.0 if not self.training else self.attention_dropout, |
|
|
scaling=self.scaling, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q_len = query_states.shape[2] |
|
|
num_heads = query_states.shape[1] |
|
|
|
|
|
|
|
|
if attn_output_global.dim() == 4: |
|
|
|
|
|
if attn_output_global.shape[1] == q_len: |
|
|
|
|
|
attn_output_global = attn_output_global.transpose(1, 2) |
|
|
|
|
|
if attn_output_global.shape[2] > q_len: |
|
|
attn_output_global = attn_output_global[:, :, :q_len, :] |
|
|
elif attn_output_global.shape[2] < q_len: |
|
|
|
|
|
raise ValueError(f"attn_output_global seq_len {attn_output_global.shape[2]} < q_len {q_len}") |
|
|
|
|
|
|
|
|
if attn_output_local.dim() == 4: |
|
|
|
|
|
if attn_output_local.shape[1] == q_len: |
|
|
|
|
|
attn_output_local = attn_output_local.transpose(1, 2) |
|
|
|
|
|
if attn_output_local.shape[2] > q_len: |
|
|
attn_output_local = attn_output_local[:, :, :q_len, :] |
|
|
elif attn_output_local.shape[2] < q_len: |
|
|
|
|
|
raise ValueError(f"attn_output_local seq_len {attn_output_local.shape[2]} < q_len {q_len}") |
|
|
|
|
|
assert gate_proj is not None |
|
|
gate = gate_proj(query_states) |
|
|
mixed_attn_output = attn_output_local * (1 - gate) + attn_output_global * gate |
|
|
|
|
|
mixed_attn_output = mixed_attn_output.reshape(*input_shape, -1).contiguous() |
|
|
mixed_attn_output = self.o_proj(mixed_attn_output) |
|
|
return mixed_attn_output, (attn_weights_global, attn_weights_local, attn_output_global, attn_output_local, gate) |
|
|
|
|
|
|
|
|
@use_kernel_forward_from_hub("RMSNorm") |
|
|
class IQuestLoopCoderRMSNorm(nn.Module): |
|
|
def __init__(self, hidden_size, eps=1e-6): |
|
|
""" |
|
|
IQuestLoopCoderRMSNorm is equivalent to T5LayerNorm |
|
|
""" |
|
|
super().__init__() |
|
|
self.weight = nn.Parameter(torch.ones(hidden_size)) |
|
|
self.variance_epsilon = eps |
|
|
|
|
|
def forward(self, hidden_states): |
|
|
input_dtype = hidden_states.dtype |
|
|
hidden_states = hidden_states.to(torch.float32) |
|
|
variance = hidden_states.pow(2).mean(-1, keepdim=True) |
|
|
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) |
|
|
return self.weight * hidden_states.to(input_dtype) |
|
|
|
|
|
def extra_repr(self): |
|
|
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" |
|
|
|
|
|
|
|
|
class IQuestLoopCoderDecoderLayer(GradientCheckpointingLayer): |
|
|
def __init__(self, config: IQuestLoopCoderConfig, layer_idx: int): |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
self.self_attn = IQuestLoopCoderAttention(config=config, layer_idx=layer_idx) |
|
|
|
|
|
self.mlp = IQuestLoopCoderMLP(config) |
|
|
self.input_layernorm = IQuestLoopCoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.post_attention_layernorm = IQuestLoopCoderRMSNorm( |
|
|
config.hidden_size, eps=config.rms_norm_eps |
|
|
) |
|
|
self.layer_idx = layer_idx |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
loop_idx: int = 0, |
|
|
gate_proj: Optional[LoopGateProjection] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_value: Optional[Cache] = None, |
|
|
use_cache: Optional[bool] = False, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
position_embeddings: Optional[ |
|
|
tuple[torch.Tensor, torch.Tensor] |
|
|
] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> tuple[torch.Tensor]: |
|
|
residual = hidden_states |
|
|
hidden_states = self.input_layernorm(hidden_states) |
|
|
|
|
|
hidden_states, _ = self.self_attn( |
|
|
hidden_states=hidden_states, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_value, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
loop_idx=loop_idx, |
|
|
position_embeddings=position_embeddings, |
|
|
gate_proj=gate_proj if loop_idx > 0 else None, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
hidden_states = residual + hidden_states |
|
|
|
|
|
|
|
|
residual = hidden_states |
|
|
hidden_states = self.post_attention_layernorm(hidden_states) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
hidden_states = residual + hidden_states |
|
|
return hidden_states |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class IQuestLoopCoderPreTrainedModel(PreTrainedModel): |
|
|
config: IQuestLoopCoderConfig |
|
|
base_model_prefix = "model" |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = ["IQuestLoopCoderDecoderLayer"] |
|
|
_skip_keys_device_placement = ["past_key_values"] |
|
|
_supports_flash_attn = True |
|
|
_supports_sdpa = True |
|
|
_supports_flex_attn = True |
|
|
|
|
|
_can_compile_fullgraph = True |
|
|
_supports_attention_backend = True |
|
|
_can_record_outputs = { |
|
|
"hidden_states": IQuestLoopCoderDecoderLayer, |
|
|
"attentions": IQuestLoopCoderAttention, |
|
|
} |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _init_weights(self, module: nn.Module) -> None: |
|
|
return |
|
|
|
|
|
|
|
|
class IQuestLoopCoderRotaryEmbedding(nn.Module): |
|
|
def __init__(self, config: IQuestLoopCoderConfig, device=None): |
|
|
super().__init__() |
|
|
|
|
|
if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): |
|
|
self.rope_type = config.rope_scaling.get( |
|
|
"rope_type", config.rope_scaling.get("type") |
|
|
) |
|
|
else: |
|
|
self.rope_type = "default" |
|
|
self.max_seq_len_cached = config.max_position_embeddings |
|
|
self.original_max_seq_len = config.max_position_embeddings |
|
|
|
|
|
self.config = config |
|
|
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] |
|
|
|
|
|
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) |
|
|
self.register_buffer("inv_freq", inv_freq, persistent=False) |
|
|
self.original_inv_freq = self.inv_freq |
|
|
|
|
|
@torch.no_grad() |
|
|
@dynamic_rope_update |
|
|
def forward(self, x, position_ids): |
|
|
inv_freq_expanded = ( |
|
|
self.inv_freq[None, :, None] |
|
|
.float() |
|
|
.expand(position_ids.shape[0], -1, 1) |
|
|
.to(x.device) |
|
|
) |
|
|
position_ids_expanded = position_ids[:, None, :].float() |
|
|
|
|
|
device_type = ( |
|
|
x.device.type |
|
|
if isinstance(x.device.type, str) and x.device.type != "mps" |
|
|
else "cpu" |
|
|
) |
|
|
with torch.autocast(device_type=device_type, enabled=False): |
|
|
freqs = ( |
|
|
inv_freq_expanded.float() @ position_ids_expanded.float() |
|
|
).transpose(1, 2) |
|
|
emb = torch.cat((freqs, freqs), dim=-1) |
|
|
cos = emb.cos() * self.attention_scaling |
|
|
sin = emb.sin() * self.attention_scaling |
|
|
|
|
|
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class IQuestLoopCoderModel(IQuestLoopCoderPreTrainedModel): |
|
|
def __init__(self, config: IQuestLoopCoderConfig): |
|
|
super().__init__(config) |
|
|
self.padding_idx = config.pad_token_id |
|
|
self.vocab_size = config.vocab_size |
|
|
|
|
|
self.embed_tokens = nn.Embedding( |
|
|
config.vocab_size, config.hidden_size, self.padding_idx |
|
|
) |
|
|
self.layers = nn.ModuleList( |
|
|
[ |
|
|
IQuestLoopCoderDecoderLayer(config, layer_idx) |
|
|
for layer_idx in range(config.num_hidden_layers) |
|
|
] |
|
|
) |
|
|
self.norm = IQuestLoopCoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.rotary_emb = IQuestLoopCoderRotaryEmbedding(config=config) |
|
|
self.gradient_checkpointing = False |
|
|
self.loop_num = getattr(self.config, "loop_num", 2) |
|
|
self.loop_window_size = getattr(self.config, "loop_window_size", 64) |
|
|
|
|
|
|
|
|
self.gate_projections = nn.ModuleList([ |
|
|
LoopGateProjection(config.num_attention_heads, config.head_dim) |
|
|
for _ in range(config.num_hidden_layers) |
|
|
]) |
|
|
|
|
|
|
|
|
self.post_init() |
|
|
|
|
|
@check_model_inputs |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> BaseModelOutputWithPast: |
|
|
|
|
|
if (input_ids is None) ^ (inputs_embeds is not None): |
|
|
raise ValueError( |
|
|
"You must specify exactly one of input_ids or inputs_embeds" |
|
|
) |
|
|
|
|
|
if inputs_embeds is None: |
|
|
inputs_embeds = self.embed_tokens(input_ids) |
|
|
|
|
|
if use_cache is None: |
|
|
use_cache = self.config.use_cache |
|
|
|
|
|
if use_cache: |
|
|
if needs_iquestloopcoder_cache(past_key_values): |
|
|
past_key_values = IQuestLoopCoderCache(self.loop_window_size, self.config.num_hidden_layers, self.loop_num) |
|
|
|
|
|
if cache_position is None: |
|
|
past_seen_tokens = ( |
|
|
past_key_values.get_seq_length() if past_key_values is not None else 0 |
|
|
) |
|
|
cache_position = torch.arange( |
|
|
past_seen_tokens, |
|
|
past_seen_tokens + inputs_embeds.shape[1], |
|
|
device=inputs_embeds.device, |
|
|
) |
|
|
|
|
|
if position_ids is None: |
|
|
position_ids = cache_position.unsqueeze(0) |
|
|
|
|
|
|
|
|
if not isinstance(causal_mask_mapping := attention_mask, dict): |
|
|
|
|
|
mask_kwargs = { |
|
|
"config": self.config, |
|
|
"input_embeds": inputs_embeds, |
|
|
"attention_mask": attention_mask, |
|
|
"cache_position": cache_position, |
|
|
"past_key_values": past_key_values, |
|
|
"position_ids": position_ids, |
|
|
} |
|
|
|
|
|
|
|
|
full_attention_mask = create_causal_mask(**mask_kwargs) |
|
|
causal_mask_mapping = { |
|
|
"full_attention": full_attention_mask, |
|
|
} |
|
|
|
|
|
hidden_states = inputs_embeds |
|
|
|
|
|
|
|
|
position_embeddings = self.rotary_emb(hidden_states, position_ids) |
|
|
hidden_states_list = [] |
|
|
|
|
|
for loop_idx in range(self.loop_num): |
|
|
|
|
|
|
|
|
|
|
|
loop_attention_mask = causal_mask_mapping["full_attention"] |
|
|
|
|
|
for layer_idx, decoder_layer in enumerate(self.layers[: self.config.num_hidden_layers]): |
|
|
hidden_states = decoder_layer( |
|
|
hidden_states, |
|
|
loop_idx, |
|
|
gate_proj=self.gate_projections[layer_idx] if loop_idx > 0 else None, |
|
|
attention_mask=loop_attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_value=past_key_values, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
position_embeddings=position_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
if loop_idx < self.loop_num - 1: |
|
|
hidden_states_list.append(hidden_states) |
|
|
|
|
|
hidden_states = self.norm(hidden_states) |
|
|
hidden_states_list.append(hidden_states) |
|
|
|
|
|
return ( |
|
|
BaseModelOutputWithPast( |
|
|
last_hidden_state=hidden_states, |
|
|
past_key_values=past_key_values if use_cache else None, |
|
|
), |
|
|
hidden_states_list, |
|
|
) |
|
|
|
|
|
|
|
|
@auto_docstring |
|
|
class IQuestLoopCoderForCausalLM(IQuestLoopCoderPreTrainedModel, GenerationMixin): |
|
|
_tied_weights_keys = ["lm_head.weight"] |
|
|
_tp_plan = {"lm_head": "colwise_rep"} |
|
|
_pp_plan = {"lm_head": (["hidden_states"], ["logits"])} |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
self.model = IQuestLoopCoderModel(config) |
|
|
self.vocab_size = config.vocab_size |
|
|
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) |
|
|
|
|
|
|
|
|
self.chunk_size = getattr(config, "chunk_size", 2) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.model.embed_tokens |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
self.model.embed_tokens = value |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.lm_head |
|
|
|
|
|
def set_output_embeddings(self, new_embeddings): |
|
|
self.lm_head = new_embeddings |
|
|
|
|
|
def set_decoder(self, decoder): |
|
|
self.model = decoder |
|
|
|
|
|
def get_decoder(self): |
|
|
return self.model |
|
|
|
|
|
@can_return_tuple |
|
|
@auto_docstring |
|
|
def forward( |
|
|
self, |
|
|
input_ids: Optional[torch.LongTensor] = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[Cache] = None, |
|
|
inputs_embeds: Optional[torch.FloatTensor] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
cache_position: Optional[torch.LongTensor] = None, |
|
|
logits_to_keep: Union[int, torch.Tensor] = 0, |
|
|
**kwargs: Unpack[TransformersKwargs], |
|
|
) -> CausalLMOutputWithPast: |
|
|
|
|
|
outputs, hidden_states_list = self.model( |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
inputs_embeds=inputs_embeds, |
|
|
use_cache=use_cache, |
|
|
cache_position=cache_position, |
|
|
**kwargs, |
|
|
) |
|
|
slice_indices = ( |
|
|
slice(-logits_to_keep, None) |
|
|
if isinstance(logits_to_keep, int) |
|
|
else logits_to_keep |
|
|
) |
|
|
|
|
|
def _select_token_positions(tensor: torch.Tensor) -> torch.Tensor: |
|
|
if isinstance(slice_indices, slice): |
|
|
return tensor[:, slice_indices, ...] |
|
|
if isinstance(slice_indices, torch.Tensor): |
|
|
return tensor.index_select(1, slice_indices.to(tensor.device)) |
|
|
raise TypeError( |
|
|
f"Unsupported index type for logits_to_keep: {type(slice_indices)}" |
|
|
) |
|
|
|
|
|
stacked_exit_pdf = None |
|
|
|
|
|
expected_logits_cache: Optional[torch.Tensor] = None |
|
|
|
|
|
def compute_expected_logits() -> Optional[torch.Tensor]: |
|
|
nonlocal expected_logits_cache |
|
|
if expected_logits_cache is not None: |
|
|
return expected_logits_cache |
|
|
if stacked_exit_pdf is None or not hidden_states_list: |
|
|
return None |
|
|
token_exit_pdf = _select_token_positions(stacked_exit_pdf) |
|
|
expected_logits = None |
|
|
for step_idx, hidden in enumerate(hidden_states_list): |
|
|
step_hidden = _select_token_positions(hidden) |
|
|
step_logits = self.lm_head(step_hidden) |
|
|
weight = ( |
|
|
token_exit_pdf[..., step_idx].unsqueeze(-1).to(step_logits.dtype) |
|
|
) |
|
|
expected_logits = ( |
|
|
step_logits * weight |
|
|
if expected_logits is None |
|
|
else expected_logits + step_logits * weight |
|
|
) |
|
|
expected_logits_cache = expected_logits |
|
|
return expected_logits_cache |
|
|
|
|
|
logits: Optional[torch.Tensor] = None |
|
|
loss: Optional[torch.Tensor] = None |
|
|
|
|
|
hidden_states = outputs.last_hidden_state |
|
|
logits = self.lm_head(hidden_states) |
|
|
logits = logits.float() |
|
|
|
|
|
if labels is not None: |
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
loss_fct = nn.CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
result = CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
return result |
|
|
|