Update README.md
Browse files
README.md
CHANGED
|
@@ -6,7 +6,67 @@ base_model:
|
|
| 6 |
|
| 7 |
## Model Details
|
| 8 |
|
| 9 |
-
This model is a
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
|
| 11 |
## Generate the Model
|
| 12 |
|
|
|
|
| 6 |
|
| 7 |
## Model Details
|
| 8 |
|
| 9 |
+
This model is a int8 model with group_size 128 and symmetric quantization of deepseek-ai/DeepSeek-V3.1-Terminus generated by intel/auto-round via RTN(no algorithm tuning). Please refer to Section Generate the model for more details. Please follow the license of the original model.
|
| 10 |
+
|
| 11 |
+
## Model Version(s)
|
| 12 |
+
|
| 13 |
+
The model is quantized with auto-round v0.8.0
|
| 14 |
+
|
| 15 |
+
## How To Use
|
| 16 |
+
|
| 17 |
+
### INT8 Inference
|
| 18 |
+
|
| 19 |
+
```python
|
| 20 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 21 |
+
import transformers
|
| 22 |
+
import torch
|
| 23 |
+
quantized_model_dir = "Intel/DeepSeek-V3.1-Terminus-int8-AutoRound"
|
| 24 |
+
|
| 25 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 26 |
+
quantized_model_dir,
|
| 27 |
+
torch_dtype=torch.bfloat16,
|
| 28 |
+
device_map="auto",
|
| 29 |
+
)
|
| 30 |
+
tokenizer = AutoTokenizer.from_pretrained(quantized_model_dir, trust_remote_code=True)
|
| 31 |
+
prompts = [
|
| 32 |
+
"9.11和9.8哪个数字大",
|
| 33 |
+
"strawberry中有几个r?",
|
| 34 |
+
"There is a girl who likes adventure,",
|
| 35 |
+
"Please give a brief introduction of DeepSeek company.",
|
| 36 |
+
]
|
| 37 |
+
|
| 38 |
+
texts=[]
|
| 39 |
+
for prompt in prompts:
|
| 40 |
+
messages = [
|
| 41 |
+
{"role": "system", "content": "You are a helpful assistant."},
|
| 42 |
+
{"role": "user", "content": prompt}
|
| 43 |
+
]
|
| 44 |
+
text = tokenizer.apply_chat_template(
|
| 45 |
+
messages,
|
| 46 |
+
tokenize=False,
|
| 47 |
+
add_generation_prompt=True
|
| 48 |
+
)
|
| 49 |
+
texts.append(text)
|
| 50 |
+
inputs = tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
| 51 |
+
|
| 52 |
+
outputs = model.generate(
|
| 53 |
+
input_ids=inputs["input_ids"].to(model.device),
|
| 54 |
+
attention_mask=inputs["attention_mask"].to(model.device),
|
| 55 |
+
max_length=200, ##change this to align with the official usage
|
| 56 |
+
num_return_sequences=1,
|
| 57 |
+
do_sample=False ##change this to align with the official usage
|
| 58 |
+
)
|
| 59 |
+
generated_ids = [
|
| 60 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(inputs["input_ids"], outputs)
|
| 61 |
+
]
|
| 62 |
+
decoded_outputs = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)
|
| 63 |
+
|
| 64 |
+
for i, prompt in enumerate(prompts):
|
| 65 |
+
input_id = inputs
|
| 66 |
+
print(f"Prompt: {prompt}")
|
| 67 |
+
print(f"Generated: {decoded_outputs[i]}")
|
| 68 |
+
print("-"*50)
|
| 69 |
+
```
|
| 70 |
|
| 71 |
## Generate the Model
|
| 72 |
|