Update README.md
Browse files
README.md
CHANGED
|
@@ -1,172 +1,63 @@
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
-
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
## Model Details
|
| 13 |
-
|
| 14 |
-
### Model Description
|
| 15 |
-
|
| 16 |
-
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
-
|
| 18 |
-
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
|
| 19 |
-
|
| 20 |
-
- **Developed by:** [More Information Needed]
|
| 21 |
-
- **Funded by [optional]:** [More Information Needed]
|
| 22 |
-
- **Shared by [optional]:** [More Information Needed]
|
| 23 |
-
- **Model type:** [More Information Needed]
|
| 24 |
-
- **Language(s) (NLP):** [More Information Needed]
|
| 25 |
-
- **License:** [More Information Needed]
|
| 26 |
-
- **Finetuned from model [optional]:** [More Information Needed]
|
| 27 |
-
|
| 28 |
-
### Model Sources [optional]
|
| 29 |
-
|
| 30 |
-
<!-- Provide the basic links for the model. -->
|
| 31 |
-
|
| 32 |
-
- **Repository:** [More Information Needed]
|
| 33 |
- **Paper [optional]:** [More Information Needed]
|
| 34 |
-
- **Demo [optional]:** [More Information Needed]
|
| 35 |
-
|
| 36 |
-
## Uses
|
| 37 |
-
|
| 38 |
-
<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
|
| 39 |
-
|
| 40 |
-
### Direct Use
|
| 41 |
-
|
| 42 |
-
<!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
|
| 43 |
-
|
| 44 |
-
[More Information Needed]
|
| 45 |
-
|
| 46 |
-
### Downstream Use [optional]
|
| 47 |
-
|
| 48 |
-
<!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
|
| 49 |
-
|
| 50 |
-
[More Information Needed]
|
| 51 |
|
| 52 |
-
### Out-of-Scope Use
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
[More Information Needed]
|
| 57 |
-
|
| 58 |
-
## Bias, Risks, and Limitations
|
| 59 |
-
|
| 60 |
-
<!-- This section is meant to convey both technical and sociotechnical limitations. -->
|
| 61 |
-
|
| 62 |
-
[More Information Needed]
|
| 63 |
-
|
| 64 |
-
### Recommendations
|
| 65 |
-
|
| 66 |
-
<!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
|
| 67 |
-
|
| 68 |
-
Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
|
| 69 |
-
|
| 70 |
-
## How to Get Started with the Model
|
| 71 |
-
|
| 72 |
-
Use the code below to get started with the model.
|
| 73 |
-
|
| 74 |
-
[More Information Needed]
|
| 75 |
-
|
| 76 |
-
## Training Details
|
| 77 |
-
|
| 78 |
-
### Training Data
|
| 79 |
-
|
| 80 |
-
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
-
|
| 82 |
-
[More Information Needed]
|
| 83 |
-
|
| 84 |
-
### Training Procedure
|
| 85 |
-
|
| 86 |
-
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 87 |
-
|
| 88 |
-
#### Preprocessing [optional]
|
| 89 |
-
|
| 90 |
-
[More Information Needed]
|
| 91 |
|
|
|
|
| 92 |
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 96 |
-
|
| 97 |
-
#### Speeds, Sizes, Times [optional]
|
| 98 |
-
|
| 99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
| 100 |
-
|
| 101 |
-
[More Information Needed]
|
| 102 |
-
|
| 103 |
-
## Evaluation
|
| 104 |
-
|
| 105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 106 |
-
|
| 107 |
-
### Testing Data, Factors & Metrics
|
| 108 |
-
|
| 109 |
-
#### Testing Data
|
| 110 |
-
|
| 111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
-
|
| 113 |
-
[More Information Needed]
|
| 114 |
-
|
| 115 |
-
#### Factors
|
| 116 |
-
|
| 117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
| 118 |
-
|
| 119 |
-
[More Information Needed]
|
| 120 |
-
|
| 121 |
-
#### Metrics
|
| 122 |
-
|
| 123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
| 124 |
-
|
| 125 |
-
[More Information Needed]
|
| 126 |
-
|
| 127 |
-
### Results
|
| 128 |
-
|
| 129 |
-
[More Information Needed]
|
| 130 |
-
|
| 131 |
-
#### Summary
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
## Model Examination [optional]
|
| 136 |
-
|
| 137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
| 138 |
-
|
| 139 |
-
[More Information Needed]
|
| 140 |
-
|
| 141 |
-
## Environmental Impact
|
| 142 |
-
|
| 143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
| 144 |
-
|
| 145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
-
|
| 147 |
-
- **Hardware Type:** [More Information Needed]
|
| 148 |
-
- **Hours used:** [More Information Needed]
|
| 149 |
-
- **Cloud Provider:** [More Information Needed]
|
| 150 |
-
- **Compute Region:** [More Information Needed]
|
| 151 |
-
- **Carbon Emitted:** [More Information Needed]
|
| 152 |
-
|
| 153 |
-
## Technical Specifications [optional]
|
| 154 |
-
|
| 155 |
-
### Model Architecture and Objective
|
| 156 |
-
|
| 157 |
-
[More Information Needed]
|
| 158 |
-
|
| 159 |
-
### Compute Infrastructure
|
| 160 |
|
| 161 |
-
[More Information Needed]
|
| 162 |
|
| 163 |
-
|
| 164 |
|
| 165 |
-
[
|
| 166 |
|
| 167 |
-
#### Software
|
| 168 |
|
| 169 |
-
[More Information Needed]
|
| 170 |
|
| 171 |
## Citation [optional]
|
| 172 |
|
|
|
|
| 1 |
---
|
| 2 |
library_name: transformers
|
| 3 |
+
license: mit
|
| 4 |
+
datasets:
|
| 5 |
+
- lmms-lab/DocVQA
|
| 6 |
---
|
| 7 |
|
| 8 |
+
## 1 Introduction
|
| 9 |
+
DIVE-Doc is a VLM architecture built as a trade-off between end-to-end lightweight architectures and LVLMs for the DocVQA task.
|
| 10 |
+
Without relying on external tools such as OCR, it processes the inputs in an end-to-end way.
|
| 11 |
+
It takes an image document and a question as input and returns an answer. <br>
|
| 12 |
+
- **Repository:** [GitHub](https://github.com/JayRay5/DIVE-Doc)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
- **Paper [optional]:** [More Information Needed]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
|
|
|
| 15 |
|
| 16 |
+
## 2 Model Summary
|
| 17 |
+
DIVE-Doc is built as a trade-off between end-to-end lightweight architectures and LVLMs.
|
| 18 |
+
Where the first category has both a lightweight visual encoder and a language decoder, and LVLMs have both a large visual encoder and a large decoder,
|
| 19 |
+
DIVE-Doc contains a small visual encoder in combination with a large decoder in order to balance model size and performance.
|
| 20 |
+
It is built by distilling the [SigLIP-400m](https://arxiv.org/abs/2303.15343) visual encoder of [PaliGEMMA](https://arxiv.org/abs/2407.07726) into a small hierarchical [Swin transformer](https://openaccess.thecvf.com/content/ICCV2021/html/Liu_Swin_Transformer_Hierarchical_Vision_Transformer_Using_Shifted_Windows_ICCV_2021_paper) initialized with the weights of [Donut](https://link.springer.com/chapter/10.1007/978-3-031-19815-1_29), while reusing the original [GEMMA](https://arxiv.org/abs/2403.08295) decoder.
|
| 21 |
+
This enables DIVE‑Doc to reduce its visual encoder’s parameter count by 80%.
|
| 22 |
+
Moreover, the model is finetuned using LoRA adapters, which have been merged into the base model using [merge_and_unload](https://huggingface.co/docs/peft/main/en/package_reference/lora#peft.LoraModel.merge_and_unload).
|
| 23 |
+
Trained on the [DocVQA dataset](https://openaccess.thecvf.com/content/WACV2021/html/Mathew_DocVQA_A_Dataset_for_VQA_on_Document_Images_WACV_2021_paper.html) for both the distillation and finetuning steps, this strategy allows DIVE-Doc to be competitive with LVLMs while outperforming ligthweight architectures.
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
## 3 Quick Start
|
| 27 |
+
|
| 28 |
+
### Installation
|
| 29 |
+
```bash
|
| 30 |
+
git clone https://github.com/JayRay5/DIVE-Doc.git
|
| 31 |
+
cd DIVE-Doc
|
| 32 |
+
conda create -n dive-doc-env python=3.11.5
|
| 33 |
+
conda activate dive-doc-env
|
| 34 |
+
pip install -r requirements.txt
|
| 35 |
+
```
|
| 36 |
+
### Inference example using the model repository and gradio
|
| 37 |
+
In app.py, modify the path variable to "JayRay5/DIVE-Doc-ARD-LRes":
|
| 38 |
+
```bash
|
| 39 |
+
if __name__ == "__main__":
|
| 40 |
+
path = "JayRay5/DIVE-Doc-ARD-LRes"
|
| 41 |
+
app(path)
|
| 42 |
+
```
|
| 43 |
+
Then run:
|
| 44 |
+
```bash
|
| 45 |
+
python app.py
|
| 46 |
+
```
|
| 47 |
+
This will start a [gradio](https://www.gradio.app/) web interface where you can use the model.
|
| 48 |
+
## Notification
|
| 49 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
+
### Direct Use
|
| 52 |
|
| 53 |
+
This model is designed to answer a question from a single-page image document and is mostly trained on industrial documents [DocVQA dataset](https://openaccess.thecvf.com/content/WACV2021/html/Mathew_DocVQA_A_Dataset_for_VQA_on_Document_Images_WACV_2021_paper.html).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
|
|
|
| 55 |
|
| 56 |
+
### Downstream Use
|
| 57 |
|
| 58 |
+
This model can be finetuned on other DocVQA datasets such as [InfoGraphVQA](https://openaccess.thecvf.com/content/WACV2022/html/Mathew_InfographicVQA_WACV_2022_paper.html) to improve its performance on infographic documents.
|
| 59 |
|
|
|
|
| 60 |
|
|
|
|
| 61 |
|
| 62 |
## Citation [optional]
|
| 63 |
|