|
|
""" |
|
|
vLLM-compatible implementation of KORMo MoE |
|
|
|
|
|
This file should be placed in: /usr/local/lib/python3.10/dist-packages/vllm/model_executor/models/kormo_moe.py |
|
|
|
|
|
Usage: |
|
|
from vllm import LLM |
|
|
|
|
|
llm = LLM( |
|
|
model="/path/to/kormo_moe_model", |
|
|
trust_remote_code=False, # Not needed with this implementation |
|
|
dtype="float16", |
|
|
) |
|
|
""" |
|
|
|
|
|
from collections.abc import Iterable |
|
|
from typing import Any, Optional, Union |
|
|
|
|
|
import torch |
|
|
import torch.nn.functional as F |
|
|
from torch import nn |
|
|
|
|
|
from vllm.attention import Attention |
|
|
from vllm.compilation.decorators import support_torch_compile |
|
|
from vllm.config import CacheConfig, VllmConfig |
|
|
from vllm.distributed import get_pp_group, get_tensor_model_parallel_world_size |
|
|
from vllm.logger import init_logger |
|
|
from vllm.model_executor.layers.activation import SiluAndMul |
|
|
from vllm.model_executor.layers.fused_moe import FusedMoE |
|
|
from vllm.model_executor.layers.layernorm import RMSNorm |
|
|
from vllm.model_executor.layers.linear import ( |
|
|
MergedColumnParallelLinear, |
|
|
QKVParallelLinear, |
|
|
ReplicatedLinear, |
|
|
RowParallelLinear, |
|
|
) |
|
|
from vllm.model_executor.layers.logits_processor import LogitsProcessor |
|
|
from vllm.model_executor.layers.quantization import QuantizationConfig |
|
|
from vllm.model_executor.layers.rotary_embedding import get_rope |
|
|
from vllm.model_executor.layers.vocab_parallel_embedding import ( |
|
|
ParallelLMHead, |
|
|
VocabParallelEmbedding, |
|
|
) |
|
|
from vllm.model_executor.model_loader.weight_utils import default_weight_loader |
|
|
from vllm.model_executor.sampling_metadata import SamplingMetadata |
|
|
from vllm.sequence import IntermediateTensors |
|
|
|
|
|
try: |
|
|
from transformers import PretrainedConfig |
|
|
except ImportError: |
|
|
|
|
|
PretrainedConfig = object |
|
|
|
|
|
from .interfaces import SupportsLoRA, SupportsPP |
|
|
from .utils import ( |
|
|
AutoWeightsLoader, |
|
|
extract_layer_index, |
|
|
is_pp_missing_parameter, |
|
|
make_empty_intermediate_tensors_factory, |
|
|
make_layers, |
|
|
maybe_prefix, |
|
|
) |
|
|
|
|
|
logger = init_logger(__name__) |
|
|
|
|
|
|
|
|
class KORMoMoeConfig(PretrainedConfig): |
|
|
"""Configuration class for KORMo MoE""" |
|
|
|
|
|
model_type = "kormo_moe" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
vocab_size=112576, |
|
|
hidden_size=6144, |
|
|
intermediate_size=21504, |
|
|
num_hidden_layers=48, |
|
|
num_attention_heads=40, |
|
|
num_key_value_heads=8, |
|
|
hidden_act="silu", |
|
|
max_position_embeddings=131072, |
|
|
initializer_range=0.02, |
|
|
rms_norm_eps=1e-05, |
|
|
use_cache=True, |
|
|
pad_token_id=None, |
|
|
bos_token_id=0, |
|
|
eos_token_id=1, |
|
|
tie_word_embeddings=False, |
|
|
rope_theta=500000.0, |
|
|
attention_dropout=0.0, |
|
|
rope_scaling=None, |
|
|
head_dim=128, |
|
|
|
|
|
num_experts=2, |
|
|
num_experts_per_tok=2, |
|
|
moe_intermediate_size=None, |
|
|
shared_expert_intermediate_size=None, |
|
|
norm_topk_prob=True, |
|
|
decoder_sparse_step=1, |
|
|
**kwargs, |
|
|
): |
|
|
self.vocab_size = vocab_size |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
self.hidden_size = hidden_size |
|
|
self.intermediate_size = intermediate_size |
|
|
self.num_hidden_layers = num_hidden_layers |
|
|
self.num_attention_heads = num_attention_heads |
|
|
self.num_key_value_heads = num_key_value_heads or num_attention_heads |
|
|
self.hidden_act = hidden_act |
|
|
self.initializer_range = initializer_range |
|
|
self.rms_norm_eps = rms_norm_eps |
|
|
self.use_cache = use_cache |
|
|
self.rope_theta = rope_theta |
|
|
self.rope_scaling = rope_scaling |
|
|
self.attention_dropout = attention_dropout |
|
|
self.head_dim = head_dim or (self.hidden_size // self.num_attention_heads) |
|
|
|
|
|
|
|
|
self.num_experts = num_experts |
|
|
self.num_experts_per_tok = num_experts_per_tok |
|
|
self.moe_intermediate_size = ( |
|
|
moe_intermediate_size if moe_intermediate_size is not None else intermediate_size |
|
|
) |
|
|
self.shared_expert_intermediate_size = shared_expert_intermediate_size |
|
|
self.norm_topk_prob = norm_topk_prob |
|
|
self.decoder_sparse_step = decoder_sparse_step |
|
|
|
|
|
super().__init__( |
|
|
pad_token_id=pad_token_id, |
|
|
bos_token_id=bos_token_id, |
|
|
eos_token_id=eos_token_id, |
|
|
tie_word_embeddings=tie_word_embeddings, |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
|
|
|
class KORMoMoEMLP(nn.Module): |
|
|
"""MLP for KORMo, used for shared expert""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
hidden_size: int, |
|
|
intermediate_size: int, |
|
|
hidden_act: str, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
reduce_results: bool = True, |
|
|
) -> None: |
|
|
super().__init__() |
|
|
self.gate_up_proj = MergedColumnParallelLinear( |
|
|
hidden_size, |
|
|
[intermediate_size] * 2, |
|
|
bias=False, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
self.down_proj = RowParallelLinear( |
|
|
intermediate_size, |
|
|
hidden_size, |
|
|
bias=False, |
|
|
quant_config=quant_config, |
|
|
reduce_results=reduce_results, |
|
|
) |
|
|
if hidden_act != "silu": |
|
|
raise ValueError(f"Unsupported activation: {hidden_act}. Only silu is supported.") |
|
|
self.act_fn = SiluAndMul() |
|
|
|
|
|
def forward(self, x): |
|
|
gate_up, _ = self.gate_up_proj(x) |
|
|
x = self.act_fn(gate_up) |
|
|
x, _ = self.down_proj(x) |
|
|
return x |
|
|
|
|
|
|
|
|
class KORMoSparseMoeBlock(nn.Module): |
|
|
"""KORMo Sparse MoE Block optimized for vLLM""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config: KORMoMoeConfig, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
): |
|
|
super().__init__() |
|
|
self.tp_size = get_tensor_model_parallel_world_size() |
|
|
|
|
|
if self.tp_size > config.num_experts: |
|
|
raise ValueError( |
|
|
f"Tensor parallel size {self.tp_size} is greater than " |
|
|
f"the number of experts {config.num_experts}." |
|
|
) |
|
|
|
|
|
|
|
|
self.experts = FusedMoE( |
|
|
num_experts=config.num_experts, |
|
|
top_k=config.num_experts_per_tok, |
|
|
hidden_size=config.hidden_size, |
|
|
intermediate_size=config.moe_intermediate_size, |
|
|
reduce_results=False, |
|
|
renormalize=config.norm_topk_prob, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.experts", |
|
|
) |
|
|
|
|
|
|
|
|
self.gate = ReplicatedLinear( |
|
|
config.hidden_size, |
|
|
config.num_experts, |
|
|
bias=False, |
|
|
quant_config=None, |
|
|
) |
|
|
|
|
|
|
|
|
if config.shared_expert_intermediate_size and config.shared_expert_intermediate_size > 0: |
|
|
self.shared_expert = KORMoMoEMLP( |
|
|
hidden_size=config.hidden_size, |
|
|
intermediate_size=config.shared_expert_intermediate_size, |
|
|
hidden_act=config.hidden_act, |
|
|
quant_config=quant_config, |
|
|
reduce_results=self.experts.must_reduce_shared_expert_outputs(), |
|
|
) |
|
|
self.shared_expert_gate = nn.Linear(config.hidden_size, 1, bias=False) |
|
|
else: |
|
|
self.shared_expert = None |
|
|
self.shared_expert_gate = None |
|
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: |
|
|
|
|
|
orig_shape = hidden_states.shape |
|
|
hidden_dim = hidden_states.shape[-1] |
|
|
hidden_states = hidden_states.view(-1, hidden_dim) |
|
|
|
|
|
|
|
|
shared_output = None |
|
|
if self.shared_expert is not None: |
|
|
shared_output = self.shared_expert(hidden_states) |
|
|
if self.shared_expert_gate is not None: |
|
|
shared_output = F.sigmoid( |
|
|
self.shared_expert_gate(hidden_states) |
|
|
) * shared_output |
|
|
|
|
|
|
|
|
router_logits, _ = self.gate(hidden_states) |
|
|
|
|
|
|
|
|
final_hidden_states = self.experts( |
|
|
hidden_states=hidden_states, |
|
|
router_logits=router_logits, |
|
|
) |
|
|
|
|
|
|
|
|
if shared_output is not None: |
|
|
final_hidden_states = final_hidden_states + shared_output |
|
|
|
|
|
|
|
|
if self.tp_size > 1: |
|
|
final_hidden_states = self.experts.maybe_all_reduce_tensor_model_parallel( |
|
|
final_hidden_states |
|
|
) |
|
|
|
|
|
return final_hidden_states.view(orig_shape) |
|
|
|
|
|
|
|
|
class KORMoMoeAttention(nn.Module): |
|
|
"""KORMo MoE Attention mechanism""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
hidden_size: int, |
|
|
num_heads: int, |
|
|
num_kv_heads: int, |
|
|
rope_theta: float = 500000, |
|
|
rope_scaling: Optional[dict[str, Any]] = None, |
|
|
max_position_embeddings: int = 131072, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
) -> None: |
|
|
super().__init__() |
|
|
self.hidden_size = hidden_size |
|
|
tp_size = get_tensor_model_parallel_world_size() |
|
|
|
|
|
self.total_num_heads = num_heads |
|
|
assert self.total_num_heads % tp_size == 0 |
|
|
self.num_heads = self.total_num_heads // tp_size |
|
|
|
|
|
self.total_num_kv_heads = num_kv_heads |
|
|
if self.total_num_kv_heads >= tp_size: |
|
|
assert self.total_num_kv_heads % tp_size == 0 |
|
|
else: |
|
|
assert tp_size % self.total_num_kv_heads == 0 |
|
|
self.num_kv_heads = max(1, self.total_num_kv_heads // tp_size) |
|
|
|
|
|
self.head_dim = hidden_size // self.total_num_heads |
|
|
self.q_size = self.num_heads * self.head_dim |
|
|
self.kv_size = self.num_kv_heads * self.head_dim |
|
|
self.scaling = self.head_dim**-0.5 |
|
|
self.rope_theta = rope_theta |
|
|
self.max_position_embeddings = max_position_embeddings |
|
|
|
|
|
self.qkv_proj = QKVParallelLinear( |
|
|
hidden_size, |
|
|
self.head_dim, |
|
|
self.total_num_heads, |
|
|
self.total_num_kv_heads, |
|
|
bias=False, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
self.o_proj = RowParallelLinear( |
|
|
self.total_num_heads * self.head_dim, |
|
|
hidden_size, |
|
|
bias=False, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
self.rotary_emb = get_rope( |
|
|
self.head_dim, |
|
|
rotary_dim=self.head_dim, |
|
|
max_position=max_position_embeddings, |
|
|
base=rope_theta, |
|
|
rope_scaling=rope_scaling, |
|
|
) |
|
|
|
|
|
self.attn = Attention( |
|
|
self.num_heads, |
|
|
self.head_dim, |
|
|
self.scaling, |
|
|
num_kv_heads=self.num_kv_heads, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.attn", |
|
|
) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
positions: torch.Tensor, |
|
|
hidden_states: torch.Tensor, |
|
|
) -> torch.Tensor: |
|
|
qkv, _ = self.qkv_proj(hidden_states) |
|
|
q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) |
|
|
q, k = self.rotary_emb(positions, q, k) |
|
|
attn_output = self.attn(q, k, v) |
|
|
output, _ = self.o_proj(attn_output) |
|
|
return output |
|
|
|
|
|
|
|
|
class KORMoMoeDecoderLayer(nn.Module): |
|
|
"""KORMo MoE Decoder Layer""" |
|
|
|
|
|
def __init__( |
|
|
self, |
|
|
config: KORMoMoeConfig, |
|
|
cache_config: Optional[CacheConfig] = None, |
|
|
quant_config: Optional[QuantizationConfig] = None, |
|
|
prefix: str = "", |
|
|
) -> None: |
|
|
super().__init__() |
|
|
self.hidden_size = config.hidden_size |
|
|
|
|
|
|
|
|
self.self_attn = KORMoMoeAttention( |
|
|
hidden_size=self.hidden_size, |
|
|
num_heads=config.num_attention_heads, |
|
|
num_kv_heads=config.num_key_value_heads, |
|
|
rope_theta=config.rope_theta, |
|
|
rope_scaling=config.rope_scaling, |
|
|
max_position_embeddings=config.max_position_embeddings, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.self_attn", |
|
|
) |
|
|
|
|
|
|
|
|
self.mlp = KORMoSparseMoeBlock( |
|
|
config=config, |
|
|
quant_config=quant_config, |
|
|
prefix=f"{prefix}.mlp", |
|
|
) |
|
|
|
|
|
|
|
|
self.pre_attention_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.pre_mlp_layernorm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
positions: torch.Tensor, |
|
|
hidden_states: torch.Tensor, |
|
|
residual: Optional[torch.Tensor], |
|
|
) -> torch.Tensor: |
|
|
|
|
|
if residual is None: |
|
|
residual = hidden_states |
|
|
hidden_states = self.pre_attention_layernorm(hidden_states) |
|
|
else: |
|
|
hidden_states, residual = self.pre_attention_layernorm(hidden_states, residual) |
|
|
|
|
|
hidden_states = self.self_attn( |
|
|
positions=positions, |
|
|
hidden_states=hidden_states, |
|
|
) |
|
|
|
|
|
|
|
|
hidden_states, residual = self.pre_mlp_layernorm(hidden_states, residual) |
|
|
hidden_states = self.mlp(hidden_states) |
|
|
|
|
|
return hidden_states, residual |
|
|
|
|
|
|
|
|
@support_torch_compile |
|
|
class KORMoMoeModel(nn.Module): |
|
|
"""KORMo MoE Model""" |
|
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
|
super().__init__() |
|
|
|
|
|
config = vllm_config.model_config.hf_config |
|
|
cache_config = vllm_config.cache_config |
|
|
quant_config = vllm_config.quant_config |
|
|
|
|
|
self.vocab_size = config.vocab_size |
|
|
self.config = config |
|
|
|
|
|
self.embed_tokens = VocabParallelEmbedding( |
|
|
config.vocab_size, |
|
|
config.hidden_size, |
|
|
) |
|
|
|
|
|
self.start_layer, self.end_layer, self.layers = make_layers( |
|
|
config.num_hidden_layers, |
|
|
lambda prefix: KORMoMoeDecoderLayer( |
|
|
config=config, |
|
|
cache_config=cache_config, |
|
|
quant_config=quant_config, |
|
|
prefix=prefix, |
|
|
), |
|
|
prefix=f"{prefix}.layers", |
|
|
) |
|
|
|
|
|
self.norm = RMSNorm(config.hidden_size, eps=config.rms_norm_eps) |
|
|
self.make_empty_intermediate_tensors = make_empty_intermediate_tensors_factory( |
|
|
["hidden_states", "residual"], config.hidden_size |
|
|
) |
|
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
|
return self.embed_tokens(input_ids) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
positions: torch.Tensor, |
|
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
|
if get_pp_group().is_first_rank: |
|
|
if inputs_embeds is not None: |
|
|
hidden_states = inputs_embeds |
|
|
else: |
|
|
hidden_states = self.get_input_embeddings(input_ids) |
|
|
residual = None |
|
|
else: |
|
|
assert intermediate_tensors is not None |
|
|
hidden_states = intermediate_tensors["hidden_states"] |
|
|
residual = intermediate_tensors["residual"] |
|
|
|
|
|
for layer in self.layers[self.start_layer : self.end_layer]: |
|
|
hidden_states, residual = layer(positions, hidden_states, residual) |
|
|
|
|
|
if not get_pp_group().is_last_rank: |
|
|
return IntermediateTensors({ |
|
|
"hidden_states": hidden_states, |
|
|
"residual": residual, |
|
|
}) |
|
|
|
|
|
hidden_states, _ = self.norm(hidden_states, residual) |
|
|
return hidden_states |
|
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: |
|
|
"""Return expert parameter mapping for weight loading""" |
|
|
return FusedMoE.make_expert_params_mapping( |
|
|
ckpt_gate_proj_name="gate_proj", |
|
|
ckpt_down_proj_name="down_proj", |
|
|
ckpt_up_proj_name="up_proj", |
|
|
num_experts=self.config.num_experts, |
|
|
) |
|
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: |
|
|
stacked_params_mapping = [ |
|
|
|
|
|
("qkv_proj", "q_proj", "q"), |
|
|
("qkv_proj", "k_proj", "k"), |
|
|
("qkv_proj", "v_proj", "v"), |
|
|
("gate_up_proj", "gate_proj", 0), |
|
|
("gate_up_proj", "up_proj", 1), |
|
|
] |
|
|
|
|
|
params_dict = dict(self.named_parameters()) |
|
|
loaded_params: set[str] = set() |
|
|
expert_params_mapping = self.get_expert_mapping() |
|
|
|
|
|
for name, loaded_weight in weights: |
|
|
|
|
|
for param_name, weight_name, shard_id in stacked_params_mapping: |
|
|
if weight_name not in name: |
|
|
continue |
|
|
if "mlp.experts" in name: |
|
|
continue |
|
|
name = name.replace(weight_name, param_name) |
|
|
if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict: |
|
|
continue |
|
|
if is_pp_missing_parameter(name, self): |
|
|
continue |
|
|
if name not in params_dict: |
|
|
continue |
|
|
|
|
|
param = params_dict[name] |
|
|
weight_loader = param.weight_loader |
|
|
weight_loader(param, loaded_weight, shard_id) |
|
|
break |
|
|
else: |
|
|
|
|
|
for mapping in expert_params_mapping: |
|
|
param_name, weight_name, expert_id, shard_id = mapping |
|
|
if weight_name not in name: |
|
|
continue |
|
|
name = name.replace(weight_name, param_name) |
|
|
|
|
|
if is_pp_missing_parameter(name, self): |
|
|
continue |
|
|
if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict: |
|
|
continue |
|
|
|
|
|
param = params_dict[name] |
|
|
weight_loader = param.weight_loader |
|
|
weight_loader( |
|
|
param, |
|
|
loaded_weight, |
|
|
name, |
|
|
shard_id=shard_id, |
|
|
expert_id=expert_id, |
|
|
) |
|
|
break |
|
|
else: |
|
|
|
|
|
if (name.endswith(".bias") or name.endswith("_bias")) and name not in params_dict: |
|
|
continue |
|
|
if is_pp_missing_parameter(name, self): |
|
|
continue |
|
|
|
|
|
|
|
|
if ".gate.linear.weight" in name: |
|
|
name = name.replace(".gate.linear.weight", ".gate.weight") |
|
|
|
|
|
if name not in params_dict: |
|
|
logger.warning(f"Parameter {name} not found in model") |
|
|
continue |
|
|
|
|
|
param = params_dict[name] |
|
|
weight_loader = getattr(param, "weight_loader", default_weight_loader) |
|
|
weight_loader(param, loaded_weight) |
|
|
|
|
|
loaded_params.add(name) |
|
|
|
|
|
return loaded_params |
|
|
|
|
|
|
|
|
class KORMoMoeForCausalLM(nn.Module, SupportsPP, SupportsLoRA): |
|
|
"""KORMo MoE for Causal Language Modeling""" |
|
|
|
|
|
fall_back_to_pt_during_load = False |
|
|
packed_modules_mapping = { |
|
|
"qkv_proj": ["q_proj", "k_proj", "v_proj"], |
|
|
"gate_up_proj": ["gate_proj", "up_proj"], |
|
|
} |
|
|
|
|
|
def __init__(self, *, vllm_config: VllmConfig, prefix: str = ""): |
|
|
super().__init__() |
|
|
config = vllm_config.model_config.hf_config |
|
|
quant_config = vllm_config.quant_config |
|
|
|
|
|
self.config = config |
|
|
self.quant_config = quant_config |
|
|
|
|
|
self.model = KORMoMoeModel(vllm_config=vllm_config, prefix=maybe_prefix(prefix, "model")) |
|
|
self.lm_head = ParallelLMHead( |
|
|
config.vocab_size, |
|
|
config.hidden_size, |
|
|
quant_config=quant_config, |
|
|
) |
|
|
|
|
|
if self.config.tie_word_embeddings: |
|
|
self.lm_head.weight = self.model.embed_tokens.weight |
|
|
|
|
|
self.logits_processor = LogitsProcessor(config.vocab_size) |
|
|
self.make_empty_intermediate_tensors = self.model.make_empty_intermediate_tensors |
|
|
|
|
|
def get_input_embeddings(self, input_ids: torch.Tensor) -> torch.Tensor: |
|
|
return self.model.get_input_embeddings(input_ids) |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
positions: torch.Tensor, |
|
|
intermediate_tensors: Optional[IntermediateTensors] = None, |
|
|
inputs_embeds: Optional[torch.Tensor] = None, |
|
|
) -> Union[torch.Tensor, IntermediateTensors]: |
|
|
hidden_states = self.model(input_ids, positions, intermediate_tensors, inputs_embeds) |
|
|
return hidden_states |
|
|
|
|
|
def compute_logits( |
|
|
self, |
|
|
hidden_states: torch.Tensor, |
|
|
sampling_metadata: SamplingMetadata, |
|
|
) -> Optional[torch.Tensor]: |
|
|
logits = self.logits_processor(self.lm_head, hidden_states, sampling_metadata) |
|
|
return logits |
|
|
|
|
|
def load_weights(self, weights: Iterable[tuple[str, torch.Tensor]]) -> set[str]: |
|
|
loader = AutoWeightsLoader(self) |
|
|
return loader.load_weights(weights) |
|
|
|
|
|
def get_expert_mapping(self) -> list[tuple[str, str, int, str]]: |
|
|
return self.model.get_expert_mapping() |
|
|
|