File size: 1,326 Bytes
883d5c4 dd7c905 038f7af dd7c905 038f7af dd7c905 038f7af dd7c905 6e76549 dd7c905 83cb1e7 dd7c905 b78f0ce dd7c905 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 |
---
MachineLearningML: Continued Pretraining Language Models on Millions of Synthetic Tabular Prediction Tasks Scales In-Context ML
license: apache-2.0
base_model:
- Qwen/Qwen2.5-7B-Instruct
---
# MachineLearningLM
## model summary
Can LLMs learn from 1,000 in-context examples?
Introducing **MachineLearningLM** 🧪📊 — a model continuously pretrained on millions of synthetic tabular ML tasks, enabling robust many-shot in-context learning.
📈 **Scales from 8 to 1,024 examples**
📈 **~15% improvement** on unseen tabular tasks compared to o3-mini / GPT-5-mini / Qwen-2.5-7B
🌲 **Random-Forest–level robustness**
🧠 **MMLU score: 75.4%**
📄 Read the paper: https://arxiv.org/abs/2509.06806
GitHub: https://github.com/HaoAreYuDong/MachineLearningLM
## evaluation and validation
We have developed an automated evaluation framework — simply configure the parameters to easily perform validation and evaluation. The code is now open-sourced at our GitHub.
### **Quick Start**
```bash
pip install -r requirements.txt
python ./src/evaluation/model_pred/dl_model_pred.py \
--input_dir ./demo_input.jsonl \
--output_dir ./demo_output.jsonl \
--model_name MachineLearningLM/MachineLearningLM-7B-v1
```
For more usage details, please visit our GitHub.
|