File size: 18,882 Bytes
525736b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
# coding=utf-8
# Copyright 2025 Maincode. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Maincoder model implementation."""

from typing import Callable, Optional, Union

import torch
import torch.nn as nn

from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, logging

from .configuration_maincoder import MaincoderConfig


logger = logging.get_logger(__name__)


class MaincoderRMSNorm(nn.Module):
    """RMSNorm implementation equivalent to T5LayerNorm."""

    def __init__(self, hidden_size, eps=1e-5):
        """
        MatildaPlusRMSNorm is equivalent to T5LayerNorm
        """
        super().__init__()
        self.eps = eps
        self.weight = nn.Parameter(torch.ones(hidden_size))

    def _norm(self, x):
        return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)

    def forward(self, x):
        output = self._norm(x.float()).type_as(x)
        return output * self.weight

    def extra_repr(self):
        return f"{tuple(self.weight.shape)}, eps={self.eps}"


class MaincoderMLP(nn.Module):
    """SwiGLU-style MLP."""

    def __init__(self, config: MaincoderConfig):
        super().__init__()
        self.hidden_size = config.hidden_size
        self.intermediate_size = config.intermediate_size_mlp

        self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
        self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
        self.act_fn = ACT2FN[config.hidden_act]

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))


class MaincoderRotaryEmbedding(nn.Module):
    """Rotary Position Embedding."""

    def __init__(self, config: MaincoderConfig, device=None):
        super().__init__()
        self.rope_type = "llama3" if config.rope_scaling is not None else "default"
        self.config = config
        self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]

        inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
        self.register_buffer("inv_freq", inv_freq, persistent=False)

    @torch.no_grad()
    @dynamic_rope_update
    def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor:
        inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
        position_ids_expanded = position_ids[:, None, :].float()

        device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
        with torch.autocast(device_type=device_type, enabled=False):
            freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2)
            freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
            freqs_cis = freqs_cis * self.attention_scaling

        return freqs_cis


def apply_rotary_emb(
    xq: torch.Tensor,
    xk: torch.Tensor,
    freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
    """Apply rotary embeddings to query and key tensors."""
    xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
    xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))

    # Broadcast freqs_cis
    freqs_cis = freqs_cis[:, :, None, :]

    xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
    xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)

    return xq_out.type_as(xq), xk_out.type_as(xk)


def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
    """Repeat key/value heads to match query heads for GQA."""
    if n_rep == 1:
        return hidden_states
    batch, num_kv_heads, slen, head_dim = hidden_states.shape
    hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_kv_heads, n_rep, slen, head_dim)
    return hidden_states.reshape(batch, num_kv_heads * n_rep, slen, head_dim)


def eager_attention_forward(
    module: nn.Module,
    query: torch.Tensor,
    key: torch.Tensor,
    value: torch.Tensor,
    attention_mask: Optional[torch.Tensor],
    scaling: float,
    dropout: float = 0.0,
    **kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
    """Eager attention implementation."""
    key_states = repeat_kv(key, module.num_key_value_groups)
    value_states = repeat_kv(value, module.num_key_value_groups)

    attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling

    if attention_mask is not None:
        attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]]

    attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
    attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)

    attn_output = torch.matmul(attn_weights, value_states)
    attn_output = attn_output.transpose(1, 2).contiguous()

    return attn_output, attn_weights


class MaincoderAttention(nn.Module):
    """Multi-headed attention with Grouped Query Attention (GQA) and RoPE."""

    def __init__(self, config: MaincoderConfig, layer_idx: int):
        super().__init__()
        self.config = config
        self.layer_idx = layer_idx
        self.head_dim = config.head_dim
        self.num_attention_heads = config.num_attention_heads
        self.num_key_value_heads = config.num_key_value_heads
        self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
        self.scaling = self.head_dim**-0.5
        self.attention_dropout = config.attention_dropout

        self.q_proj = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
        self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
        self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, config.hidden_size, bias=False)

        # QK normalization
        if config.use_qk_norm:
            self.q_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps)
            self.k_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        position_embeddings: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
        batch_size, seq_len, _ = hidden_states.shape

        query_states = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_attention_heads, self.head_dim)
        key_states = self.k_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
        value_states = self.v_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim)

        # Apply RoPE
        query_states, key_states = apply_rotary_emb(query_states, key_states, position_embeddings)

        # Apply QK normalization
        if hasattr(self, "q_norm"):
            query_states = self.q_norm(query_states)
            key_states = self.k_norm(key_states)

        # Transpose for attention: (batch, heads, seq, head_dim)
        query_states = query_states.transpose(1, 2)
        key_states = key_states.transpose(1, 2)
        value_states = value_states.transpose(1, 2)

        # Update KV cache
        if past_key_values is not None:
            cache_kwargs = {"cache_position": cache_position}
            key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)

        # Attention
        attention_fn: Callable = eager_attention_forward
        if self.config._attn_implementation != "eager":
            attention_fn = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]

        attn_output, attn_weights = attention_fn(
            self,
            query_states,
            key_states,
            value_states,
            attention_mask,
            dropout=0.0 if not self.training else self.attention_dropout,
            scaling=self.scaling,
            **kwargs,
        )

        attn_output = attn_output.reshape(batch_size, seq_len, -1)
        attn_output = self.o_proj(attn_output)

        return attn_output, attn_weights


class MaincoderDecoderLayer(GradientCheckpointingLayer):
    """Transformer decoder layer with pre-norm architecture."""

    def __init__(self, config: MaincoderConfig, layer_idx: int):
        super().__init__()
        self.self_attn = MaincoderAttention(config, layer_idx)
        self.feed_forward = MaincoderMLP(config)
        self.input_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.post_attention_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)

    def forward(
        self,
        hidden_states: torch.Tensor,
        attention_mask: Optional[torch.Tensor] = None,
        position_embeddings: Optional[torch.Tensor] = None,
        past_key_values: Optional[Cache] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[FlashAttentionKwargs],
    ) -> torch.Tensor:
        # Self Attention
        residual = hidden_states
        hidden_states = self.input_layernorm(hidden_states)
        hidden_states, _ = self.self_attn(
            hidden_states=hidden_states,
            position_embeddings=position_embeddings,
            attention_mask=attention_mask,
            past_key_values=past_key_values,
            cache_position=cache_position,
            **kwargs,
        )
        hidden_states = residual + hidden_states

        # Feed Forward
        residual = hidden_states
        hidden_states = self.post_attention_layernorm(hidden_states)
        hidden_states = self.feed_forward(hidden_states)
        hidden_states = residual + hidden_states

        return hidden_states


@auto_docstring
class MaincoderPreTrainedModel(PreTrainedModel):
    """Base class for Maincoder models."""

    config_class = MaincoderConfig
    base_model_prefix = "model"
    supports_gradient_checkpointing = True
    _no_split_modules = ["MaincoderDecoderLayer"]
    _skip_keys_device_placement = ["past_key_values"]
    _supports_sdpa = True
    _supports_flex_attn = True

    def _init_weights(self, module: nn.Module):
        std = self.config.initializer_range
        if isinstance(module, nn.Linear):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.Embedding):
            module.weight.data.normal_(mean=0.0, std=std)
            if module.padding_idx is not None:
                module.weight.data[module.padding_idx].zero_()
        elif isinstance(module, MaincoderRMSNorm):
            module.weight.data.fill_(1.0)


@auto_docstring
class MaincoderModel(MaincoderPreTrainedModel):
    """Maincoder transformer model outputting raw hidden states."""

    def __init__(self, config: MaincoderConfig):
        super().__init__(config)
        self.padding_idx = config.pad_token_id
        self.vocab_size = config.vocab_size

        self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
        self.layers = nn.ModuleList(
            [MaincoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
        )
        self.norm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
        self.rotary_emb = MaincoderRotaryEmbedding(config)

        self.post_init()

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, BaseModelOutputWithPast]:
        if (input_ids is None) ^ (inputs_embeds is not None):
            raise ValueError("You must specify exactly one of input_ids or inputs_embeds")

        if inputs_embeds is None:
            inputs_embeds = self.embed_tokens(input_ids)

        if use_cache and past_key_values is None:
            past_key_values = DynamicCache()

        if cache_position is None:
            past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
            cache_position = torch.arange(
                past_seen_tokens,
                past_seen_tokens + inputs_embeds.shape[1],
                device=inputs_embeds.device,
            )

        if position_ids is None:
            position_ids = cache_position.unsqueeze(0)

        # Create causal mask
        causal_mask = create_causal_mask(
            config=self.config,
            input_embeds=inputs_embeds,
            attention_mask=attention_mask,
            cache_position=cache_position,
            past_key_values=past_key_values,
        )

        # Position embeddings
        position_embeddings = self.rotary_emb(inputs_embeds, position_ids)

        hidden_states = inputs_embeds
        for layer in self.layers:
            hidden_states = layer(
                hidden_states,
                attention_mask=causal_mask,
                position_embeddings=position_embeddings,
                past_key_values=past_key_values,
                cache_position=cache_position,
                **kwargs,
            )

        hidden_states = self.norm(hidden_states)

        return BaseModelOutputWithPast(
            last_hidden_state=hidden_states,
            past_key_values=past_key_values if use_cache else None,
        )


class MaincoderForCausalLM(MaincoderPreTrainedModel, GenerationMixin):
    """Maincoder model with a causal language modeling head."""

    _tied_weights_keys = ["lm_head.weight"]

    def __init__(self, config: MaincoderConfig):
        super().__init__(config)
        self.model = MaincoderModel(config)
        self.vocab_size = config.vocab_size
        self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)

        self.post_init()

    def get_input_embeddings(self) -> nn.Embedding:
        return self.model.embed_tokens

    def set_input_embeddings(self, value: nn.Embedding):
        self.model.embed_tokens = value

    def get_output_embeddings(self) -> nn.Linear:
        return self.lm_head

    def set_output_embeddings(self, new_embeddings: nn.Linear):
        self.lm_head = new_embeddings

    @can_return_tuple
    @auto_docstring
    def forward(
        self,
        input_ids: Optional[torch.LongTensor] = None,
        attention_mask: Optional[torch.Tensor] = None,
        position_ids: Optional[torch.LongTensor] = None,
        past_key_values: Optional[Cache] = None,
        inputs_embeds: Optional[torch.FloatTensor] = None,
        labels: Optional[torch.LongTensor] = None,
        use_cache: Optional[bool] = None,
        cache_position: Optional[torch.LongTensor] = None,
        logits_to_keep: Union[int, torch.Tensor] = 0,
        **kwargs: Unpack[TransformersKwargs],
    ) -> Union[tuple, CausalLMOutputWithPast]:
        r"""
        labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
            Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
            config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
            (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.

        Example:

        ```python
        >>> from transformers import AutoTokenizer
        >>> from modelling_maincoder import MaincoderForCausalLM

        >>> model = MaincoderForCausalLM.from_pretrained("maincoder/maincoder")
        >>> tokenizer = AutoTokenizer.from_pretrained("maincoder/maincoder")

        >>> prompt = "def hello_world():"
        >>> inputs = tokenizer(prompt, return_tensors="pt")

        >>> generate_ids = model.generate(inputs.input_ids, max_length=50)
        >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
        ```"""
        outputs = self.model(
            input_ids=input_ids,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            inputs_embeds=inputs_embeds,
            use_cache=use_cache,
            cache_position=cache_position,
            **kwargs,
        )

        hidden_states = outputs.last_hidden_state

        # Only compute logits for tokens we need
        if isinstance(logits_to_keep, int) and logits_to_keep > 0:
            hidden_states = hidden_states[:, -logits_to_keep:, :]

        logits = self.lm_head(hidden_states)

        loss = None
        if labels is not None:
            loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )


__all__ = [
    "MaincoderConfig",
    "MaincoderPreTrainedModel",
    "MaincoderModel",
    "MaincoderForCausalLM",
]