File size: 18,882 Bytes
525736b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 |
# coding=utf-8
# Copyright 2025 Maincode. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Maincoder model implementation."""
from typing import Callable, Optional, Union
import torch
import torch.nn as nn
from transformers.activations import ACT2FN
from transformers.cache_utils import Cache, DynamicCache
from transformers.generation import GenerationMixin
from transformers.masking_utils import create_causal_mask
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs
from transformers.modeling_layers import GradientCheckpointingLayer
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from transformers.processing_utils import Unpack
from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, logging
from .configuration_maincoder import MaincoderConfig
logger = logging.get_logger(__name__)
class MaincoderRMSNorm(nn.Module):
"""RMSNorm implementation equivalent to T5LayerNorm."""
def __init__(self, hidden_size, eps=1e-5):
"""
MatildaPlusRMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(hidden_size))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.eps}"
class MaincoderMLP(nn.Module):
"""SwiGLU-style MLP."""
def __init__(self, config: MaincoderConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size_mlp
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x: torch.Tensor) -> torch.Tensor:
return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
class MaincoderRotaryEmbedding(nn.Module):
"""Rotary Position Embedding."""
def __init__(self, config: MaincoderConfig, device=None):
super().__init__()
self.rope_type = "llama3" if config.rope_scaling is not None else "default"
self.config = config
self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type]
inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device)
self.register_buffer("inv_freq", inv_freq, persistent=False)
@torch.no_grad()
@dynamic_rope_update
def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor:
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False):
freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
freqs_cis = freqs_cis * self.attention_scaling
return freqs_cis
def apply_rotary_emb(
xq: torch.Tensor,
xk: torch.Tensor,
freqs_cis: torch.Tensor,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Apply rotary embeddings to query and key tensors."""
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2))
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
# Broadcast freqs_cis
freqs_cis = freqs_cis[:, :, None, :]
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3)
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
"""Repeat key/value heads to match query heads for GQA."""
if n_rep == 1:
return hidden_states
batch, num_kv_heads, slen, head_dim = hidden_states.shape
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_kv_heads, n_rep, slen, head_dim)
return hidden_states.reshape(batch, num_kv_heads * n_rep, slen, head_dim)
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
) -> tuple[torch.Tensor, torch.Tensor]:
"""Eager attention implementation."""
key_states = repeat_kv(key, module.num_key_value_groups)
value_states = repeat_kv(value, module.num_key_value_groups)
attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]]
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value_states)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class MaincoderAttention(nn.Module):
"""Multi-headed attention with Grouped Query Attention (GQA) and RoPE."""
def __init__(self, config: MaincoderConfig, layer_idx: int):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.head_dim = config.head_dim
self.num_attention_heads = config.num_attention_heads
self.num_key_value_heads = config.num_key_value_heads
self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads
self.scaling = self.head_dim**-0.5
self.attention_dropout = config.attention_dropout
self.q_proj = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim, bias=False)
self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, config.hidden_size, bias=False)
# QK normalization
if config.use_qk_norm:
self.q_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps)
self.k_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
position_embeddings: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
batch_size, seq_len, _ = hidden_states.shape
query_states = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_attention_heads, self.head_dim)
key_states = self.k_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
value_states = self.v_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim)
# Apply RoPE
query_states, key_states = apply_rotary_emb(query_states, key_states, position_embeddings)
# Apply QK normalization
if hasattr(self, "q_norm"):
query_states = self.q_norm(query_states)
key_states = self.k_norm(key_states)
# Transpose for attention: (batch, heads, seq, head_dim)
query_states = query_states.transpose(1, 2)
key_states = key_states.transpose(1, 2)
value_states = value_states.transpose(1, 2)
# Update KV cache
if past_key_values is not None:
cache_kwargs = {"cache_position": cache_position}
key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs)
# Attention
attention_fn: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_fn = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_fn(
self,
query_states,
key_states,
value_states,
attention_mask,
dropout=0.0 if not self.training else self.attention_dropout,
scaling=self.scaling,
**kwargs,
)
attn_output = attn_output.reshape(batch_size, seq_len, -1)
attn_output = self.o_proj(attn_output)
return attn_output, attn_weights
class MaincoderDecoderLayer(GradientCheckpointingLayer):
"""Transformer decoder layer with pre-norm architecture."""
def __init__(self, config: MaincoderConfig, layer_idx: int):
super().__init__()
self.self_attn = MaincoderAttention(config, layer_idx)
self.feed_forward = MaincoderMLP(config)
self.input_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.post_attention_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
position_embeddings: Optional[torch.Tensor] = None,
past_key_values: Optional[Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[FlashAttentionKwargs],
) -> torch.Tensor:
# Self Attention
residual = hidden_states
hidden_states = self.input_layernorm(hidden_states)
hidden_states, _ = self.self_attn(
hidden_states=hidden_states,
position_embeddings=position_embeddings,
attention_mask=attention_mask,
past_key_values=past_key_values,
cache_position=cache_position,
**kwargs,
)
hidden_states = residual + hidden_states
# Feed Forward
residual = hidden_states
hidden_states = self.post_attention_layernorm(hidden_states)
hidden_states = self.feed_forward(hidden_states)
hidden_states = residual + hidden_states
return hidden_states
@auto_docstring
class MaincoderPreTrainedModel(PreTrainedModel):
"""Base class for Maincoder models."""
config_class = MaincoderConfig
base_model_prefix = "model"
supports_gradient_checkpointing = True
_no_split_modules = ["MaincoderDecoderLayer"]
_skip_keys_device_placement = ["past_key_values"]
_supports_sdpa = True
_supports_flex_attn = True
def _init_weights(self, module: nn.Module):
std = self.config.initializer_range
if isinstance(module, nn.Linear):
module.weight.data.normal_(mean=0.0, std=std)
if module.bias is not None:
module.bias.data.zero_()
elif isinstance(module, nn.Embedding):
module.weight.data.normal_(mean=0.0, std=std)
if module.padding_idx is not None:
module.weight.data[module.padding_idx].zero_()
elif isinstance(module, MaincoderRMSNorm):
module.weight.data.fill_(1.0)
@auto_docstring
class MaincoderModel(MaincoderPreTrainedModel):
"""Maincoder transformer model outputting raw hidden states."""
def __init__(self, config: MaincoderConfig):
super().__init__(config)
self.padding_idx = config.pad_token_id
self.vocab_size = config.vocab_size
self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
self.layers = nn.ModuleList(
[MaincoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
)
self.norm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps)
self.rotary_emb = MaincoderRotaryEmbedding(config)
self.post_init()
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, BaseModelOutputWithPast]:
if (input_ids is None) ^ (inputs_embeds is not None):
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embed_tokens(input_ids)
if use_cache and past_key_values is None:
past_key_values = DynamicCache()
if cache_position is None:
past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0
cache_position = torch.arange(
past_seen_tokens,
past_seen_tokens + inputs_embeds.shape[1],
device=inputs_embeds.device,
)
if position_ids is None:
position_ids = cache_position.unsqueeze(0)
# Create causal mask
causal_mask = create_causal_mask(
config=self.config,
input_embeds=inputs_embeds,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=past_key_values,
)
# Position embeddings
position_embeddings = self.rotary_emb(inputs_embeds, position_ids)
hidden_states = inputs_embeds
for layer in self.layers:
hidden_states = layer(
hidden_states,
attention_mask=causal_mask,
position_embeddings=position_embeddings,
past_key_values=past_key_values,
cache_position=cache_position,
**kwargs,
)
hidden_states = self.norm(hidden_states)
return BaseModelOutputWithPast(
last_hidden_state=hidden_states,
past_key_values=past_key_values if use_cache else None,
)
class MaincoderForCausalLM(MaincoderPreTrainedModel, GenerationMixin):
"""Maincoder model with a causal language modeling head."""
_tied_weights_keys = ["lm_head.weight"]
def __init__(self, config: MaincoderConfig):
super().__init__(config)
self.model = MaincoderModel(config)
self.vocab_size = config.vocab_size
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
self.post_init()
def get_input_embeddings(self) -> nn.Embedding:
return self.model.embed_tokens
def set_input_embeddings(self, value: nn.Embedding):
self.model.embed_tokens = value
def get_output_embeddings(self) -> nn.Linear:
return self.lm_head
def set_output_embeddings(self, new_embeddings: nn.Linear):
self.lm_head = new_embeddings
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.LongTensor] = None,
past_key_values: Optional[Cache] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
labels: Optional[torch.LongTensor] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithPast]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
Example:
```python
>>> from transformers import AutoTokenizer
>>> from modelling_maincoder import MaincoderForCausalLM
>>> model = MaincoderForCausalLM.from_pretrained("maincoder/maincoder")
>>> tokenizer = AutoTokenizer.from_pretrained("maincoder/maincoder")
>>> prompt = "def hello_world():"
>>> inputs = tokenizer(prompt, return_tensors="pt")
>>> generate_ids = model.generate(inputs.input_ids, max_length=50)
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0]
```"""
outputs = self.model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
past_key_values=past_key_values,
inputs_embeds=inputs_embeds,
use_cache=use_cache,
cache_position=cache_position,
**kwargs,
)
hidden_states = outputs.last_hidden_state
# Only compute logits for tokens we need
if isinstance(logits_to_keep, int) and logits_to_keep > 0:
hidden_states = hidden_states[:, -logits_to_keep:, :]
logits = self.lm_head(hidden_states)
loss = None
if labels is not None:
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)
return CausalLMOutputWithPast(
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
)
__all__ = [
"MaincoderConfig",
"MaincoderPreTrainedModel",
"MaincoderModel",
"MaincoderForCausalLM",
]
|