# coding=utf-8 # Copyright 2025 Maincode. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Maincoder model configuration.""" from typing import Optional from transformers.configuration_utils import PretrainedConfig from transformers.utils import logging logger = logging.get_logger(__name__) class MaincoderConfig(PretrainedConfig): r""" Configuration class for Maincoder model. Args: vocab_size (`int`, *optional*, defaults to 151936): Vocabulary size of the Maincoder model. hidden_size (`int`, *optional*, defaults to 1536): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 4096): Dimension of the MLP intermediate representations. intermediate_size_mlp (`int`, *optional*, defaults to 4096): Dimension of the MLP representations (same as intermediate_size for dense models). num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer decoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer. num_key_value_heads (`int`, *optional*, defaults to 4): Number of key-value heads for Grouped Query Attention (GQA). head_dim (`int`, *optional*, defaults to 96): Dimension of each attention head. hidden_act (`str`, *optional*, defaults to `"silu"`): The activation function in the MLP. max_position_embeddings (`int`, *optional*, defaults to 2048): Maximum sequence length the model can handle. initializer_range (`float`, *optional*, defaults to 0.02): Standard deviation for weight initialization. rms_norm_eps (`float`, *optional*, defaults to 1e-05): Epsilon for RMS normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether to use key-value cache for generation. pad_token_id (`int`, *optional*, defaults to 151643): Padding token id. bos_token_id (`int`, *optional*): Beginning of sequence token id. eos_token_id (`int`, *optional*, defaults to 151643): End of sequence token id. tie_word_embeddings (`bool`, *optional*, defaults to `True`): Whether to tie input and output embeddings. rope_theta (`float`, *optional*, defaults to 1000000.0): Base period for RoPE embeddings. rope_scaling (`Dict`, *optional*): RoPE scaling configuration for extended context. attention_dropout (`float`, *optional*, defaults to 0.0): Dropout probability for attention weights. use_qk_norm (`bool`, *optional*, defaults to `True`): Whether to apply RMS normalization to query and key. Example: ```python >>> from configuration_maincoder import MaincoderConfig >>> from modelling_maincoder import MaincoderForCausalLM >>> config = MaincoderConfig() >>> model = MaincoderForCausalLM(config) ``` """ model_type = "maincoder" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size: int = 151936, hidden_size: int = 1536, intermediate_size: int = 4096, intermediate_size_mlp: int = 4096, num_hidden_layers: int = 32, num_attention_heads: int = 16, num_key_value_heads: Optional[int] = 4, head_dim: Optional[int] = 96, hidden_act: str = "silu", max_position_embeddings: int = 2048, initializer_range: float = 0.02, rms_norm_eps: float = 1e-5, use_cache: bool = True, pad_token_id: Optional[int] = 151643, bos_token_id: Optional[int] = None, eos_token_id: int = 151643, tie_word_embeddings: bool = True, rope_theta: float = 1000000.0, rope_scaling: Optional[dict] = None, attention_dropout: float = 0.0, use_qk_norm: bool = True, **kwargs, ): self.vocab_size = vocab_size self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.intermediate_size_mlp = intermediate_size_mlp self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.rope_theta = rope_theta self.rope_scaling = rope_scaling self.attention_dropout = attention_dropout self.use_qk_norm = use_qk_norm self.hidden_act = hidden_act # GQA configuration self.num_key_value_heads = num_key_value_heads if num_key_value_heads is not None else num_attention_heads self.head_dim = head_dim if head_dim is not None else self.hidden_size // self.num_attention_heads super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) __all__ = ["MaincoderConfig"]