# coding=utf-8 # Copyright 2025 Maincode. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Maincoder model implementation.""" from typing import Callable, Optional, Union import torch import torch.nn as nn from transformers.activations import ACT2FN from transformers.cache_utils import Cache, DynamicCache from transformers.generation import GenerationMixin from transformers.masking_utils import create_causal_mask from transformers.modeling_flash_attention_utils import FlashAttentionKwargs from transformers.modeling_layers import GradientCheckpointingLayer from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast from transformers.modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from transformers.processing_utils import Unpack from transformers.utils import TransformersKwargs, auto_docstring, can_return_tuple, logging from .configuration_maincoder import MaincoderConfig logger = logging.get_logger(__name__) class MaincoderRMSNorm(nn.Module): """RMSNorm implementation equivalent to T5LayerNorm.""" def __init__(self, hidden_size, eps=1e-5): """ MatildaPlusRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.eps = eps self.weight = nn.Parameter(torch.ones(hidden_size)) def _norm(self, x): return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) def forward(self, x): output = self._norm(x.float()).type_as(x) return output * self.weight def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.eps}" class MaincoderMLP(nn.Module): """SwiGLU-style MLP.""" def __init__(self, config: MaincoderConfig): super().__init__() self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size_mlp self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x: torch.Tensor) -> torch.Tensor: return self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) class MaincoderRotaryEmbedding(nn.Module): """Rotary Position Embedding.""" def __init__(self, config: MaincoderConfig, device=None): super().__init__() self.rope_type = "llama3" if config.rope_scaling is not None else "default" self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) @torch.no_grad() @dynamic_rope_update def forward(self, x: torch.Tensor, position_ids: torch.Tensor) -> torch.Tensor: inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): freqs = (inv_freq_expanded.to(x.device) @ position_ids_expanded).transpose(1, 2) freqs_cis = torch.polar(torch.ones_like(freqs), freqs) freqs_cis = freqs_cis * self.attention_scaling return freqs_cis def apply_rotary_emb( xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor, ) -> tuple[torch.Tensor, torch.Tensor]: """Apply rotary embeddings to query and key tensors.""" xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) # Broadcast freqs_cis freqs_cis = freqs_cis[:, :, None, :] xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) return xq_out.type_as(xq), xk_out.type_as(xk) def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """Repeat key/value heads to match query heads for GQA.""" if n_rep == 1: return hidden_states batch, num_kv_heads, slen, head_dim = hidden_states.shape hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_kv_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_kv_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ) -> tuple[torch.Tensor, torch.Tensor]: """Eager attention implementation.""" key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class MaincoderAttention(nn.Module): """Multi-headed attention with Grouped Query Attention (GQA) and RoPE.""" def __init__(self, config: MaincoderConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = config.head_dim self.num_attention_heads = config.num_attention_heads self.num_key_value_heads = config.num_key_value_heads self.num_key_value_groups = self.num_attention_heads // self.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.q_proj = nn.Linear(config.hidden_size, self.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, self.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(self.num_attention_heads * self.head_dim, config.hidden_size, bias=False) # QK normalization if config.use_qk_norm: self.q_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps) self.k_norm = MaincoderRMSNorm(self.head_dim, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, position_embeddings: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: batch_size, seq_len, _ = hidden_states.shape query_states = self.q_proj(hidden_states).view(batch_size, seq_len, self.num_attention_heads, self.head_dim) key_states = self.k_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim) value_states = self.v_proj(hidden_states).view(batch_size, seq_len, self.num_key_value_heads, self.head_dim) # Apply RoPE query_states, key_states = apply_rotary_emb(query_states, key_states, position_embeddings) # Apply QK normalization if hasattr(self, "q_norm"): query_states = self.q_norm(query_states) key_states = self.k_norm(key_states) # Transpose for attention: (batch, heads, seq, head_dim) query_states = query_states.transpose(1, 2) key_states = key_states.transpose(1, 2) value_states = value_states.transpose(1, 2) # Update KV cache if past_key_values is not None: cache_kwargs = {"cache_position": cache_position} key_states, value_states = past_key_values.update(key_states, value_states, self.layer_idx, cache_kwargs) # Attention attention_fn: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_fn = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_fn( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(batch_size, seq_len, -1) attn_output = self.o_proj(attn_output) return attn_output, attn_weights class MaincoderDecoderLayer(GradientCheckpointingLayer): """Transformer decoder layer with pre-norm architecture.""" def __init__(self, config: MaincoderConfig, layer_idx: int): super().__init__() self.self_attn = MaincoderAttention(config, layer_idx) self.feed_forward = MaincoderMLP(config) self.input_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[torch.Tensor] = None, past_key_values: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> torch.Tensor: # Self Attention residual = hidden_states hidden_states = self.input_layernorm(hidden_states) hidden_states, _ = self.self_attn( hidden_states=hidden_states, position_embeddings=position_embeddings, attention_mask=attention_mask, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) hidden_states = residual + hidden_states # Feed Forward residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.feed_forward(hidden_states) hidden_states = residual + hidden_states return hidden_states @auto_docstring class MaincoderPreTrainedModel(PreTrainedModel): """Base class for Maincoder models.""" config_class = MaincoderConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["MaincoderDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_sdpa = True _supports_flex_attn = True def _init_weights(self, module: nn.Module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, MaincoderRMSNorm): module.weight.data.fill_(1.0) @auto_docstring class MaincoderModel(MaincoderPreTrainedModel): """Maincoder transformer model outputting raw hidden states.""" def __init__(self, config: MaincoderConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx) self.layers = nn.ModuleList( [MaincoderDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = MaincoderRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = MaincoderRotaryEmbedding(config) self.post_init() @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, BaseModelOutputWithPast]: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device, ) if position_ids is None: position_ids = cache_position.unsqueeze(0) # Create causal mask causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, ) # Position embeddings position_embeddings = self.rotary_emb(inputs_embeds, position_ids) hidden_states = inputs_embeds for layer in self.layers: hidden_states = layer( hidden_states, attention_mask=causal_mask, position_embeddings=position_embeddings, past_key_values=past_key_values, cache_position=cache_position, **kwargs, ) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, ) class MaincoderForCausalLM(MaincoderPreTrainedModel, GenerationMixin): """Maincoder model with a causal language modeling head.""" _tied_weights_keys = ["lm_head.weight"] def __init__(self, config: MaincoderConfig): super().__init__(config) self.model = MaincoderModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False) self.post_init() def get_input_embeddings(self) -> nn.Embedding: return self.model.embed_tokens def set_input_embeddings(self, value: nn.Embedding): self.model.embed_tokens = value def get_output_embeddings(self) -> nn.Linear: return self.lm_head def set_output_embeddings(self, new_embeddings: nn.Linear): self.lm_head = new_embeddings @can_return_tuple @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **kwargs: Unpack[TransformersKwargs], ) -> Union[tuple, CausalLMOutputWithPast]: r""" labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> from transformers import AutoTokenizer >>> from modelling_maincoder import MaincoderForCausalLM >>> model = MaincoderForCausalLM.from_pretrained("maincoder/maincoder") >>> tokenizer = AutoTokenizer.from_pretrained("maincoder/maincoder") >>> prompt = "def hello_world():" >>> inputs = tokenizer(prompt, return_tensors="pt") >>> generate_ids = model.generate(inputs.input_ids, max_length=50) >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True)[0] ```""" outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, **kwargs, ) hidden_states = outputs.last_hidden_state # Only compute logits for tokens we need if isinstance(logits_to_keep, int) and logits_to_keep > 0: hidden_states = hidden_states[:, -logits_to_keep:, :] logits = self.lm_head(hidden_states) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs) return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "MaincoderConfig", "MaincoderPreTrainedModel", "MaincoderModel", "MaincoderForCausalLM", ]