--- library_name: peft language: - fr license: apache-2.0 base_model: openai/whisper-small tags: - base_model:adapter:openai/whisper-small - lora - transformers metrics: - wer model-index: - name: Whisper Small Fr - IMT Atlantique X 52 Hertz Full results: [] --- # Whisper Small Fr - IMT Atlantique X 52 Hertz Full This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the FullDatabase dataset. It achieves the following results on the evaluation set: - Loss: 0.6708 - Wer: 0.3327 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.3574 | 0.4762 | 20 | 1.4124 | 0.3671 | | 1.1555 | 0.9524 | 40 | 1.1674 | 0.3728 | | 0.7839 | 1.4286 | 60 | 0.7497 | 0.3231 | | 0.4459 | 1.9048 | 80 | 0.6860 | 0.3614 | | 0.533 | 2.3810 | 100 | 0.6819 | 0.3461 | | 0.2029 | 2.8571 | 120 | 0.6708 | 0.3327 | ### Framework versions - PEFT 0.18.0 - Transformers 4.57.3 - Pytorch 2.9.0+cu126 - Datasets 4.4.1 - Tokenizers 0.22.1