RAG / app.py
Mavhas's picture
Update app.py
826a096 verified
!pip install streamlit langchain chromadb unstructured faiss-cpu sentence_transformers PyPDF2 groq
!pip install -U langchain-community
import os
os.environ["GROQ_API_KEY"] = "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" # Replace with your key
import streamlit as st
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import SentenceTransformerEmbeddings
from langchain.vectorstores import FAISS
import os
from groq import Groq
# Load PDF (with error handling)
def load_pdf(uploaded_file):
try:
loader = PyPDFLoader(uploaded_file)
documents = loader.load()
return documents
except Exception as e:
st.error(f"Error loading PDF: {e}")
return None
# Chunking (with error handling)
def chunk_text(documents):
try:
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200)
chunks = text_splitter.split_documents(documents)
return chunks
except Exception as e:
st.error(f"Error chunking text: {e}")
return None
# Embeddings and Vectorstore (with error handling)
def create_embeddings_and_store(chunks):
try:
embeddings = SentenceTransformerEmbeddings(model_name="all-mpnet-base-v2")
db = FAISS.from_documents(chunks, embeddings)
return db
except Exception as e:
st.error(f"Error creating embeddings: {e}")
return None
# Groq interaction (with more robust error handling)
def query_groq(query, db):
try:
docs = db.similarity_search(query)
context = "\n".join([doc.page_content for doc in docs])
client = Groq(api_key=os.environ.get("GROQ_API_KEY"))
if not client.api_key: # Check if API key is set
st.error("GROQ_API_KEY environment variable is not set.")
return None
prompt = f"""Use the following context to answer the question: {query}\n\nContext:\n{context}"""
chat_completion = client.chat.completions.create(
messages=[{"role": "user", "content": prompt}],
model="llama-3.3-70b-versatile", # Or other suitable open-source model
)
return chat_completion.choices[0].message.content
except Exception as e:
st.error(f"Error querying Groq: {e}")
return None
# Streamlit app
st.title("RAG Application")
uploaded_file = st.file_uploader("Upload PDF", type="pdf")
if uploaded_file is not None:
with st.spinner("Processing PDF..."):
documents = load_pdf(uploaded_file)
if documents: # Check if PDF loaded successfully
chunks = chunk_text(documents)
if chunks: # Check if chunks were created successfully
db = create_embeddings_and_store(chunks)
if db: # Check if embeddings were created successfully
st.success("PDF processed!")
query = st.text_area("Enter your query")
if st.button("Submit"):
if query:
with st.spinner("Querying..."):
answer = query_groq(query, db)
if answer: # Check if query was successful
st.write(answer)
else:
st.warning("Please enter a query.")