Text Generation
Transformers
Safetensors
minimax_m2
conversational
custom_code
fp8
sriting commited on
Commit
9906ce3
·
1 Parent(s): 6385c23

update README

Browse files
README.md CHANGED
@@ -168,7 +168,7 @@ Download the model from HuggingFace repository: https://huggingface.co/MiniMaxAI
168
 
169
  ### vLLM
170
 
171
- We recommend using [vLLM](https://docs.vllm.ai/en/latest/) to serve MiniMax-M2. vLLM provides efficient day-0 support of MiniMax-M2 model, check https://docs.vllm.ai/projects/recipes/en/latest/MiniMax/MiniMax-M2.html for latest deployment guide. We also provide our [vLLM Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/vllm_deploy_guide.md).
172
 
173
  ### SGLang
174
  We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang provides solid day-0 support for MiniMax-M2 model. Please refer to our [SGLang Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/sglang_deploy_guide.md) for more details, and thanks so much for our collaboration with the SGLang team.
 
168
 
169
  ### vLLM
170
 
171
+ We recommend using [vLLM](https://docs.vllm.ai/en/stable/) to serve MiniMax-M2. vLLM provides efficient day-0 support of MiniMax-M2 model, check https://docs.vllm.ai/projects/recipes/en/latest/MiniMax/MiniMax-M2.html for latest deployment guide. We also provide our [vLLM Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/vllm_deploy_guide.md).
172
 
173
  ### SGLang
174
  We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang provides solid day-0 support for MiniMax-M2 model. Please refer to our [SGLang Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/sglang_deploy_guide.md) for more details, and thanks so much for our collaboration with the SGLang team.
docs/vllm_deploy_guide.md CHANGED
@@ -35,9 +35,7 @@ It is recommended to use a virtual environment (such as **venv**, **conda**, or
35
  We recommend installing vLLM in a fresh Python environment:
36
 
37
  ```bash
38
- uv venv
39
- source .venv/bin/activate
40
- uv pip install vllm --extra-index-url https://wheels.vllm.ai/nightly
41
  ```
42
 
43
  Run the following command to start the vLLM server. vLLM will automatically download and cache the MiniMax-M2 model from Hugging Face.
 
35
  We recommend installing vLLM in a fresh Python environment:
36
 
37
  ```bash
38
+ uv pip install 'triton-kernels @ git+https://github.com/triton-lang/triton.git@v3.5.0#subdirectory=python/triton_kernels' vllm --extra-index-url https://wheels.vllm.ai/nightly --prerelease=allow
 
 
39
  ```
40
 
41
  Run the following command to start the vLLM server. vLLM will automatically download and cache the MiniMax-M2 model from Hugging Face.
docs/vllm_deploy_guide_cn.md CHANGED
@@ -34,9 +34,7 @@
34
 
35
  建议在全新的 Python 环境中安装 vLLM:
36
  ```bash
37
- uv venv
38
- source .venv/bin/activate
39
- uv pip install vllm --extra-index-url https://wheels.vllm.ai/nightly
40
  ```
41
 
42
  运行如下命令启动 vLLM 服务器,vLLM 会自动从 Huggingface 下载并缓存 MiniMax-M2 模型。
 
34
 
35
  建议在全新的 Python 环境中安装 vLLM:
36
  ```bash
37
+ uv pip install 'triton-kernels @ git+https://github.com/triton-lang/triton.git@v3.5.0#subdirectory=python/triton_kernels' vllm --extra-index-url https://wheels.vllm.ai/nightly --prerelease=allow
 
 
38
  ```
39
 
40
  运行如下命令启动 vLLM 服务器,vLLM 会自动从 Huggingface 下载并缓存 MiniMax-M2 模型。