update README
Browse files- README.md +1 -1
- docs/vllm_deploy_guide.md +1 -3
- docs/vllm_deploy_guide_cn.md +1 -3
README.md
CHANGED
|
@@ -168,7 +168,7 @@ Download the model from HuggingFace repository: https://huggingface.co/MiniMaxAI
|
|
| 168 |
|
| 169 |
### vLLM
|
| 170 |
|
| 171 |
-
We recommend using [vLLM](https://docs.vllm.ai/en/
|
| 172 |
|
| 173 |
### SGLang
|
| 174 |
We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang provides solid day-0 support for MiniMax-M2 model. Please refer to our [SGLang Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/sglang_deploy_guide.md) for more details, and thanks so much for our collaboration with the SGLang team.
|
|
|
|
| 168 |
|
| 169 |
### vLLM
|
| 170 |
|
| 171 |
+
We recommend using [vLLM](https://docs.vllm.ai/en/stable/) to serve MiniMax-M2. vLLM provides efficient day-0 support of MiniMax-M2 model, check https://docs.vllm.ai/projects/recipes/en/latest/MiniMax/MiniMax-M2.html for latest deployment guide. We also provide our [vLLM Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/vllm_deploy_guide.md).
|
| 172 |
|
| 173 |
### SGLang
|
| 174 |
We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang provides solid day-0 support for MiniMax-M2 model. Please refer to our [SGLang Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/sglang_deploy_guide.md) for more details, and thanks so much for our collaboration with the SGLang team.
|
docs/vllm_deploy_guide.md
CHANGED
|
@@ -35,9 +35,7 @@ It is recommended to use a virtual environment (such as **venv**, **conda**, or
|
|
| 35 |
We recommend installing vLLM in a fresh Python environment:
|
| 36 |
|
| 37 |
```bash
|
| 38 |
-
uv
|
| 39 |
-
source .venv/bin/activate
|
| 40 |
-
uv pip install vllm --extra-index-url https://wheels.vllm.ai/nightly
|
| 41 |
```
|
| 42 |
|
| 43 |
Run the following command to start the vLLM server. vLLM will automatically download and cache the MiniMax-M2 model from Hugging Face.
|
|
|
|
| 35 |
We recommend installing vLLM in a fresh Python environment:
|
| 36 |
|
| 37 |
```bash
|
| 38 |
+
uv pip install 'triton-kernels @ git+https://github.com/triton-lang/triton.git@v3.5.0#subdirectory=python/triton_kernels' vllm --extra-index-url https://wheels.vllm.ai/nightly --prerelease=allow
|
|
|
|
|
|
|
| 39 |
```
|
| 40 |
|
| 41 |
Run the following command to start the vLLM server. vLLM will automatically download and cache the MiniMax-M2 model from Hugging Face.
|
docs/vllm_deploy_guide_cn.md
CHANGED
|
@@ -34,9 +34,7 @@
|
|
| 34 |
|
| 35 |
建议在全新的 Python 环境中安装 vLLM:
|
| 36 |
```bash
|
| 37 |
-
uv
|
| 38 |
-
source .venv/bin/activate
|
| 39 |
-
uv pip install vllm --extra-index-url https://wheels.vllm.ai/nightly
|
| 40 |
```
|
| 41 |
|
| 42 |
运行如下命令启动 vLLM 服务器,vLLM 会自动从 Huggingface 下载并缓存 MiniMax-M2 模型。
|
|
|
|
| 34 |
|
| 35 |
建议在全新的 Python 环境中安装 vLLM:
|
| 36 |
```bash
|
| 37 |
+
uv pip install 'triton-kernels @ git+https://github.com/triton-lang/triton.git@v3.5.0#subdirectory=python/triton_kernels' vllm --extra-index-url https://wheels.vllm.ai/nightly --prerelease=allow
|
|
|
|
|
|
|
| 38 |
```
|
| 39 |
|
| 40 |
运行如下命令启动 vLLM 服务器,vLLM 会自动从 Huggingface 下载并缓存 MiniMax-M2 模型。
|