Add MLX example
Browse files
README.md
CHANGED
|
@@ -167,6 +167,80 @@ We look forward to your feedback and to collaborating with developers and resear
|
|
| 167 |
|
| 168 |
Download the model from HuggingFace repository: https://huggingface.co/MiniMaxAI/MiniMax-M2. We recommend using the following inference frameworks (listed alphabetically) to serve the model:
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
### SGLang
|
| 171 |
|
| 172 |
We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang provides solid day-0 support for MiniMax-M2 model. Please refer to our [SGLang Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/sglang_deploy_guide.md) for more details, and thanks so much for our collaboration with the SGLang team.
|
|
|
|
| 167 |
|
| 168 |
Download the model from HuggingFace repository: https://huggingface.co/MiniMaxAI/MiniMax-M2. We recommend using the following inference frameworks (listed alphabetically) to serve the model:
|
| 169 |
|
| 170 |
+
Here's an improved, polished, and professional version of your documentation with better structure, clarity, grammar, accuracy, and usability:
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
### MLX
|
| 174 |
+
|
| 175 |
+
Run, serve, and fine-tune **MiniMax-M2** locally on your Mac using the **MLX** framework. This guide gets you up and running quickly.
|
| 176 |
+
|
| 177 |
+
> **Requirements**
|
| 178 |
+
> - Apple Silicon Mac (M3 Ultra or later)
|
| 179 |
+
> - **At least 256GB of unified memory (RAM)**
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
**Installation**
|
| 183 |
+
|
| 184 |
+
Install the `mlx-lm` package via pip:
|
| 185 |
+
|
| 186 |
+
```bash
|
| 187 |
+
pip install mlx-lm
|
| 188 |
+
```
|
| 189 |
+
|
| 190 |
+
**CLI**
|
| 191 |
+
|
| 192 |
+
Generate text directly from the terminal:
|
| 193 |
+
|
| 194 |
+
```bash
|
| 195 |
+
mlx_lm.generate \
|
| 196 |
+
--model mlx-community/MiniMax-M2-4bit \
|
| 197 |
+
--prompt "How tall is Mount Everest?"
|
| 198 |
+
```
|
| 199 |
+
|
| 200 |
+
> Add `--max-tokens 256` to control response length, or `--temp 0.7` for creativity.
|
| 201 |
+
|
| 202 |
+
**Python Script Example**
|
| 203 |
+
|
| 204 |
+
Use `mlx-lm` in your own Python scripts:
|
| 205 |
+
|
| 206 |
+
```python
|
| 207 |
+
from mlx_lm import load, generate
|
| 208 |
+
|
| 209 |
+
# Load the quantized model
|
| 210 |
+
model, tokenizer = load("mlx-community/MiniMax-M2-4bit")
|
| 211 |
+
|
| 212 |
+
prompt = "Hello, how are you?"
|
| 213 |
+
|
| 214 |
+
# Apply chat template if available (recommended for chat models)
|
| 215 |
+
if tokenizer.chat_template is not None:
|
| 216 |
+
messages = [{"role": "user", "content": prompt}]
|
| 217 |
+
prompt = tokenizer.apply_chat_template(
|
| 218 |
+
messages,
|
| 219 |
+
tokenize=False,
|
| 220 |
+
add_generation_prompt=True
|
| 221 |
+
)
|
| 222 |
+
|
| 223 |
+
# Generate response
|
| 224 |
+
response = generate(
|
| 225 |
+
model,
|
| 226 |
+
tokenizer,
|
| 227 |
+
prompt=prompt,
|
| 228 |
+
max_tokens=256,
|
| 229 |
+
temp=0.7,
|
| 230 |
+
verbose=True
|
| 231 |
+
)
|
| 232 |
+
|
| 233 |
+
print(response)
|
| 234 |
+
```
|
| 235 |
+
|
| 236 |
+
**Tips**
|
| 237 |
+
- **Model variants**: Check [Hugging Face](https://huggingface.co/collections/mlx-community/minimax-m2) for `MiniMax-M2-4bit`, `6bit`, `8bit`, or `bfloat16` versions.
|
| 238 |
+
- **Fine-tuning**: Use `mlx-lm.lora` for efficient parameter-efficient fine-tuning (PEFT).
|
| 239 |
+
|
| 240 |
+
**Resources**
|
| 241 |
+
- GitHub: [https://github.com/ml-explore/mlx-lm](https://github.com/ml-explore/mlx-lm)
|
| 242 |
+
- Models: [https://huggingface.co/mlx-community](https://huggingface.co/mlx-community)
|
| 243 |
+
|
| 244 |
### SGLang
|
| 245 |
|
| 246 |
We recommend using [SGLang](https://docs.sglang.ai/) to serve MiniMax-M2. SGLang provides solid day-0 support for MiniMax-M2 model. Please refer to our [SGLang Deployment Guide](https://huggingface.co/MiniMaxAI/MiniMax-M2/blob/main/docs/sglang_deploy_guide.md) for more details, and thanks so much for our collaboration with the SGLang team.
|