## MLX deployment guide Run, serve, and fine-tune [**MiniMax-M2**](https://huggingface.co/MiniMaxAI/MiniMax-M2) locally on your Mac using the **MLX** framework. This guide gets you up and running quickly. > **Requirements** > - Apple Silicon Mac (M3 Ultra or later) > - **At least 256GB of unified memory (RAM)** **Installation** Install the `mlx-lm` package via pip: ```bash pip install -U mlx-lm ``` **CLI** Generate text directly from the terminal: ```bash mlx_lm.generate \ --model mlx-community/MiniMax-M2-4bit \ --prompt "How tall is Mount Everest?" ``` > Add `--max-tokens 256` to control response length, or `--temp 0.7` for creativity. **Python Script Example** Use `mlx-lm` in your own Python scripts: ```python from mlx_lm import load, generate # Load the quantized model model, tokenizer = load("mlx-community/MiniMax-M2-4bit") prompt = "Hello, how are you?" # Apply chat template if available (recommended for chat models) if tokenizer.chat_template is not None: messages = [{"role": "user", "content": prompt}] prompt = tokenizer.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) # Generate response response = generate( model, tokenizer, prompt=prompt, max_tokens=256, temp=0.7, verbose=True ) print(response) ``` **Tips** - **Model variants**: Check this [MLX community collection on Hugging Face](https://huggingface.co/collections/mlx-community/minimax-m2) for `MiniMax-M2-4bit`, `6bit`, `8bit`, or `bfloat16` versions. - **Fine-tuning**: Use `mlx-lm.lora` for efficient parameter-efficient fine-tuning (PEFT). **Resources** - GitHub: [https://github.com/ml-explore/mlx-lm](https://github.com/ml-explore/mlx-lm) - Models: [https://huggingface.co/mlx-community](https://huggingface.co/mlx-community)