--- language: - hu tags: - token-classification license: apache-2.0 metrics: - f1 widget: - text: >- A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel. --- # Hungarian Named Entity Recognition Model with huBERT For further models, scripts and details, see [our demo site](https://juniper.nytud.hu/demo/nlp). - Pretrained model used: SZTAKI-HLT/hubert-base-cc - Finetuned on [NYTK-NerKor](https://github.com/nytud/NYTK-NerKor) - NE categories are: PER, LOC, MISC, ORG ## Limitations - max_seq_length = 128 ## Results F-score: **90.18%** ## Usage with pipeline ```python from transformers import pipeline ner = pipeline(task="ner", model="NYTK/named-entity-recognition-nerkor-hubert-hungarian") input_text = "A Kovácsné Nagy Erzsébet nagyon jól érzi magát a Nokiánál, azonban a Németországból érkezett Kovács Péter nehezen boldogul a beilleszkedéssel." print(ner(input_text, aggregation_strategy="simple")) ``` ## Citation If you use this model, please cite the following paper: ``` @inproceedings {yang-language-models, title = {Training language models with low resources: RoBERTa, BART and ELECTRA experimental models for Hungarian}, booktitle = {Proceedings of 12th IEEE International Conference on Cognitive Infocommunications (CogInfoCom 2021)}, year = {2021}, publisher = {IEEE}, address = {Online}, author = {Yang, Zijian Győző and Váradi, Tamás}, pages = {279--285} } ```