File size: 26,585 Bytes
03cde54
 
 
73403a8
 
 
03cde54
 
73403a8
 
33c6485
 
73403a8
 
 
03cde54
73403a8
03cde54
c15ab2a
 
33c6485
 
c15ab2a
 
33c6485
 
03cde54
 
 
 
 
 
 
 
 
 
2ee914a
 
 
 
 
03cde54
 
 
7979594
03cde54
73403a8
03cde54
 
 
c15ab2a
73403a8
03cde54
 
 
 
73403a8
7979594
 
 
 
 
03cde54
7979594
03cde54
7979594
03cde54
73403a8
7979594
 
 
c15ab2a
7979594
73403a8
7979594
03cde54
73403a8
 
 
7979594
 
 
c15ab2a
7979594
 
 
03cde54
73403a8
 
 
03cde54
 
 
 
73403a8
03cde54
c15ab2a
03cde54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73403a8
03cde54
 
 
73403a8
03cde54
73403a8
 
 
c15ab2a
7979594
c15ab2a
 
 
33c6485
 
7979594
 
73403a8
 
33c6485
c15ab2a
 
 
 
33c6485
c15ab2a
 
 
 
 
 
 
73403a8
 
33c6485
 
 
73403a8
 
03cde54
73403a8
03cde54
73403a8
03cde54
 
73403a8
03cde54
 
 
73403a8
03cde54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73403a8
 
03cde54
73403a8
 
 
03cde54
73403a8
03cde54
 
 
 
73403a8
 
03cde54
 
 
73403a8
03cde54
73403a8
 
03cde54
 
73403a8
03cde54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73403a8
03cde54
73403a8
 
7979594
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
03cde54
7979594
03cde54
73403a8
 
7979594
03cde54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73403a8
03cde54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73403a8
03cde54
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c15ab2a
 
 
 
 
 
 
 
 
 
 
 
 
 
73403a8
03cde54
 
73403a8
 
03cde54
 
 
 
 
73403a8
 
03cde54
 
 
73403a8
c15ab2a
7979594
c15ab2a
73403a8
 
 
 
 
c15ab2a
73403a8
 
c15ab2a
73403a8
03cde54
 
 
7979594
 
 
 
 
 
c15ab2a
 
7979594
 
 
c15ab2a
7979594
 
 
 
03cde54
7979594
03cde54
73403a8
03cde54
73403a8
 
c15ab2a
 
 
73403a8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7979594
c15ab2a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
73403a8
c15ab2a
73403a8
 
 
03cde54
 
69ca629
03cde54
73403a8
03cde54
 
 
 
73403a8
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
from original import *
import shutil, glob
from easyfuncs import download_from_url, CachedModels
import os

os.makedirs("dataset", exist_ok=True)
model_library = CachedModels()

# Helper moved outside to avoid lambda issues in UI definition
def get_audio_paths(path):
    if not os.path.exists(path):
        return []
    return [os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]

with gr.Blocks(title="🔊", theme=gr.themes.Base(primary_hue="blue", neutral_hue="zinc")) as app:
    with gr.Tabs():
        with gr.Tab("Inference"):
            with gr.Row():
                # Get initial model choices from original.py
                initial_model_choices = sorted(names) if names else []
                voice_model = gr.Dropdown(
                    label="Model Voice", 
                    choices=initial_model_choices, 
                    value=initial_model_choices[0] if initial_model_choices else None, 
                    interactive=True
                )
                refresh_button = gr.Button("Refresh", variant="primary")
                spk_item = gr.Slider(
                    minimum=0,
                    maximum=2333,
                    step=1,
                    label="Speaker ID",
                    value=0,
                    visible=False,
                    interactive=True,
                )
            vc_transform0 = gr.Number(
                label="Pitch", 
                value=0
            )
            but0 = gr.Button(value="Convert", variant="primary")
            with gr.Row():
                with gr.Column():
                    with gr.Row():
                        dropbox = gr.Audio(label="Drop your audio here & hit the Reload button.", type="filepath")
                    with gr.Row():
                        record_button = gr.Audio(sources=["microphone"], label="OR Record audio.", type="filepath")
                    with gr.Row():
                        input_audio0 = gr.Dropdown(
                            label="Input Path",
                            value=None,
                            choices=[],
                            allow_custom_value=True
                        )
                    with gr.Row():
                        audio_player = gr.Audio()
                        
                        def update_audio_player(path):
                            if path and os.path.exists(path):
                                return path
                            return None
                        
                        input_audio0.change(
                            fn=update_audio_player,
                            inputs=[input_audio0],
                            outputs=[audio_player]
                        )
                        
                        def handle_record(audio):
                            if audio:
                                return audio
                            return None
                        
                        record_button.change(
                            fn=handle_record,
                            inputs=[record_button], 
                            outputs=[input_audio0]
                        )
                        
                        def handle_upload(audio):
                            if audio:
                                return audio
                            return None
                        
                        dropbox.change(
                            fn=handle_upload,
                            inputs=[dropbox], 
                            outputs=[input_audio0]
                        )
                
                with gr.Column():
                    with gr.Accordion("Change Index", open=False):
                        file_index2 = gr.Dropdown(
                            label="Change Index",
                            choices=[],
                            interactive=True,
                            value=None
                        )
                        index_rate1 = gr.Slider(
                            minimum=0,
                            maximum=1,
                            label="Index Strength",
                            value=0.5,
                            interactive=True,
                        )
                    vc_output2 = gr.Audio(label="Output")
                    with gr.Accordion("General Settings", open=False):
                        f0method0 = gr.Radio(
                            label="Method",
                            choices=["pm", "harvest", "crepe", "rmvpe"]
                            if config.dml == False
                            else ["pm", "harvest", "rmvpe"],
                            value="rmvpe",
                            interactive=True,
                        )
                        filter_radius0 = gr.Slider(
                            minimum=0,
                            maximum=7,
                            label="Breathiness Reduction (Harvest only)",
                            value=3,
                            step=1,
                            interactive=True,
                        )
                        resample_sr0 = gr.Slider(
                            minimum=0,
                            maximum=48000,
                            label="Resample",
                            value=0,
                            step=1,
                            interactive=True,
                            visible=False
                        )
                        rms_mix_rate0 = gr.Slider(
                            minimum=0,
                            maximum=1,
                            label="Volume Normalization",
                            value=0,
                            interactive=True,
                        )
                        protect0 = gr.Slider(
                            minimum=0,
                            maximum=0.5,
                            label="Breathiness Protection (0 is enabled, 0.5 is disabled)",
                            value=0.33,
                            step=0.01,
                            interactive=True,
                        )
                    
                    file_index1 = gr.Textbox(
                        label="Index Path",
                        interactive=True,
                        visible=False
                    )

                    # Consolidated refresh logic
                    def refresh_ui():
                        # Get updated lists from change_choices which returns dictionaries
                        try:
                            model_result, index_result = change_choices()
                            model_choices = model_result["choices"]
                            index_choices = index_result["choices"]
                        except Exception as e:
                            print(f"Error in change_choices: {e}")
                            model_choices = []
                            index_choices = []
                        
                        audio_paths = get_audio_paths('audios')
                        
                        # Get current values to preserve selection when possible
                        current_model = voice_model.value
                        current_index = file_index2.value
                        current_audio = input_audio0.value
                        
                        # Set defaults with fallback logic
                        default_model = (current_model if current_model in model_choices 
                                        else (model_choices[0] if model_choices else None))
                        default_index = (current_index if current_index in index_choices 
                                        else (index_choices[0] if index_choices else None))
                        default_audio = (current_audio if current_audio in audio_paths 
                                        else (audio_paths[0] if audio_paths else None))

                        return (
                            gr.update(choices=model_choices, value=default_model),  # voice_model
                            gr.update(choices=index_choices, value=default_index),  # file_index2
                            gr.update(choices=audio_paths, value=default_audio)     # input_audio0
                        )

                    refresh_button.click(
                        fn=refresh_ui,
                        inputs=[],
                        outputs=[voice_model, file_index2, input_audio0],
                        api_name="infer_refresh",
                    )
            
            with gr.Row():
                f0_file = gr.File(label="F0 Path", visible=False)
            with gr.Row():
                vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!", visible=False)
                but0.click(
                    vc.vc_single,  
                    [
                        spk_item,
                        input_audio0,
                        vc_transform0,
                        f0_file,
                        f0method0,
                        file_index1,
                        file_index2,
                        index_rate1,
                        filter_radius0,
                        resample_sr0,
                        rms_mix_rate0,
                        protect0,
                    ],
                    [vc_output1, vc_output2],
                    api_name="infer_convert",
                )  
                voice_model.change(
                    fn=vc.get_vc,
                    inputs=[voice_model, protect0, protect0],
                    outputs=[spk_item, protect0, protect0, file_index2, file_index2],
                    api_name="infer_change_voice",
                )

        with gr.Tab("Download Models"):
            with gr.Row():
                url_input = gr.Textbox(label="URL to model", value="", placeholder="https://...", scale=6)
                name_output = gr.Textbox(label="Save as", value="", placeholder="MyModel", scale=2)
                url_download = gr.Button(value="Download Model", scale=2)
                url_download.click(
                    inputs=[url_input, name_output],
                    outputs=[url_input],
                    fn=download_from_url,
                )
            with gr.Row():
                model_browser = gr.Dropdown(choices=list(model_library.models.keys()), label="OR Search Models (Quality UNKNOWN)", scale=5)
                download_from_browser = gr.Button(value="Get", scale=2)
                download_from_browser.click(
                    inputs=[model_browser],
                    outputs=[model_browser],
                    fn=lambda model: download_from_url(model_library.models[model], model),
                )

        with gr.Tab("Train"):
            with gr.Row():
                with gr.Column():
                    training_name = gr.Textbox(label="Name your model", value="My-Voice", placeholder="My-Voice")
                    np7 = gr.Slider(
                        minimum=0,
                        maximum=config.n_cpu,
                        step=1,
                        label="Number of CPU processes used to extract pitch features",
                        value=int(np.ceil(config.n_cpu / 1.5)),
                        interactive=True,
                    )
                    sr2 = gr.Radio(
                        label="Sampling Rate",
                        choices=["40k", "32k"],
                        value="32k",
                        interactive=True,
                        visible=False
                    )
                    if_f0_3 = gr.Radio(
                        label="Will your model be used for singing? If not, you can ignore this.",
                        choices=[True, False],
                        value=True,
                        interactive=True,
                        visible=False
                    )
                    version19 = gr.Radio(
                        label="Version",
                        choices=["v1", "v2"],
                        value="v2",
                        interactive=True,
                        visible=False,
                    )
                    dataset_folder = gr.Textbox(
                        label="dataset folder", value='dataset'
                    )
                    easy_uploader = gr.File(label="Drop your audio files here", file_count="multiple", file_types=["audio"])
                    but1 = gr.Button("1. Process", variant="primary")
                    info1 = gr.Textbox(label="Information", value="", visible=True)
                    
                    def handle_file_upload(files, folder):
                        if not folder or folder.strip() == "":
                            gr.Warning('Please enter a folder name for your dataset')
                            return []
                        if not os.path.exists(folder):
                            os.makedirs(folder, exist_ok=True)
                        
                        saved_files = []
                        for file_obj in files:
                            if hasattr(file_obj, 'name'):  # Handle Gradio file object
                                filename = os.path.basename(file_obj.name)
                                dest_path = os.path.join(folder, filename)
                                shutil.copy2(file_obj.name, dest_path)
                                saved_files.append(dest_path)
                            elif isinstance(file_obj, str):  # Handle string path
                                filename = os.path.basename(file_obj)
                                dest_path = os.path.join(folder, filename)
                                shutil.copy2(file_obj, dest_path)
                                saved_files.append(dest_path)
                        return []
                    
                    easy_uploader.upload(
                        fn=handle_file_upload,
                        inputs=[easy_uploader, dataset_folder], 
                        outputs=[]
                    )
                    
                    gpus6 = gr.Textbox(
                        label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)",
                        value=gpus,
                        interactive=True,
                        visible=F0GPUVisible,
                    )
                    gpu_info9 = gr.Textbox(
                        label="GPU Info", value=gpu_info, visible=F0GPUVisible
                    )
                    spk_id5 = gr.Slider(
                        minimum=0,
                        maximum=4,
                        step=1,
                        label="Speaker ID",
                        value=0,
                        interactive=True,
                        visible=False
                    )
                    but1.click(
                        preprocess_dataset,
                        [dataset_folder, training_name, sr2, np7],
                        [info1],
                        api_name="train_preprocess",
                    ) 
                
                with gr.Column():
                    f0method8 = gr.Radio(
                        label="F0 extraction method",
                        choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
                        value="rmvpe_gpu",
                        interactive=True,
                    )
                    gpus_rmvpe = gr.Textbox(
                        label="GPU numbers to use separated by -, (e.g. 0-1-2)",
                        value="%s-%s" % (gpus, gpus),
                        interactive=True,
                        visible=F0GPUVisible,
                    )
                    but2 = gr.Button("2. Extract Features", variant="primary")
                    info2 = gr.Textbox(label="Information", value="", max_lines=8)
                    f0method8.change(
                        fn=change_f0_method,
                        inputs=[f0method8],
                        outputs=[gpus_rmvpe],
                    )
                    but2.click(
                        extract_f0_feature,
                        [
                            gpus6,
                            np7,
                            f0method8,
                            if_f0_3,
                            training_name,
                            version19,
                            gpus_rmvpe,
                        ],
                        [info2],
                        api_name="train_extract_f0_feature",
                    )
                
                with gr.Column():
                    total_epoch11 = gr.Slider(
                        minimum=2,
                        maximum=1000,
                        step=1,
                        label="Epochs (more epochs may improve quality but takes longer)",
                        value=150,
                        interactive=True,
                    )
                    but4 = gr.Button("3. Train Index", variant="primary")
                    but3 = gr.Button("4. Train Model", variant="primary")
                    info3 = gr.Textbox(label="Information", value="", max_lines=10)
                    with gr.Accordion(label="General Settings", open=False):
                        gpus16 = gr.Textbox(
                            label="GPUs separated by -, (e.g. 0-1-2)",
                            value="0",
                            interactive=True,
                            visible=True
                        )
                        save_epoch10 = gr.Slider(
                            minimum=1,
                            maximum=50,
                            step=1,
                            label="Weight Saving Frequency",
                            value=25,
                            interactive=True,
                        )
                        batch_size12 = gr.Slider(
                            minimum=1,
                            maximum=40,
                            step=1,
                            label="Batch Size",
                            value=default_batch_size,
                            interactive=True,
                        )
                        if_save_latest13 = gr.Radio(
                            label="Only save the latest model",
                            choices=["yes", "no"],
                            value="yes",
                            interactive=True,
                            visible=False
                        )
                        if_cache_gpu17 = gr.Radio(
                            label="If your dataset is UNDER 10 minutes, cache it to train faster",
                            choices=["yes", "no"],
                            value="no",
                            interactive=True,
                        )
                        if_save_every_weights18 = gr.Radio(
                            label="Save small model at every save point",
                            choices=["yes", "no"],
                            value="yes",
                            interactive=True,
                        )
                        with gr.Accordion(label="Change pretrains", open=False):
                            def get_pretrained_choices(sr, if_f0, version):
                                # Use the original functions from original.py
                                if version == "v1":
                                    path_str = ""
                                else:
                                    path_str = "_v2"
                                
                                if if_f0:
                                    f0_str = "f0"
                                else:
                                    f0_str = ""
                                
                                pretrained_G, pretrained_D = get_pretrained_models(path_str, f0_str, sr)
                                return [pretrained_G] if pretrained_G else [], [pretrained_D] if pretrained_D else []

                            pretrained_G14 = gr.Dropdown(
                                label="pretrained G",
                                choices=[],
                                value="",
                                interactive=True,
                                visible=True
                            )
                            pretrained_D15 = gr.Dropdown(
                                label="pretrained D",
                                choices=[],
                                value="",
                                visible=True,
                                interactive=True
                            )

                            def update_pretrained_dropdowns(sr, if_f0, ver):
                                sr_str = sr if isinstance(sr, str) else str(sr)
                                g_choices, d_choices = get_pretrained_choices(sr_str, if_f0, ver)
                                return (
                                    gr.update(choices=g_choices, value=g_choices[0] if g_choices else ""),
                                    gr.update(choices=d_choices, value=d_choices[0] if d_choices else "")
                                )
                            
                            # Bind update function to changes
                            sr2.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15])
                            version19.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15])
                            if_f0_3.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15])

                    with gr.Row():
                        download_model = gr.Button('5.Download Model')
                    with gr.Row():
                        model_files = gr.File(label='Your Model and Index file can be downloaded here:')
                        
                        def download_model_files(name):
                            if not name or name.strip() == "":
                                return [], "Please enter a model name"
                            
                            model_path = f'logs/{name}'
                            index_pattern = f'logs/{name}/added_*.index'
                            
                            files = []
                            if os.path.exists(model_path):
                                files.extend([os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.pth')])
                            files.extend(glob.glob(index_pattern))
                            
                            return files, f"Found {len(files)} files"
                        
                        download_model.click(
                            fn=download_model_files,
                            inputs=[training_name], 
                            outputs=[model_files, info3]
                        )
                    
                    if_f0_3.change(
                        fn=change_f0,
                        inputs=[if_f0_3, sr2, version19],
                        outputs=[f0method8, pretrained_G14, pretrained_D15],
                    )
                    
                    but5 = gr.Button("1 Click Training", variant="primary", visible=False)
                    but3.click(
                        click_train,
                        [
                            training_name,
                            sr2,
                            if_f0_3,
                            spk_id5,
                            save_epoch10,
                            total_epoch11,
                            batch_size12,
                            if_save_latest13,
                            pretrained_G14,
                            pretrained_D15,
                            gpus16,
                            if_cache_gpu17,
                            if_save_every_weights18,
                            version19,
                        ],
                        info3,
                        api_name="train_start",
                    )
                    but4.click(train_index, [training_name, version19], info3)
                    but5.click(
                        train1key,
                        [
                            training_name,
                            sr2,
                            if_f0_3,
                            dataset_folder,
                            spk_id5,
                            np7,
                            f0method8,
                            save_epoch10,
                            total_epoch11,
                            batch_size12,
                            if_save_latest13,
                            pretrained_G14,
                            pretrained_D15,
                            gpus16,
                            if_cache_gpu17,
                            if_save_every_weights18,
                            version19,
                            gpus_rmvpe,
                        ],
                        info3,
                        api_name="train_start_all",
                    )

    # Populate UI on load
    def on_load():
        # Initial refresh
        model_result, index_result = change_choices()
        audio_paths = get_audio_paths('audios')
        
        default_model = model_result["choices"][0] if model_result["choices"] else None
        default_index = index_result["choices"][0] if index_result["choices"] else None
        default_audio = audio_paths[0] if audio_paths else None
        
        return (
            gr.update(choices=model_result["choices"], value=default_model),  # voice_model
            gr.update(choices=index_result["choices"], value=default_index),  # file_index2
            gr.update(choices=audio_paths, value=default_audio)              # input_audio0
        )
    
    app.load(
        fn=on_load,
        inputs=[],
        outputs=[voice_model, file_index2, input_audio0]
    )

    if config.iscolab:
        app.launch(share=True, quiet=False)
    else:
        app.launch(
            server_name="0.0.0.0",
            inbrowser=not config.noautoopen,
            server_port=config.listen_port,
            quiet=True,
        )