File size: 26,585 Bytes
03cde54 73403a8 03cde54 73403a8 33c6485 73403a8 03cde54 73403a8 03cde54 c15ab2a 33c6485 c15ab2a 33c6485 03cde54 2ee914a 03cde54 7979594 03cde54 73403a8 03cde54 c15ab2a 73403a8 03cde54 73403a8 7979594 03cde54 7979594 03cde54 7979594 03cde54 73403a8 7979594 c15ab2a 7979594 73403a8 7979594 03cde54 73403a8 7979594 c15ab2a 7979594 03cde54 73403a8 03cde54 73403a8 03cde54 c15ab2a 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 c15ab2a 7979594 c15ab2a 33c6485 7979594 73403a8 33c6485 c15ab2a 33c6485 c15ab2a 73403a8 33c6485 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 7979594 03cde54 7979594 03cde54 73403a8 7979594 03cde54 73403a8 03cde54 73403a8 03cde54 c15ab2a 73403a8 03cde54 73403a8 03cde54 73403a8 03cde54 73403a8 c15ab2a 7979594 c15ab2a 73403a8 c15ab2a 73403a8 c15ab2a 73403a8 03cde54 7979594 c15ab2a 7979594 c15ab2a 7979594 03cde54 7979594 03cde54 73403a8 03cde54 73403a8 c15ab2a 73403a8 7979594 c15ab2a 73403a8 c15ab2a 73403a8 03cde54 69ca629 03cde54 73403a8 03cde54 73403a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 |
from original import *
import shutil, glob
from easyfuncs import download_from_url, CachedModels
import os
os.makedirs("dataset", exist_ok=True)
model_library = CachedModels()
# Helper moved outside to avoid lambda issues in UI definition
def get_audio_paths(path):
if not os.path.exists(path):
return []
return [os.path.abspath(os.path.join(path, f)) for f in os.listdir(path) if os.path.splitext(f)[1].lower() in ('.mp3', '.wav', '.flac', '.ogg')]
with gr.Blocks(title="🔊", theme=gr.themes.Base(primary_hue="blue", neutral_hue="zinc")) as app:
with gr.Tabs():
with gr.Tab("Inference"):
with gr.Row():
# Get initial model choices from original.py
initial_model_choices = sorted(names) if names else []
voice_model = gr.Dropdown(
label="Model Voice",
choices=initial_model_choices,
value=initial_model_choices[0] if initial_model_choices else None,
interactive=True
)
refresh_button = gr.Button("Refresh", variant="primary")
spk_item = gr.Slider(
minimum=0,
maximum=2333,
step=1,
label="Speaker ID",
value=0,
visible=False,
interactive=True,
)
vc_transform0 = gr.Number(
label="Pitch",
value=0
)
but0 = gr.Button(value="Convert", variant="primary")
with gr.Row():
with gr.Column():
with gr.Row():
dropbox = gr.Audio(label="Drop your audio here & hit the Reload button.", type="filepath")
with gr.Row():
record_button = gr.Audio(sources=["microphone"], label="OR Record audio.", type="filepath")
with gr.Row():
input_audio0 = gr.Dropdown(
label="Input Path",
value=None,
choices=[],
allow_custom_value=True
)
with gr.Row():
audio_player = gr.Audio()
def update_audio_player(path):
if path and os.path.exists(path):
return path
return None
input_audio0.change(
fn=update_audio_player,
inputs=[input_audio0],
outputs=[audio_player]
)
def handle_record(audio):
if audio:
return audio
return None
record_button.change(
fn=handle_record,
inputs=[record_button],
outputs=[input_audio0]
)
def handle_upload(audio):
if audio:
return audio
return None
dropbox.change(
fn=handle_upload,
inputs=[dropbox],
outputs=[input_audio0]
)
with gr.Column():
with gr.Accordion("Change Index", open=False):
file_index2 = gr.Dropdown(
label="Change Index",
choices=[],
interactive=True,
value=None
)
index_rate1 = gr.Slider(
minimum=0,
maximum=1,
label="Index Strength",
value=0.5,
interactive=True,
)
vc_output2 = gr.Audio(label="Output")
with gr.Accordion("General Settings", open=False):
f0method0 = gr.Radio(
label="Method",
choices=["pm", "harvest", "crepe", "rmvpe"]
if config.dml == False
else ["pm", "harvest", "rmvpe"],
value="rmvpe",
interactive=True,
)
filter_radius0 = gr.Slider(
minimum=0,
maximum=7,
label="Breathiness Reduction (Harvest only)",
value=3,
step=1,
interactive=True,
)
resample_sr0 = gr.Slider(
minimum=0,
maximum=48000,
label="Resample",
value=0,
step=1,
interactive=True,
visible=False
)
rms_mix_rate0 = gr.Slider(
minimum=0,
maximum=1,
label="Volume Normalization",
value=0,
interactive=True,
)
protect0 = gr.Slider(
minimum=0,
maximum=0.5,
label="Breathiness Protection (0 is enabled, 0.5 is disabled)",
value=0.33,
step=0.01,
interactive=True,
)
file_index1 = gr.Textbox(
label="Index Path",
interactive=True,
visible=False
)
# Consolidated refresh logic
def refresh_ui():
# Get updated lists from change_choices which returns dictionaries
try:
model_result, index_result = change_choices()
model_choices = model_result["choices"]
index_choices = index_result["choices"]
except Exception as e:
print(f"Error in change_choices: {e}")
model_choices = []
index_choices = []
audio_paths = get_audio_paths('audios')
# Get current values to preserve selection when possible
current_model = voice_model.value
current_index = file_index2.value
current_audio = input_audio0.value
# Set defaults with fallback logic
default_model = (current_model if current_model in model_choices
else (model_choices[0] if model_choices else None))
default_index = (current_index if current_index in index_choices
else (index_choices[0] if index_choices else None))
default_audio = (current_audio if current_audio in audio_paths
else (audio_paths[0] if audio_paths else None))
return (
gr.update(choices=model_choices, value=default_model), # voice_model
gr.update(choices=index_choices, value=default_index), # file_index2
gr.update(choices=audio_paths, value=default_audio) # input_audio0
)
refresh_button.click(
fn=refresh_ui,
inputs=[],
outputs=[voice_model, file_index2, input_audio0],
api_name="infer_refresh",
)
with gr.Row():
f0_file = gr.File(label="F0 Path", visible=False)
with gr.Row():
vc_output1 = gr.Textbox(label="Information", placeholder="Welcome!", visible=False)
but0.click(
vc.vc_single,
[
spk_item,
input_audio0,
vc_transform0,
f0_file,
f0method0,
file_index1,
file_index2,
index_rate1,
filter_radius0,
resample_sr0,
rms_mix_rate0,
protect0,
],
[vc_output1, vc_output2],
api_name="infer_convert",
)
voice_model.change(
fn=vc.get_vc,
inputs=[voice_model, protect0, protect0],
outputs=[spk_item, protect0, protect0, file_index2, file_index2],
api_name="infer_change_voice",
)
with gr.Tab("Download Models"):
with gr.Row():
url_input = gr.Textbox(label="URL to model", value="", placeholder="https://...", scale=6)
name_output = gr.Textbox(label="Save as", value="", placeholder="MyModel", scale=2)
url_download = gr.Button(value="Download Model", scale=2)
url_download.click(
inputs=[url_input, name_output],
outputs=[url_input],
fn=download_from_url,
)
with gr.Row():
model_browser = gr.Dropdown(choices=list(model_library.models.keys()), label="OR Search Models (Quality UNKNOWN)", scale=5)
download_from_browser = gr.Button(value="Get", scale=2)
download_from_browser.click(
inputs=[model_browser],
outputs=[model_browser],
fn=lambda model: download_from_url(model_library.models[model], model),
)
with gr.Tab("Train"):
with gr.Row():
with gr.Column():
training_name = gr.Textbox(label="Name your model", value="My-Voice", placeholder="My-Voice")
np7 = gr.Slider(
minimum=0,
maximum=config.n_cpu,
step=1,
label="Number of CPU processes used to extract pitch features",
value=int(np.ceil(config.n_cpu / 1.5)),
interactive=True,
)
sr2 = gr.Radio(
label="Sampling Rate",
choices=["40k", "32k"],
value="32k",
interactive=True,
visible=False
)
if_f0_3 = gr.Radio(
label="Will your model be used for singing? If not, you can ignore this.",
choices=[True, False],
value=True,
interactive=True,
visible=False
)
version19 = gr.Radio(
label="Version",
choices=["v1", "v2"],
value="v2",
interactive=True,
visible=False,
)
dataset_folder = gr.Textbox(
label="dataset folder", value='dataset'
)
easy_uploader = gr.File(label="Drop your audio files here", file_count="multiple", file_types=["audio"])
but1 = gr.Button("1. Process", variant="primary")
info1 = gr.Textbox(label="Information", value="", visible=True)
def handle_file_upload(files, folder):
if not folder or folder.strip() == "":
gr.Warning('Please enter a folder name for your dataset')
return []
if not os.path.exists(folder):
os.makedirs(folder, exist_ok=True)
saved_files = []
for file_obj in files:
if hasattr(file_obj, 'name'): # Handle Gradio file object
filename = os.path.basename(file_obj.name)
dest_path = os.path.join(folder, filename)
shutil.copy2(file_obj.name, dest_path)
saved_files.append(dest_path)
elif isinstance(file_obj, str): # Handle string path
filename = os.path.basename(file_obj)
dest_path = os.path.join(folder, filename)
shutil.copy2(file_obj, dest_path)
saved_files.append(dest_path)
return []
easy_uploader.upload(
fn=handle_file_upload,
inputs=[easy_uploader, dataset_folder],
outputs=[]
)
gpus6 = gr.Textbox(
label="Enter the GPU numbers to use separated by -, (e.g. 0-1-2)",
value=gpus,
interactive=True,
visible=F0GPUVisible,
)
gpu_info9 = gr.Textbox(
label="GPU Info", value=gpu_info, visible=F0GPUVisible
)
spk_id5 = gr.Slider(
minimum=0,
maximum=4,
step=1,
label="Speaker ID",
value=0,
interactive=True,
visible=False
)
but1.click(
preprocess_dataset,
[dataset_folder, training_name, sr2, np7],
[info1],
api_name="train_preprocess",
)
with gr.Column():
f0method8 = gr.Radio(
label="F0 extraction method",
choices=["pm", "harvest", "dio", "rmvpe", "rmvpe_gpu"],
value="rmvpe_gpu",
interactive=True,
)
gpus_rmvpe = gr.Textbox(
label="GPU numbers to use separated by -, (e.g. 0-1-2)",
value="%s-%s" % (gpus, gpus),
interactive=True,
visible=F0GPUVisible,
)
but2 = gr.Button("2. Extract Features", variant="primary")
info2 = gr.Textbox(label="Information", value="", max_lines=8)
f0method8.change(
fn=change_f0_method,
inputs=[f0method8],
outputs=[gpus_rmvpe],
)
but2.click(
extract_f0_feature,
[
gpus6,
np7,
f0method8,
if_f0_3,
training_name,
version19,
gpus_rmvpe,
],
[info2],
api_name="train_extract_f0_feature",
)
with gr.Column():
total_epoch11 = gr.Slider(
minimum=2,
maximum=1000,
step=1,
label="Epochs (more epochs may improve quality but takes longer)",
value=150,
interactive=True,
)
but4 = gr.Button("3. Train Index", variant="primary")
but3 = gr.Button("4. Train Model", variant="primary")
info3 = gr.Textbox(label="Information", value="", max_lines=10)
with gr.Accordion(label="General Settings", open=False):
gpus16 = gr.Textbox(
label="GPUs separated by -, (e.g. 0-1-2)",
value="0",
interactive=True,
visible=True
)
save_epoch10 = gr.Slider(
minimum=1,
maximum=50,
step=1,
label="Weight Saving Frequency",
value=25,
interactive=True,
)
batch_size12 = gr.Slider(
minimum=1,
maximum=40,
step=1,
label="Batch Size",
value=default_batch_size,
interactive=True,
)
if_save_latest13 = gr.Radio(
label="Only save the latest model",
choices=["yes", "no"],
value="yes",
interactive=True,
visible=False
)
if_cache_gpu17 = gr.Radio(
label="If your dataset is UNDER 10 minutes, cache it to train faster",
choices=["yes", "no"],
value="no",
interactive=True,
)
if_save_every_weights18 = gr.Radio(
label="Save small model at every save point",
choices=["yes", "no"],
value="yes",
interactive=True,
)
with gr.Accordion(label="Change pretrains", open=False):
def get_pretrained_choices(sr, if_f0, version):
# Use the original functions from original.py
if version == "v1":
path_str = ""
else:
path_str = "_v2"
if if_f0:
f0_str = "f0"
else:
f0_str = ""
pretrained_G, pretrained_D = get_pretrained_models(path_str, f0_str, sr)
return [pretrained_G] if pretrained_G else [], [pretrained_D] if pretrained_D else []
pretrained_G14 = gr.Dropdown(
label="pretrained G",
choices=[],
value="",
interactive=True,
visible=True
)
pretrained_D15 = gr.Dropdown(
label="pretrained D",
choices=[],
value="",
visible=True,
interactive=True
)
def update_pretrained_dropdowns(sr, if_f0, ver):
sr_str = sr if isinstance(sr, str) else str(sr)
g_choices, d_choices = get_pretrained_choices(sr_str, if_f0, ver)
return (
gr.update(choices=g_choices, value=g_choices[0] if g_choices else ""),
gr.update(choices=d_choices, value=d_choices[0] if d_choices else "")
)
# Bind update function to changes
sr2.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15])
version19.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15])
if_f0_3.change(fn=update_pretrained_dropdowns, inputs=[sr2, if_f0_3, version19], outputs=[pretrained_G14, pretrained_D15])
with gr.Row():
download_model = gr.Button('5.Download Model')
with gr.Row():
model_files = gr.File(label='Your Model and Index file can be downloaded here:')
def download_model_files(name):
if not name or name.strip() == "":
return [], "Please enter a model name"
model_path = f'logs/{name}'
index_pattern = f'logs/{name}/added_*.index'
files = []
if os.path.exists(model_path):
files.extend([os.path.join(model_path, f) for f in os.listdir(model_path) if f.endswith('.pth')])
files.extend(glob.glob(index_pattern))
return files, f"Found {len(files)} files"
download_model.click(
fn=download_model_files,
inputs=[training_name],
outputs=[model_files, info3]
)
if_f0_3.change(
fn=change_f0,
inputs=[if_f0_3, sr2, version19],
outputs=[f0method8, pretrained_G14, pretrained_D15],
)
but5 = gr.Button("1 Click Training", variant="primary", visible=False)
but3.click(
click_train,
[
training_name,
sr2,
if_f0_3,
spk_id5,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
],
info3,
api_name="train_start",
)
but4.click(train_index, [training_name, version19], info3)
but5.click(
train1key,
[
training_name,
sr2,
if_f0_3,
dataset_folder,
spk_id5,
np7,
f0method8,
save_epoch10,
total_epoch11,
batch_size12,
if_save_latest13,
pretrained_G14,
pretrained_D15,
gpus16,
if_cache_gpu17,
if_save_every_weights18,
version19,
gpus_rmvpe,
],
info3,
api_name="train_start_all",
)
# Populate UI on load
def on_load():
# Initial refresh
model_result, index_result = change_choices()
audio_paths = get_audio_paths('audios')
default_model = model_result["choices"][0] if model_result["choices"] else None
default_index = index_result["choices"][0] if index_result["choices"] else None
default_audio = audio_paths[0] if audio_paths else None
return (
gr.update(choices=model_result["choices"], value=default_model), # voice_model
gr.update(choices=index_result["choices"], value=default_index), # file_index2
gr.update(choices=audio_paths, value=default_audio) # input_audio0
)
app.load(
fn=on_load,
inputs=[],
outputs=[voice_model, file_index2, input_audio0]
)
if config.iscolab:
app.launch(share=True, quiet=False)
else:
app.launch(
server_name="0.0.0.0",
inbrowser=not config.noautoopen,
server_port=config.listen_port,
quiet=True,
) |