English
refoundd commited on
Commit
2ccac96
·
verified ·
1 Parent(s): 1f6fa60

Update handler.py

Browse files
Files changed (1) hide show
  1. handler.py +47 -67
handler.py CHANGED
@@ -1,20 +1,15 @@
1
  import os
2
- from typing import Any, Dict, Union
3
  from PIL import Image
4
  import torch
5
  from diffusers import FluxPipeline
6
  from huggingface_inference_toolkit.logging import logger
7
  from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
8
- from torchao.quantization import autoquant
9
  import time
10
- import gc
11
-
12
- # Set high precision for float32 matrix multiplications.
13
- # This setting optimizes performance on NVIDIA GPUs with Ampere architecture (e.g., A100, RTX 30 series) or newer.
14
- torch.set_float32_matmul_precision("high")
15
-
16
- import torch._dynamo
17
- torch._dynamo.config.suppress_errors = False # for debugging
18
 
19
  class EndpointHandler:
20
  def __init__(self, path=""):
@@ -22,75 +17,60 @@ class EndpointHandler:
22
  "NoMoreCopyrightOrg/flux-dev",
23
  torch_dtype=torch.bfloat16,
24
  ).to("cuda")
25
- self.pipe.enable_vae_slicing()
26
- self.pipe.enable_vae_tiling()
27
- self.pipe.transformer.fuse_qkv_projections()
28
- self.pipe.vae.fuse_qkv_projections()
29
- self.pipe.transformer.to(memory_format=torch.channels_last)
30
- self.pipe.vae.to(memory_format=torch.channels_last)
 
 
 
31
  apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.12)
 
32
  self.pipe.transformer = torch.compile(
33
  self.pipe.transformer, mode="max-autotune-no-cudagraphs",
34
  )
35
  self.pipe.vae = torch.compile(
36
  self.pipe.vae, mode="max-autotune-no-cudagraphs",
37
  )
38
- self.pipe.transformer = autoquant(self.pipe.transformer, error_on_unseen=False)
39
- self.pipe.vae = autoquant(self.pipe.vae, error_on_unseen=False)
40
-
41
- gc.collect()
42
- torch.cuda.empty_cache()
43
 
44
- start_time = time.time()
45
- print("Start warming-up pipeline")
46
- self.pipe("Hello world!") # Warm-up for compiling
47
- end_time = time.time()
48
- time_taken = end_time - start_time
49
- print(f"Time taken: {time_taken:.2f} seconds")
50
- self.record=0
51
 
52
- def __call__(self, data: Dict[str, Any]) -> Union[Image.Image, None]:
53
- try:
54
- logger.info(f"Received incoming request with {data=}")
 
 
 
 
 
 
55
 
56
- if "inputs" in data and isinstance(data["inputs"], str):
57
- prompt = data.pop("inputs")
58
- elif "prompt" in data and isinstance(data["prompt"], str):
59
- prompt = data.pop("prompt")
60
- else:
61
- raise ValueError(
62
- "Provided input body must contain either the key `inputs` or `prompt` with the"
63
- " prompt to use for the image generation, and it needs to be a non-empty string."
64
- )
65
- if prompt=="get_queue":
66
- return self.record
67
- parameters = data.pop("parameters", {})
68
 
69
- num_inference_steps = parameters.get("num_inference_steps", 28)
70
- width = parameters.get("width", 1024)
71
- height = parameters.get("height", 1024)
72
- #guidance_scale = parameters.get("guidance_scale", 3.5)
73
- guidance_scale = parameters.get("guidance", 3.5)
74
 
75
- # seed generator (seed cannot be provided as is but via a generator)
76
- seed = parameters.get("seed", 0)
77
- generator = torch.manual_seed(seed)
78
- self.record+=1
79
- start_time = time.time()
80
- result = self.pipe( # type: ignore
81
- prompt,
82
- height=height,
83
- width=width,
84
- guidance_scale=guidance_scale,
85
- num_inference_steps=num_inference_steps,
86
- generator=generator,
87
- ).images[0]
88
- end_time = time.time()
 
89
  time_taken = end_time - start_time
90
  print(f"Time taken: {time_taken:.2f} seconds")
91
- self.record-=1
92
-
93
  return result
94
- except Exception as e:
95
- print(e)
96
- return None
 
1
  import os
2
+ from typing import Any, Dict
3
  from PIL import Image
4
  import torch
5
  from diffusers import FluxPipeline
6
  from huggingface_inference_toolkit.logging import logger
7
  from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
 
8
  import time
9
+ import torch.distributed as dist
10
+ from para_attn.context_parallel import init_context_parallel_mesh
11
+ from para_attn.context_parallel.diffusers_adapters import parallelize_pipe
12
+ from para_attn.parallel_vae.diffusers_adapters import parallelize_vae
 
 
 
 
13
 
14
  class EndpointHandler:
15
  def __init__(self, path=""):
 
17
  "NoMoreCopyrightOrg/flux-dev",
18
  torch_dtype=torch.bfloat16,
19
  ).to("cuda")
20
+ mesh = init_context_parallel_mesh(
21
+ self.pipe.device.type,
22
+ max_ring_dim_size=2,
23
+ )
24
+ parallelize_pipe(
25
+ self.pipe,
26
+ mesh=mesh,
27
+ )
28
+ parallelize_vae(self.pipe.vae, mesh=mesh._flatten())
29
  apply_cache_on_pipe(self.pipe, residual_diff_threshold=0.12)
30
+ torch._inductor.config.reorder_for_compute_comm_overlap = True
31
  self.pipe.transformer = torch.compile(
32
  self.pipe.transformer, mode="max-autotune-no-cudagraphs",
33
  )
34
  self.pipe.vae = torch.compile(
35
  self.pipe.vae, mode="max-autotune-no-cudagraphs",
36
  )
 
 
 
 
 
37
 
38
+ def __call__(self, data: Dict[str, Any]) -> str:
39
+ logger.info(f"Received incoming request with {data=}")
 
 
 
 
 
40
 
41
+ if "inputs" in data and isinstance(data["inputs"], str):
42
+ prompt = data.pop("inputs")
43
+ elif "prompt" in data and isinstance(data["prompt"], str):
44
+ prompt = data.pop("prompt")
45
+ else:
46
+ raise ValueError(
47
+ "Provided input body must contain either the key `inputs` or `prompt` with the"
48
+ " prompt to use for the image generation, and it needs to be a non-empty string."
49
+ )
50
 
51
+ parameters = data.pop("parameters", {})
 
 
 
 
 
 
 
 
 
 
 
52
 
53
+ num_inference_steps = parameters.get("num_inference_steps", 28)
54
+ width = parameters.get("width", 1024)
55
+ height = parameters.get("height", 1024)
56
+ guidance_scale = parameters.get("guidance_scale", 3.5)
 
57
 
58
+ # seed generator (seed cannot be provided as is but via a generator)
59
+ seed = parameters.get("seed", 0)
60
+ generator = torch.manual_seed(seed)
61
+ start_time = time.time()
62
+ result = self.pipe( # type: ignore
63
+ prompt,
64
+ height=height,
65
+ width=width,
66
+ guidance_scale=guidance_scale,
67
+ num_inference_steps=num_inference_steps,
68
+ generator=generator,
69
+ output_type="pil" if dist.get_rank() == 0 else "pt",
70
+ ).images[0]
71
+ end_time = time.time()
72
+ if dist.get_rank() == 0:
73
  time_taken = end_time - start_time
74
  print(f"Time taken: {time_taken:.2f} seconds")
 
 
75
  return result
76
+ return "123"