|  | import os | 
					
						
						|  | from typing import Any, Dict, Union | 
					
						
						|  | from PIL import Image | 
					
						
						|  | import torch | 
					
						
						|  | from diffusers import FluxPipeline | 
					
						
						|  | from huggingface_inference_toolkit.logging import logger | 
					
						
						|  | from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe | 
					
						
						|  | from torchao.quantization import autoquant | 
					
						
						|  | import time | 
					
						
						|  | import gc | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | torch.set_float32_matmul_precision("high") | 
					
						
						|  |  | 
					
						
						|  | import torch._dynamo | 
					
						
						|  | torch._dynamo.config.suppress_errors = False | 
					
						
						|  |  | 
					
						
						|  | class EndpointHandler: | 
					
						
						|  | def __init__(self, path=""): | 
					
						
						|  | self.pipeline = FluxPipeline.from_pretrained( | 
					
						
						|  | "NoMoreCopyrightOrg/flux-dev", | 
					
						
						|  | torch_dtype=torch.bfloat16, | 
					
						
						|  | ).to("cuda") | 
					
						
						|  | self.pipeline.enable_vae_slicing() | 
					
						
						|  | self.pipeline.enable_vae_tiling() | 
					
						
						|  | self.pipeline.transformer.fuse_qkv_projections() | 
					
						
						|  | self.pipeline.vae.fuse_qkv_projections() | 
					
						
						|  | self.pipeline.transformer.to(memory_format=torch.channels_last) | 
					
						
						|  | self.pipeline.vae.to(memory_format=torch.channels_last) | 
					
						
						|  | apply_cache_on_pipe(self.pipeline, residual_diff_threshold=0.12) | 
					
						
						|  | self.pipeline.transformer = torch.compile( | 
					
						
						|  | self.pipeline.transformer, mode="max-autotune-no-cudagraphs", | 
					
						
						|  | ) | 
					
						
						|  | self.pipeline.vae = torch.compile( | 
					
						
						|  | self.pipeline.vae, mode="max-autotune-no-cudagraphs", | 
					
						
						|  | ) | 
					
						
						|  | self.pipeline.transformer = autoquant(self.pipeline.transformer, error_on_unseen=False) | 
					
						
						|  | self.pipeline.vae = autoquant(self.pipeline.vae, error_on_unseen=False) | 
					
						
						|  |  | 
					
						
						|  | gc.collect() | 
					
						
						|  | torch.cuda.empty_cache() | 
					
						
						|  |  | 
					
						
						|  | start_time = time.time() | 
					
						
						|  | print("Start warming-up pipeline") | 
					
						
						|  | self.pipeline("Hello world!") | 
					
						
						|  | end_time = time.time() | 
					
						
						|  | time_taken = end_time - start_time | 
					
						
						|  | print(f"Time taken: {time_taken:.2f} seconds") | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, data: Dict[str, Any]) -> Union[Image.Image, None]: | 
					
						
						|  | logger.info(f"Received incoming request with {data=}") | 
					
						
						|  | try: | 
					
						
						|  | if "inputs" in data and isinstance(data["inputs"], str): | 
					
						
						|  | prompt = data.pop("inputs") | 
					
						
						|  | elif "prompt" in data and isinstance(data["prompt"], str): | 
					
						
						|  | prompt = data.pop("prompt") | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | "Provided input body must contain either the key `inputs` or `prompt` with the" | 
					
						
						|  | " prompt to use for the image generation, and it needs to be a non-empty string." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | parameters = data.pop("parameters", {}) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = parameters.get("num_inference_steps", 28) | 
					
						
						|  | width = parameters.get("width", 1024) | 
					
						
						|  | height = parameters.get("height", 1024) | 
					
						
						|  |  | 
					
						
						|  | guidance_scale = parameters.get("guidance", 3.5) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | seed = parameters.get("seed", 0) | 
					
						
						|  | generator = torch.manual_seed(seed) | 
					
						
						|  | start_time = time.time() | 
					
						
						|  | result = self.pipeline( | 
					
						
						|  | prompt, | 
					
						
						|  | height=height, | 
					
						
						|  | width=width, | 
					
						
						|  | guidance_scale=guidance_scale, | 
					
						
						|  | num_inference_steps=num_inference_steps, | 
					
						
						|  | generator=generator, | 
					
						
						|  | ).images[0] | 
					
						
						|  | end_time = time.time() | 
					
						
						|  | time_taken = end_time - start_time | 
					
						
						|  | print(f"Time taken: {time_taken:.2f} seconds") | 
					
						
						|  |  | 
					
						
						|  | return result | 
					
						
						|  | except Exception as e: | 
					
						
						|  | print(e) | 
					
						
						|  | return None | 
					
						
						|  |  |