Upload 3 files
Browse files- README.md +8 -0
- handler.py +203 -0
- requirements.txt +20 -0
README.md
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: flux-1-dev-non-commercial-license
|
| 4 |
+
license_link: https://huggingface.co/black-forest-labs/FLUX.1-dev/blob/main/LICENSE.
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
inference: true
|
| 8 |
+
---
|
handler.py
ADDED
|
@@ -0,0 +1,203 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# https://github.com/sayakpaul/diffusers-torchao
|
| 2 |
+
# https://github.com/pytorch/ao/releases
|
| 3 |
+
# https://developer.nvidia.com/cuda-gpus
|
| 4 |
+
|
| 5 |
+
import os
|
| 6 |
+
from typing import Any, Dict
|
| 7 |
+
import gc
|
| 8 |
+
from PIL import Image
|
| 9 |
+
from huggingface_hub import hf_hub_download
|
| 10 |
+
import torch
|
| 11 |
+
from torchao.quantization import quantize_, autoquant, int8_dynamic_activation_int8_weight, int8_dynamic_activation_int4_weight, float8_dynamic_activation_float8_weight
|
| 12 |
+
from torchao.quantization.quant_api import PerRow
|
| 13 |
+
from diffusers import FluxPipeline, FluxTransformer2DModel, AutoencoderKL, TorchAoConfig
|
| 14 |
+
from transformers import T5EncoderModel, BitsAndBytesConfig
|
| 15 |
+
from optimum.quanto import freeze, qfloat8, quantize
|
| 16 |
+
from para_attn.first_block_cache.diffusers_adapters import apply_cache_on_pipe
|
| 17 |
+
from huggingface_inference_toolkit.logging import logger
|
| 18 |
+
|
| 19 |
+
import subprocess
|
| 20 |
+
subprocess.run("pip list", shell=True)
|
| 21 |
+
|
| 22 |
+
print(torch.cuda.get_device_name())
|
| 23 |
+
print(torch.cuda.get_device_capability())
|
| 24 |
+
print(torch.cuda.get_arch_list())
|
| 25 |
+
|
| 26 |
+
IS_NEW_GPU = False if torch.cuda.get_device_capability() < (8, 9) else True
|
| 27 |
+
IS_TURBO = False
|
| 28 |
+
IS_4BIT = True
|
| 29 |
+
IS_COMPILE = False
|
| 30 |
+
IS_AUTOQ = False
|
| 31 |
+
IS_PARA = True
|
| 32 |
+
IS_LVRAM = True
|
| 33 |
+
|
| 34 |
+
# Set high precision for float32 matrix multiplications.
|
| 35 |
+
# This setting optimizes performance on NVIDIA GPUs with Ampere architecture (e.g., A100, RTX 30 series) or newer.
|
| 36 |
+
torch.set_float32_matmul_precision("high")
|
| 37 |
+
|
| 38 |
+
if IS_COMPILE:
|
| 39 |
+
import torch._dynamo
|
| 40 |
+
torch._dynamo.config.suppress_errors = True
|
| 41 |
+
|
| 42 |
+
def offload_pipe(pipe) -> Any:
|
| 43 |
+
if IS_LVRAM: pipe.enable_model_cpu_offload()
|
| 44 |
+
return pipe
|
| 45 |
+
|
| 46 |
+
def load_te2(repo_id: str, dtype: torch.dtype) -> Any:
|
| 47 |
+
if IS_4BIT:
|
| 48 |
+
nf4_config = BitsAndBytesConfig(load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_use_double_quant=True, bnb_4bit_compute_dtype=torch.bfloat16)
|
| 49 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder_2", torch_dtype=dtype, quantization_config=nf4_config)
|
| 50 |
+
else:
|
| 51 |
+
text_encoder_2 = T5EncoderModel.from_pretrained(repo_id, subfolder="text_encoder_2", torch_dtype=dtype)
|
| 52 |
+
quantize(text_encoder_2, weights=qfloat8)
|
| 53 |
+
freeze(text_encoder_2)
|
| 54 |
+
return text_encoder_2
|
| 55 |
+
|
| 56 |
+
def load_pipeline_stable(repo_id: str, dtype: torch.dtype) -> Any:
|
| 57 |
+
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_NEW_GPU else "int8wo")
|
| 58 |
+
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
| 59 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, vae=vae, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config))
|
| 60 |
+
pipe.transformer.fuse_qkv_projections()
|
| 61 |
+
pipe.vae.fuse_qkv_projections()
|
| 62 |
+
return pipe
|
| 63 |
+
|
| 64 |
+
def load_pipeline_lowvram(repo_id: str, dtype: torch.dtype) -> Any:
|
| 65 |
+
int4_config = TorchAoConfig("int4dq")
|
| 66 |
+
float8_config = TorchAoConfig("float8dq")
|
| 67 |
+
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
| 68 |
+
transformer = AutoencoderKL.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype, quantization_config=float8_config)
|
| 69 |
+
pipe = FluxPipeline.from_pretrained(repo_id, vae=vae, transformer=transformer, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=int4_config)
|
| 70 |
+
pipe.transformer.fuse_qkv_projections()
|
| 71 |
+
pipe.vae.fuse_qkv_projections()
|
| 72 |
+
pipe.to("cuda")
|
| 73 |
+
return pipe
|
| 74 |
+
|
| 75 |
+
def load_pipeline_compile(repo_id: str, dtype: torch.dtype) -> Any:
|
| 76 |
+
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_NEW_GPU else "int8wo")
|
| 77 |
+
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
| 78 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, vae=vae, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config))
|
| 79 |
+
pipe.transformer.fuse_qkv_projections()
|
| 80 |
+
pipe.vae.fuse_qkv_projections()
|
| 81 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
| 82 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 83 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
| 84 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
| 85 |
+
return pipe
|
| 86 |
+
|
| 87 |
+
def load_pipeline_autoquant(repo_id: str, dtype: torch.dtype) -> Any:
|
| 88 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype))
|
| 89 |
+
pipe.transformer.fuse_qkv_projections()
|
| 90 |
+
pipe.vae.fuse_qkv_projections()
|
| 91 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
| 92 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 93 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
| 94 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
| 95 |
+
pipe.transformer = autoquant(pipe.transformer, error_on_unseen=False)
|
| 96 |
+
pipe.vae = autoquant(pipe.vae, error_on_unseen=False)
|
| 97 |
+
return pipe
|
| 98 |
+
|
| 99 |
+
def load_pipeline_turbo(repo_id: str, dtype: torch.dtype) -> Any:
|
| 100 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype))
|
| 101 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd")
|
| 102 |
+
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
|
| 103 |
+
pipe.fuse_lora()
|
| 104 |
+
pipe.unload_lora_weights()
|
| 105 |
+
pipe.transformer.fuse_qkv_projections()
|
| 106 |
+
pipe.vae.fuse_qkv_projections()
|
| 107 |
+
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
| 108 |
+
quantize_(pipe.transformer, weight, device="cuda")
|
| 109 |
+
quantize_(pipe.vae, weight, device="cuda")
|
| 110 |
+
return pipe
|
| 111 |
+
|
| 112 |
+
def load_pipeline_turbo_compile(repo_id: str, dtype: torch.dtype) -> Any:
|
| 113 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, torch_dtype=dtype))
|
| 114 |
+
pipe.load_lora_weights(hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd")
|
| 115 |
+
pipe.set_adapters(["hyper-sd"], adapter_weights=[0.125])
|
| 116 |
+
pipe.fuse_lora()
|
| 117 |
+
pipe.unload_lora_weights()
|
| 118 |
+
pipe.transformer.fuse_qkv_projections()
|
| 119 |
+
pipe.vae.fuse_qkv_projections()
|
| 120 |
+
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
| 121 |
+
quantize_(pipe.transformer, weight, device="cuda")
|
| 122 |
+
quantize_(pipe.vae, weight, device="cuda")
|
| 123 |
+
pipe.transformer.to(memory_format=torch.channels_last)
|
| 124 |
+
pipe.transformer = torch.compile(pipe.transformer, mode="max-autotune", fullgraph=True)
|
| 125 |
+
pipe.vae.to(memory_format=torch.channels_last)
|
| 126 |
+
pipe.vae = torch.compile(pipe.vae, mode="max-autotune", fullgraph=True)
|
| 127 |
+
return pipe
|
| 128 |
+
|
| 129 |
+
def load_pipeline_opt(repo_id: str, dtype: torch.dtype) -> Any:
|
| 130 |
+
quantization_config = TorchAoConfig("int4dq" if IS_4BIT else "float8dq" if IS_NEW_GPU else "int8wo")
|
| 131 |
+
weight = int8_dynamic_activation_int4_weight() if IS_4BIT else int8_dynamic_activation_int8_weight()
|
| 132 |
+
transformer = FluxTransformer2DModel.from_pretrained(repo_id, subfolder="transformer", torch_dtype=dtype)
|
| 133 |
+
transformer.fuse_qkv_projections()
|
| 134 |
+
if IS_NEW_GPU: quantize_(transformer, float8_dynamic_activation_float8_weight(granularity=PerRow()), device="cuda")
|
| 135 |
+
else: quantize_(transformer, weight, device="cuda")
|
| 136 |
+
transformer.to(memory_format=torch.channels_last)
|
| 137 |
+
transformer = torch.compile(transformer, mode="max-autotune", fullgraph=True)
|
| 138 |
+
vae = AutoencoderKL.from_pretrained(repo_id, subfolder="vae", torch_dtype=dtype)
|
| 139 |
+
vae.fuse_qkv_projections()
|
| 140 |
+
if IS_NEW_GPU: quantize_(vae, float8_dynamic_activation_float8_weight(granularity=PerRow()), device="cuda")
|
| 141 |
+
else: quantize_(vae, weight, device="cuda")
|
| 142 |
+
vae.to(memory_format=torch.channels_last)
|
| 143 |
+
vae = torch.compile(vae, mode="max-autotune", fullgraph=True)
|
| 144 |
+
pipe = offload_pipe(FluxPipeline.from_pretrained(repo_id, transformer=None, vae=None, text_encoder_2=load_te2(repo_id, dtype), torch_dtype=dtype, quantization_config=quantization_config))
|
| 145 |
+
pipe.transformer = transformer
|
| 146 |
+
pipe.vae = vae
|
| 147 |
+
return pipe
|
| 148 |
+
|
| 149 |
+
class EndpointHandler:
|
| 150 |
+
def __init__(self, path=""):
|
| 151 |
+
repo_id = "NoMoreCopyrightOrg/flux-dev-8step" if IS_TURBO else "NoMoreCopyrightOrg/flux-dev"
|
| 152 |
+
dtype = torch.bfloat16
|
| 153 |
+
#dtype = torch.float16 # for older nVidia GPUs
|
| 154 |
+
if IS_AUTOQ: self.pipeline = load_pipeline_autoquant(repo_id, dtype)
|
| 155 |
+
elif IS_COMPILE: self.pipeline = load_pipeline_opt(repo_id, dtype)
|
| 156 |
+
elif IS_LVRAM and IS_NEW_GPU: self.pipeline = load_pipeline_lowvram(repo_id, dtype)
|
| 157 |
+
else: self.pipeline = load_pipeline_stable(repo_id, dtype)
|
| 158 |
+
if IS_PARA: apply_cache_on_pipe(self.pipeline, residual_diff_threshold=0.12)
|
| 159 |
+
gc.collect()
|
| 160 |
+
torch.cuda.empty_cache()
|
| 161 |
+
self.enable_vae_slicing()
|
| 162 |
+
self.enable_vae_tiling()
|
| 163 |
+
if IS_LVRAM:
|
| 164 |
+
self.pipeline.transformer.to("cuda")
|
| 165 |
+
self.pipeline.vae.to("cuda")
|
| 166 |
+
else: self.pipeline.to("cuda")
|
| 167 |
+
print(self.pipeline)
|
| 168 |
+
|
| 169 |
+
def __call__(self, data: Dict[str, Any]) -> Image.Image:
|
| 170 |
+
logger.info(f"Received incoming request with {data=}")
|
| 171 |
+
|
| 172 |
+
if "inputs" in data and isinstance(data["inputs"], str):
|
| 173 |
+
prompt = data.pop("inputs")
|
| 174 |
+
elif "prompt" in data and isinstance(data["prompt"], str):
|
| 175 |
+
prompt = data.pop("prompt")
|
| 176 |
+
else:
|
| 177 |
+
raise ValueError(
|
| 178 |
+
"Provided input body must contain either the key `inputs` or `prompt` with the"
|
| 179 |
+
" prompt to use for the image generation, and it needs to be a non-empty string."
|
| 180 |
+
)
|
| 181 |
+
|
| 182 |
+
parameters = data.pop("parameters", {})
|
| 183 |
+
|
| 184 |
+
num_inference_steps = parameters.get("num_inference_steps", 8 if IS_TURBO else 28)
|
| 185 |
+
width = parameters.get("width", 1024)
|
| 186 |
+
height = parameters.get("height", 1024)
|
| 187 |
+
guidance_scale = parameters.get("guidance_scale", 3.5)
|
| 188 |
+
|
| 189 |
+
# seed generator (seed cannot be provided as is but via a generator)
|
| 190 |
+
seed = parameters.get("seed", 0)
|
| 191 |
+
generator = torch.manual_seed(seed)
|
| 192 |
+
|
| 193 |
+
return self.pipeline( # type: ignore
|
| 194 |
+
prompt,
|
| 195 |
+
height=height,
|
| 196 |
+
width=width,
|
| 197 |
+
guidance_scale=guidance_scale,
|
| 198 |
+
num_inference_steps=num_inference_steps,
|
| 199 |
+
generator=generator,
|
| 200 |
+
output_type="pil",
|
| 201 |
+
).images[0]
|
| 202 |
+
|
| 203 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
--extra-index-url https://download.pytorch.org/whl/cu126
|
| 2 |
+
torch>=2.6.0
|
| 3 |
+
torchvision
|
| 4 |
+
torchaudio
|
| 5 |
+
huggingface_hub
|
| 6 |
+
torchao>=0.9.0
|
| 7 |
+
diffusers>=0.32.2
|
| 8 |
+
peft
|
| 9 |
+
transformers==4.48.3
|
| 10 |
+
accelerate
|
| 11 |
+
numpy
|
| 12 |
+
scipy
|
| 13 |
+
Pillow
|
| 14 |
+
sentencepiece
|
| 15 |
+
protobuf
|
| 16 |
+
triton
|
| 17 |
+
gemlite
|
| 18 |
+
para-attn
|
| 19 |
+
bitsandbytes
|
| 20 |
+
optimum-quanto
|