|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import copy | 
					
						
						|  | from typing import Dict, Any, Optional | 
					
						
						|  |  | 
					
						
						|  | from transformers.configuration_utils import PretrainedConfig | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | from .configuration_intern_vit import InternVisionConfig | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternVLChatConfig(PretrainedConfig): | 
					
						
						|  | model_type = 'internvl_chat' | 
					
						
						|  | is_composition = True | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vision_config: Optional[Dict[str, Any]] = None, | 
					
						
						|  | llm_config: Optional[Dict[str, Any]] = None, | 
					
						
						|  | use_backbone_lora=0, | 
					
						
						|  | use_llm_lora=0, | 
					
						
						|  | select_layer=-1, | 
					
						
						|  | force_image_size=None, | 
					
						
						|  | downsample_ratio=0.5, | 
					
						
						|  | template=None, | 
					
						
						|  | dynamic_image_size=False, | 
					
						
						|  | use_thumbnail=False, | 
					
						
						|  | ps_version="v1", | 
					
						
						|  | min_dynamic_patch=1, | 
					
						
						|  | max_dynamic_patch=6, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__(**kwargs) | 
					
						
						|  |  | 
					
						
						|  | if vision_config is None: | 
					
						
						|  | vision_config = {'architectures': ['InternVisionModel']} | 
					
						
						|  | logger.info('vision_config is None. Initializing the InternVisionConfig with default values.') | 
					
						
						|  |  | 
					
						
						|  | if llm_config is None: | 
					
						
						|  | llm_config = {'architectures': ['Qwen2ForCausalLM']} | 
					
						
						|  | logger.info('llm_config is None. Initializing the LlamaConfig config with default values (`LlamaConfig`).') | 
					
						
						|  | assert 'architectures' in llm_config, "Should specify architecture in llm_config" | 
					
						
						|  |  | 
					
						
						|  | if isinstance(vision_config, dict): | 
					
						
						|  | self.vision_config = InternVisionConfig(**vision_config) | 
					
						
						|  | else: | 
					
						
						|  | self.vision_config = vision_config | 
					
						
						|  |  | 
					
						
						|  | if isinstance(llm_config, dict): | 
					
						
						|  | architecture: str = llm_config['architectures'][0] | 
					
						
						|  | if architecture == 'LlamaForCausalLM': | 
					
						
						|  | from transformers import LlamaConfig | 
					
						
						|  | self.llm_config = LlamaConfig(**llm_config) | 
					
						
						|  | elif architecture == 'Qwen2ForCausalLM': | 
					
						
						|  | from transformers import Qwen2Config | 
					
						
						|  | self.llm_config = Qwen2Config(**llm_config) | 
					
						
						|  | elif architecture == 'Qwen3MoeForCausalLM': | 
					
						
						|  | from transformers import Qwen3MoeConfig | 
					
						
						|  | self.llm_config = Qwen3MoeConfig(**llm_config) | 
					
						
						|  | elif architecture == 'Qwen3ForCausalLM': | 
					
						
						|  | from transformers import Qwen3Config | 
					
						
						|  | self.llm_config = Qwen3Config(**llm_config) | 
					
						
						|  | else: | 
					
						
						|  | raise ValueError('Unsupported architecture: {}'.format(architecture)) | 
					
						
						|  | else: | 
					
						
						|  | self.llm_config = llm_config | 
					
						
						|  |  | 
					
						
						|  | self.use_backbone_lora = use_backbone_lora | 
					
						
						|  | self.use_llm_lora = use_llm_lora | 
					
						
						|  | self.select_layer = select_layer | 
					
						
						|  | self.force_image_size = force_image_size | 
					
						
						|  | self.downsample_ratio = downsample_ratio | 
					
						
						|  | self.template = template | 
					
						
						|  | self.dynamic_image_size = dynamic_image_size | 
					
						
						|  | self.use_thumbnail = use_thumbnail | 
					
						
						|  | self.ps_version = ps_version | 
					
						
						|  | self.min_dynamic_patch = min_dynamic_patch | 
					
						
						|  | self.max_dynamic_patch = max_dynamic_patch | 
					
						
						|  | self.tie_word_embeddings = self.llm_config.tie_word_embeddings | 
					
						
						|  |  | 
					
						
						|  | logger.info(f'vision_select_layer: {self.select_layer}') | 
					
						
						|  | logger.info(f'ps_version: {self.ps_version}') | 
					
						
						|  | logger.info(f'min_dynamic_patch: {self.min_dynamic_patch}') | 
					
						
						|  | logger.info(f'max_dynamic_patch: {self.max_dynamic_patch}') | 
					
						
						|  |  | 
					
						
						|  | def to_dict(self): | 
					
						
						|  | """ | 
					
						
						|  | Serializes this instance to a Python dictionary. Override the default [`~PretrainedConfig.to_dict`]. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Dict[str, any]`: Dictionary of all the attributes that make up this configuration instance, | 
					
						
						|  | """ | 
					
						
						|  | output = copy.deepcopy(self.__dict__) | 
					
						
						|  | output['vision_config'] = self.vision_config.to_dict() | 
					
						
						|  | output['llm_config'] = self.llm_config.to_dict() | 
					
						
						|  | output['model_type'] = self.__class__.model_type | 
					
						
						|  | output['use_backbone_lora'] = self.use_backbone_lora | 
					
						
						|  | output['use_llm_lora'] = self.use_llm_lora | 
					
						
						|  | output['select_layer'] = self.select_layer | 
					
						
						|  | output['force_image_size'] = self.force_image_size | 
					
						
						|  | output['downsample_ratio'] = self.downsample_ratio | 
					
						
						|  | output['template'] = self.template | 
					
						
						|  | output['dynamic_image_size'] = self.dynamic_image_size | 
					
						
						|  | output['use_thumbnail'] = self.use_thumbnail | 
					
						
						|  | output['ps_version'] = self.ps_version | 
					
						
						|  | output['min_dynamic_patch'] = self.min_dynamic_patch | 
					
						
						|  | output['max_dynamic_patch'] = self.max_dynamic_patch | 
					
						
						|  |  | 
					
						
						|  | return output | 
					
						
						|  |  |