File size: 30,213 Bytes
67d1a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db3421
67d1a0a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
# --------------------------------------------------------
# InternVL
# Copyright (c) 2024 OpenGVLab
# Licensed under The MIT License [see LICENSE for details]
# --------------------------------------------------------

import warnings
from typing import List, Optional, Tuple, Union
import random
import torch.utils.checkpoint
import transformers
from torch import nn
from torch.nn import CrossEntropyLoss
from transformers import GenerationConfig
from transformers.modeling_outputs import CausalLMOutputWithPast
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import logging
from transformers import LlamaForCausalLM, Qwen2ForCausalLM, Qwen3ForCausalLM, Qwen3MoeForCausalLM

from .configuration_internvl_chat import InternVLChatConfig
from .conversation import get_conv_template
from .modeling_intern_vit import InternVisionModel, has_flash_attn

logger = logging.get_logger(__name__)


def version_cmp(v1, v2, op='eq'):
    import operator

    from packaging import version
    op_func = getattr(operator, op)
    return op_func(version.parse(v1), version.parse(v2))

import torch.utils.checkpoint as cp

class Gating(nn.Module):
    def __init__(self, hidden_size=2048, expansion_factor=4, dropout=0.1, use_checkpoint=True):
        super().__init__()
        self.use_checkpoint = use_checkpoint
        mid_dim = hidden_size * expansion_factor

        def mlp_block(in_dim, out_dim):
            return nn.Sequential(
                nn.Linear(in_dim, out_dim),
                nn.GELU(),
                nn.Dropout(dropout),
                nn.Linear(out_dim, in_dim),
                nn.Dropout(dropout),
                nn.LayerNorm(in_dim),
            )

        self.block1 = mlp_block(hidden_size, mid_dim)
        self.block2 = mlp_block(hidden_size, mid_dim)
        self.block3 = mlp_block(hidden_size, mid_dim)
        self.block4 = mlp_block(hidden_size, mid_dim)

        self.gate = nn.Sequential(
            nn.LayerNorm(hidden_size),
            nn.Linear(hidden_size, 2)  # 2 experts
        )

    def forward(self, x):
        if self.use_checkpoint:
            x = x + cp.checkpoint(self.block1, x)
            x = x + cp.checkpoint(self.block2, x)
            x = x + cp.checkpoint(self.block3, x)
            x = x + cp.checkpoint(self.block4, x)
        else:
            x = x + self.block1(x)
            x = x + self.block2(x)
            x = x + self.block3(x)
            x = x + self.block4(x)

        logits = self.gate(x)  # shape: [B, 2]
        probs = torch.softmax(logits, dim=-1)  # 每个 token 的 expert 选择概率
        return probs
        

class CrossAttentionPooling(nn.Module):
    def __init__(self, dim, num_heads=16):
        super().__init__()
        self.query_token = nn.Parameter(torch.randn(1, dim))  # [1, D]
        
        self.attn1 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
        self.norm1 = nn.LayerNorm(dim)
        
        self.attn2 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
        self.norm2 = nn.LayerNorm(dim)

        self.attn3 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
        self.norm3 = nn.LayerNorm(dim)

        self.attn4 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True)
        self.norm4 = nn.LayerNorm(dim)

    def forward(self, batched_tokens: list[torch.Tensor]):
        """
        batched_tokens: List of Tensors of shape [Ti, D], length = B
        """
        B = len(batched_tokens)
        D = batched_tokens[0].shape[-1]
        device = batched_tokens[0].device

        # 1. Padding
        max_len = max(t.shape[0] for t in batched_tokens)
        dtype = self.query_token.dtype
        padded = torch.zeros(B, max_len, D, dtype=dtype, device=device)
        padding_mask = torch.ones(B, max_len, dtype=torch.bool, device=device)

        for i, t in enumerate(batched_tokens):
            L = t.shape[0]
            padded[i, :L] = t
            padding_mask[i, :L] = False

        # 2. Query token: [B, 1, D]
        query = self.query_token.unsqueeze(0).expand(B, -1, -1)  # learnable token for each sample

        # 3. First attention
        out1, _ = self.attn1(query, padded, padded, key_padding_mask=padding_mask)  # [B, 1, D]
        out1 = self.norm1(out1)

        # 4. Second attention
        out2, _ = self.attn2(out1, padded, padded, key_padding_mask=padding_mask)  # [B, 1, D]
        out2 = self.norm2(out2)

        out3, _ = self.attn2(out2, padded, padded, key_padding_mask=padding_mask)  # [B, 1, D]
        out3 = self.norm2(out3)

        out4, _ = self.attn2(out3, padded, padded, key_padding_mask=padding_mask)  # [B, 1, D]
        out4 = self.norm2(out4)

        return out4.squeeze(1)
    
class InternVLChatModel(PreTrainedModel):
    config_class = InternVLChatConfig
    main_input_name = 'pixel_values'
    base_model_prefix = 'language_model'
    _supports_flash_attn_2 = True
    supports_gradient_checkpointing = True
    _no_split_modules = [
        "InternVisionModel",
        "Qwen3DecoderLayer",
    ]

    # support transformers 4.51.+
    _tp_plan = ''

    def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True):
        super().__init__(config)

        assert version_cmp(transformers.__version__, '4.37.0', 'ge')
        image_size = config.force_image_size or config.vision_config.image_size
        patch_size = config.vision_config.patch_size
        self.patch_size = patch_size
        self.select_layer = config.select_layer
        self.template = config.template
        self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2))
        self.downsample_ratio = config.downsample_ratio
        self.ps_version = config.ps_version
        use_flash_attn = use_flash_attn if has_flash_attn else False
        config.vision_config.use_flash_attn = True if use_flash_attn else False
        config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager'

        logger.info(f'num_image_token: {self.num_image_token}')
        logger.info(f'ps_version: {self.ps_version}')
        if vision_model is not None:
            self.vision_model = vision_model
        else:
            self.vision_model = InternVisionModel(config.vision_config)
        if language_model is not None:
            self.language_model = language_model
        else:
            architecture: str = config.llm_config.architectures[0]
            if architecture == 'LlamaForCausalLM':
                self.language_model = LlamaForCausalLM(config.llm_config)
            elif architecture == 'Qwen2ForCausalLM':
                self.language_model = Qwen2ForCausalLM(config.llm_config)
            elif architecture == 'Qwen3MoeForCausalLM':
                self.language_model = Qwen3MoeForCausalLM(config.llm_config)
            elif architecture == 'Qwen3ForCausalLM':
                self.language_model = Qwen3ForCausalLM(config.llm_config)
            else:
                raise NotImplementedError(f'{architecture} is not implemented.')

        vit_hidden_size = config.vision_config.hidden_size
        llm_hidden_size = config.llm_config.hidden_size

        self.mlp1 = nn.Sequential(
            nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2),
            nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size),
            nn.GELU(),
            nn.Linear(llm_hidden_size, llm_hidden_size)
        )
        
        self.mlp2 = nn.Sequential(
            nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 4),
            nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 4, llm_hidden_size * 2),
            nn.GELU(),
            nn.Dropout(0.1),
            nn.Linear(llm_hidden_size * 2, llm_hidden_size * 2),
            nn.GELU(),
            nn.Dropout(0.1),
            nn.Linear(llm_hidden_size * 2, llm_hidden_size)
        )

        self.pooling_before_gating = CrossAttentionPooling(dim=vit_hidden_size)
        self.gating = Gating(hidden_size=vit_hidden_size)
        
        self.flash_mode = getattr(config, "flash_mode", False)
        if self.flash_mode:
            self.flash_relative_threshold = config.flash_relative_threshold
            self.flash_absolute_threshold = config.flash_absolute_threshold

        self.img_context_token_id = None
        self.conv_template = get_conv_template(self.template)
        self.system_message = self.conv_template.system_message


    def compress_visual_tokens_in_sentence(
        self,
        input_embeds: torch.Tensor,
        input_ids: torch.Tensor,
        mask_idx: torch.Tensor,
        img_context_token_id: int,
        gate_result,
    ) -> tuple:
        
        N, C = input_embeds.shape
        
        input_ids = input_ids.squeeze(0)  # (N,)
        selected = (input_ids == img_context_token_id)
        padded = torch.cat([torch.tensor([0], device=selected.device), selected.int(), torch.tensor([0], device=selected.device)])
        diff = torch.diff(padded)

        starts = (diff == 1).nonzero(as_tuple=True)[0]
        ends = (diff == -1).nonzero(as_tuple=True)[0]
        lengths = ends - starts

        keep_mask = torch.ones(N, dtype=torch.bool, device=input_embeds.device)

        delete_flags = torch.zeros(N, dtype=torch.int32, device=input_embeds.device)

        p = random.uniform(0, 1)

        total_blocks = 0
        block_counts = []
        for l in lengths.tolist():
            if l % 256 != 0:
                raise ValueError(f"l % 256 != 0, l = {l}")
            num_blocks = l // 256
            block_counts.append(num_blocks)
            total_blocks += num_blocks

        flag_idx = 0
        for s, e, l, num_blocks in zip(starts.tolist(), ends.tolist(), lengths.tolist(), block_counts):
            for i in range(num_blocks):
                block_start = s + i * 256
                block_end = block_start + 256

                compress = gate_result[flag_idx]
                flag_idx += 1

                if compress:
                    keep_mask[block_start + 64 : block_end] = False
                    delete_flags[block_start + 64 : block_end] = 1

        cumulative_deletes = torch.cumsum(delete_flags, dim=0)
        cumulative_deletes = torch.cat([cumulative_deletes,  cumulative_deletes[-1:].clone()], dim=0)
        
        
        mask_idx = mask_idx.squeeze(0)
        updated_mask_idx = mask_idx - cumulative_deletes[mask_idx.to(cumulative_deletes.device)].to(mask_idx.device)
        updated_mask_idx = updated_mask_idx.unsqueeze(0)

        new_input_embeds = input_embeds[keep_mask.to(input_embeds.device), :]
        new_input_ids = input_ids[keep_mask.to(input_ids.device)]

        return new_input_embeds, new_input_ids, updated_mask_idx, keep_mask
    
    def get_image_num_per_sample(
            self,
            input_ids: torch.Tensor,
    ):
        input_ids = input_ids.squeeze(0)  # (N,)
        selected = (input_ids == self.img_context_token_id)
        padded = torch.cat([torch.tensor([0], device=selected.device), selected.int(), torch.tensor([0], device=selected.device)])
        diff = torch.diff(padded)

        starts = (diff == 1).nonzero(as_tuple=True)[0]
        ends = (diff == -1).nonzero(as_tuple=True)[0]
        lengths = ends - starts

        return lengths
    def forward(
            self,
            pixel_values: torch.FloatTensor,
            input_ids: torch.LongTensor = None,
            attention_mask: Optional[torch.Tensor] = None,
            position_ids: Optional[torch.LongTensor] = None,
            image_flags: Optional[torch.LongTensor] = None,
            past_key_values: Optional[List[torch.FloatTensor]] = None,
            labels: Optional[torch.LongTensor] = None,
            use_cache: Optional[bool] = None,
            output_attentions: Optional[bool] = None,
            output_hidden_states: Optional[bool] = None,
            return_dict: Optional[bool] = None,
    ) -> Union[Tuple, CausalLMOutputWithPast]:
        return_dict = return_dict if return_dict is not None else self.config.use_return_dict

        image_flags = image_flags.squeeze(-1)
        input_embeds = self.language_model.get_input_embeddings()(input_ids).clone()

        vit_embeds = self.extract_feature(pixel_values)
        vit_embeds = vit_embeds[image_flags == 1]
        vit_batch_size = pixel_values.shape[0]

        B, N, C = input_embeds.shape
        input_embeds = input_embeds.reshape(B * N, C)

        # if torch.distributed.is_initialized() and torch.distributed.get_rank() == 0:
        #     print(f'dynamic ViT batch size: {vit_batch_size}, images per sample: {vit_batch_size / B}, dynamic token length: {N}')

        input_ids = input_ids.reshape(B * N)
        selected = (input_ids == self.img_context_token_id)
        try:
            input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C)
        except Exception as e:
            vit_embeds = vit_embeds.reshape(-1, C)
            print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, '
                  f'vit_embeds.shape={vit_embeds.shape}')
            n_token = min(selected.sum(), vit_embeds.size(0))
            input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token]

        input_embeds = input_embeds.reshape(B, N, C)

        outputs = self.language_model(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            position_ids=position_ids,
            past_key_values=past_key_values,
            use_cache=use_cache,
            output_attentions=output_attentions,
            output_hidden_states=output_hidden_states,
            return_dict=return_dict,
        )
        logits = outputs.logits

        loss = None
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss()
            shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size)
            shift_labels = shift_labels.view(-1)
            # Enable model parallelism
            shift_labels = shift_labels.to(shift_logits.device)
            loss = loss_fct(shift_logits, shift_labels)

        if not return_dict:
            output = (logits,) + outputs[1:]
            return (loss,) + output if loss is not None else output

        return CausalLMOutputWithPast(
            loss=loss,
            logits=logits,
            past_key_values=outputs.past_key_values,
            hidden_states=outputs.hidden_states,
            attentions=outputs.attentions,
        )

    def pixel_shuffle(self, x, scale_factor=0.5):
        n, w, h, c = x.size()
        # N, W, H, C --> N, W, H * scale, C // scale
        x = x.view(n, w, int(h * scale_factor), int(c / scale_factor))
        # N, W, H * scale, C // scale --> N, H * scale, W, C // scale
        x = x.permute(0, 2, 1, 3).contiguous()
        # N, H * scale, W, C // scale --> N, H * scale, W * scale, C // (scale ** 2)
        x = x.view(n, int(h * scale_factor), int(w * scale_factor),
                   int(c / (scale_factor * scale_factor)))
        if self.ps_version == 'v1':
            warnings.warn("In ps_version 'v1', the height and width have not been swapped back, "
                          'which results in a transposed image.')
        else:
            x = x.permute(0, 2, 1, 3).contiguous()
        return x

    def split_and_merge(self, features: torch.Tensor, split_sizes: torch.Tensor):
        """
        features: Tensor of shape [T, 1024, 1024]
        split_sizes: 1D Tensor like [3, 3, 4] — 每个样本 tile 数

        returns: List of Tensors of shape [tile_i * 1024, 1024]
        """
        # 拆分 features → 每个样本一个 tile list
        tile_splits = torch.split(features, split_sizes, dim=0)

        # 合并前两维:tile * 1024 × 1024
        merged = [x.reshape(-1, x.shape[-1]) for x in tile_splits]

        return merged
        
    def extract_feature_flash(self, pixel_values, lengths):

        with torch.no_grad():
            vit_embeds_1024 = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=False,
                return_dict=True).last_hidden_state

        vit_embeds_1024 = vit_embeds_1024[:, 1:, :]
        h = w = int(vit_embeds_1024.shape[1] ** 0.5)
        vit_embeds_1024 = vit_embeds_1024.reshape(vit_embeds_1024.shape[0], h, w, -1)       

        # begin moe
        lengths = [int(x) for x in lengths.tolist()]
        vit_embeds_1024_split_and_merge = self.split_and_merge(vit_embeds_1024, lengths)

        gate = self.pooling_before_gating(vit_embeds_1024_split_and_merge)
        gate = self.gating(gate)

        vit_embeds_256 = vit_embeds_1024.clone()

        with torch.no_grad():
            vit_embeds_64 = self.pixel_shuffle(vit_embeds_1024, scale_factor=self.downsample_ratio ** 2)
            vit_embeds_64 = vit_embeds_64.reshape(vit_embeds_64.shape[0], -1, vit_embeds_64.shape[-1])
            vit_embeds_64 = self.mlp2(vit_embeds_64)

            vit_embeds_256 = self.pixel_shuffle(vit_embeds_256, scale_factor=self.downsample_ratio)
            vit_embeds_256= vit_embeds_256.reshape(vit_embeds_256.shape[0], -1, vit_embeds_256.shape[-1])
            vit_embeds_256 = self.mlp1(vit_embeds_256)

        return vit_embeds_64, vit_embeds_256, gate

    def extract_feature(self, pixel_values):
        if self.select_layer == -1:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=False,
                return_dict=True).last_hidden_state
        else:
            vit_embeds = self.vision_model(
                pixel_values=pixel_values,
                output_hidden_states=True,
                return_dict=True).hidden_states[self.select_layer]
        vit_embeds = vit_embeds[:, 1:, :]

        h = w = int(vit_embeds.shape[1] ** 0.5)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1)
        vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio)
        vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1])
        vit_embeds = self.mlp1(vit_embeds)
        return vit_embeds

    def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None,
                   history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>',
                   IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None):
        if history is not None or return_history:
            print('Now multi-turn chat is not supported in batch_chat.')
            raise NotImplementedError

        if image_counts is not None:
            num_patches_list = image_counts
            print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.')

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id

        if verbose and pixel_values is not None:
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}')

        queries = []
        for idx, num_patches in enumerate(num_patches_list):
            question = questions[idx]
            if pixel_values is not None and '<image>' not in question:
                question = '<image>\n' + question
            template = get_conv_template(self.template)
            template.system_message = self.system_message
            template.append_message(template.roles[0], question)
            template.append_message(template.roles[1], None)
            query = template.get_prompt()

            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
            query = query.replace('<image>', image_tokens, 1)
            queries.append(query)

        tokenizer.padding_side = 'left'
        model_inputs = tokenizer(queries, return_tensors='pt', padding=True)
        input_ids = model_inputs['input_ids'].to(self.device)
        attention_mask = model_inputs['attention_mask'].to(self.device)
        eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())
        generation_config['eos_token_id'] = eos_token_id
        generation_output = self.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config
        )
        responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True)
        responses = [response.split(template.sep.strip())[0].strip() for response in responses]
        return responses

    def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False,
             num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>',
             verbose=False):

        if history is None and pixel_values is not None and '<image>' not in question:
            question = '<image>\n' + question

        if num_patches_list is None:
            num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else []
        assert pixel_values is None or len(pixel_values) == sum(num_patches_list)

        img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN)
        self.img_context_token_id = img_context_token_id

        template = get_conv_template(self.template)
        template.system_message = self.system_message
        eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip())

        history = [] if history is None else history
        for (old_question, old_answer) in history:
            template.append_message(template.roles[0], old_question)
            template.append_message(template.roles[1], old_answer)
        template.append_message(template.roles[0], question)
        template.append_message(template.roles[1], None)
        query = template.get_prompt()

        if verbose and pixel_values is not None:
            image_bs = pixel_values.shape[0]
            print(f'dynamic ViT batch size: {image_bs}')

        for num_patches in num_patches_list:
            image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN
            query = query.replace('<image>', image_tokens, 1)

        model_inputs = tokenizer(query, return_tensors='pt')
        input_ids = model_inputs['input_ids'].to(self.device)
        attention_mask = model_inputs['attention_mask'].to(self.device)
        generation_config['eos_token_id'] = eos_token_id
        generation_output = self.generate(
            pixel_values=pixel_values,
            input_ids=input_ids,
            attention_mask=attention_mask,
            **generation_config
        )
        response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0]
        response = response.split(template.sep.strip())[0].strip()
        history.append((question, response))
        if return_history:
            return response, history
        else:
            query_to_print = query.replace(IMG_CONTEXT_TOKEN, '')
            query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>')
            if verbose:
                print(query_to_print, response)
            return response

    @torch.no_grad()
    def generate_flash(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        assert self.img_context_token_id is not None
        if pixel_values is not None:
            if visual_features is not None:
                vit_embeds = visual_features
            else:
                lengths = self.get_image_num_per_sample(input_ids) / 256

                lengths_sum = torch.ones(int(lengths.sum().item()), dtype=torch.int64)
                lengths = lengths_sum.repeat_interleave(1) 
                vit_embeds_64, vit_embeds_256, gate_result = self.extract_feature_flash(pixel_values, lengths)
            
            input_embeds = self.language_model.get_input_embeddings()(input_ids)
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)
    
            input_ids = input_ids.reshape(B * N)

            relative_threshold_value = torch.quantile(gate_result[:, 0].to(torch.float32), self.flash_relative_threshold)
            gate_result = (gate_result[:, 0] > relative_threshold_value) & (gate_result[:, 0] >= self.flash_absolute_threshold)

            selected_embeds = []
            for i in range(gate_result.size(0)):
                if gate_result [i]:
                    selected_embeds.append(vit_embeds_64[i]) 
                else:
                    selected_embeds.append(vit_embeds_256[i])

            vit_embeds = torch.cat(selected_embeds, dim=0)

            assert torch.all(attention_mask == 1)
            input_embeds, input_ids, attention_mask, keep_mask = self.compress_visual_tokens_in_sentence(
                input_embeds=input_embeds,
                input_ids=input_ids,
                mask_idx=attention_mask,
                img_context_token_id=self.img_context_token_id,
                gate_result=gate_result,
            )
            
            attention_mask = torch.ones(1, input_embeds.shape[0]).to(input_embeds.device)

            selected = (input_ids == self.img_context_token_id)
            assert selected.sum() != 0
            input_embeds[selected] = vit_embeds.to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, -1, C)
        else:
            input_embeds = self.language_model.get_input_embeddings()(input_ids)

        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs

    @torch.no_grad()
    def generate_normal(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:

        assert self.img_context_token_id is not None
        if pixel_values is not None:
            if visual_features is not None:
                vit_embeds = visual_features
            else:
                vit_embeds = self.extract_feature(pixel_values)
            input_embeds = self.language_model.get_input_embeddings()(input_ids)
            B, N, C = input_embeds.shape
            input_embeds = input_embeds.reshape(B * N, C)

            input_ids = input_ids.reshape(B * N)
            selected = (input_ids == self.img_context_token_id)
            assert selected.sum() != 0
            input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device)

            input_embeds = input_embeds.reshape(B, N, C)
        else:
            input_embeds = self.language_model.get_input_embeddings()(input_ids)

        outputs = self.language_model.generate(
            inputs_embeds=input_embeds,
            attention_mask=attention_mask,
            generation_config=generation_config,
            output_hidden_states=output_hidden_states,
            use_cache=True,
            **generate_kwargs,
        )

        return outputs

    def generate(
            self,
            pixel_values: Optional[torch.FloatTensor] = None,
            input_ids: Optional[torch.FloatTensor] = None,
            attention_mask: Optional[torch.LongTensor] = None,
            visual_features: Optional[torch.FloatTensor] = None,
            generation_config: Optional[GenerationConfig] = None,
            output_hidden_states: Optional[bool] = None,
            **generate_kwargs,
    ) -> torch.LongTensor:
        
        if getattr(self, "flash_mode", False):
            return self.generate_flash(
                pixel_values=pixel_values,
                input_ids=input_ids,
                attention_mask=attention_mask,
                visual_features=visual_features,
                generation_config=generation_config,
                output_hidden_states=output_hidden_states,
                **generate_kwargs,
            )
        else:
            return self.generate_normal(
                pixel_values=pixel_values,
                input_ids=input_ids,
                attention_mask=attention_mask,
                visual_features=visual_features,
                generation_config=generation_config,
                output_hidden_states=output_hidden_states,
                **generate_kwargs,
            )
        
    @property
    def lm_head(self):
        return self.language_model.get_output_embeddings()

    def get_output_embeddings(self):
        return self.language_model.get_output_embeddings()

    def get_input_embeddings(self):
        return self.language_model.get_input_embeddings()

    def set_input_embeddings(self, value):
        return self.language_model.set_input_embeddings(value)

    def set_output_embeddings(self, value):
        return self.language_model.set_output_embeddings(value)