|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import warnings |
|
|
from typing import List, Optional, Tuple, Union |
|
|
import random |
|
|
import torch.utils.checkpoint |
|
|
import transformers |
|
|
from torch import nn |
|
|
from torch.nn import CrossEntropyLoss |
|
|
from transformers import GenerationConfig |
|
|
from transformers.modeling_outputs import CausalLMOutputWithPast |
|
|
from transformers.modeling_utils import PreTrainedModel |
|
|
from transformers.utils import logging |
|
|
from transformers import LlamaForCausalLM, Qwen2ForCausalLM, Qwen3ForCausalLM, Qwen3MoeForCausalLM |
|
|
|
|
|
from .configuration_internvl_chat import InternVLChatConfig |
|
|
from .conversation import get_conv_template |
|
|
from .modeling_intern_vit import InternVisionModel, has_flash_attn |
|
|
|
|
|
logger = logging.get_logger(__name__) |
|
|
|
|
|
|
|
|
def version_cmp(v1, v2, op='eq'): |
|
|
import operator |
|
|
|
|
|
from packaging import version |
|
|
op_func = getattr(operator, op) |
|
|
return op_func(version.parse(v1), version.parse(v2)) |
|
|
|
|
|
import torch.utils.checkpoint as cp |
|
|
|
|
|
class Gating(nn.Module): |
|
|
def __init__(self, hidden_size=2048, expansion_factor=4, dropout=0.1, use_checkpoint=True): |
|
|
super().__init__() |
|
|
self.use_checkpoint = use_checkpoint |
|
|
mid_dim = hidden_size * expansion_factor |
|
|
|
|
|
def mlp_block(in_dim, out_dim): |
|
|
return nn.Sequential( |
|
|
nn.Linear(in_dim, out_dim), |
|
|
nn.GELU(), |
|
|
nn.Dropout(dropout), |
|
|
nn.Linear(out_dim, in_dim), |
|
|
nn.Dropout(dropout), |
|
|
nn.LayerNorm(in_dim), |
|
|
) |
|
|
|
|
|
self.block1 = mlp_block(hidden_size, mid_dim) |
|
|
self.block2 = mlp_block(hidden_size, mid_dim) |
|
|
self.block3 = mlp_block(hidden_size, mid_dim) |
|
|
self.block4 = mlp_block(hidden_size, mid_dim) |
|
|
|
|
|
self.gate = nn.Sequential( |
|
|
nn.LayerNorm(hidden_size), |
|
|
nn.Linear(hidden_size, 2) |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
if self.use_checkpoint: |
|
|
x = x + cp.checkpoint(self.block1, x) |
|
|
x = x + cp.checkpoint(self.block2, x) |
|
|
x = x + cp.checkpoint(self.block3, x) |
|
|
x = x + cp.checkpoint(self.block4, x) |
|
|
else: |
|
|
x = x + self.block1(x) |
|
|
x = x + self.block2(x) |
|
|
x = x + self.block3(x) |
|
|
x = x + self.block4(x) |
|
|
|
|
|
logits = self.gate(x) |
|
|
probs = torch.softmax(logits, dim=-1) |
|
|
return probs |
|
|
|
|
|
|
|
|
class CrossAttentionPooling(nn.Module): |
|
|
def __init__(self, dim, num_heads=16): |
|
|
super().__init__() |
|
|
self.query_token = nn.Parameter(torch.randn(1, dim)) |
|
|
|
|
|
self.attn1 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True) |
|
|
self.norm1 = nn.LayerNorm(dim) |
|
|
|
|
|
self.attn2 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True) |
|
|
self.norm2 = nn.LayerNorm(dim) |
|
|
|
|
|
self.attn3 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True) |
|
|
self.norm3 = nn.LayerNorm(dim) |
|
|
|
|
|
self.attn4 = nn.MultiheadAttention(embed_dim=dim, num_heads=num_heads, batch_first=True) |
|
|
self.norm4 = nn.LayerNorm(dim) |
|
|
|
|
|
def forward(self, batched_tokens: list[torch.Tensor]): |
|
|
""" |
|
|
batched_tokens: List of Tensors of shape [Ti, D], length = B |
|
|
""" |
|
|
B = len(batched_tokens) |
|
|
D = batched_tokens[0].shape[-1] |
|
|
device = batched_tokens[0].device |
|
|
|
|
|
|
|
|
max_len = max(t.shape[0] for t in batched_tokens) |
|
|
dtype = self.query_token.dtype |
|
|
padded = torch.zeros(B, max_len, D, dtype=dtype, device=device) |
|
|
padding_mask = torch.ones(B, max_len, dtype=torch.bool, device=device) |
|
|
|
|
|
for i, t in enumerate(batched_tokens): |
|
|
L = t.shape[0] |
|
|
padded[i, :L] = t |
|
|
padding_mask[i, :L] = False |
|
|
|
|
|
|
|
|
query = self.query_token.unsqueeze(0).expand(B, -1, -1) |
|
|
|
|
|
|
|
|
out1, _ = self.attn1(query, padded, padded, key_padding_mask=padding_mask) |
|
|
out1 = self.norm1(out1) |
|
|
|
|
|
|
|
|
out2, _ = self.attn2(out1, padded, padded, key_padding_mask=padding_mask) |
|
|
out2 = self.norm2(out2) |
|
|
|
|
|
out3, _ = self.attn2(out2, padded, padded, key_padding_mask=padding_mask) |
|
|
out3 = self.norm2(out3) |
|
|
|
|
|
out4, _ = self.attn2(out3, padded, padded, key_padding_mask=padding_mask) |
|
|
out4 = self.norm2(out4) |
|
|
|
|
|
return out4.squeeze(1) |
|
|
|
|
|
class InternVLChatModel(PreTrainedModel): |
|
|
config_class = InternVLChatConfig |
|
|
main_input_name = 'pixel_values' |
|
|
base_model_prefix = 'language_model' |
|
|
_supports_flash_attn_2 = True |
|
|
supports_gradient_checkpointing = True |
|
|
_no_split_modules = [ |
|
|
"InternVisionModel", |
|
|
"Qwen3DecoderLayer", |
|
|
] |
|
|
|
|
|
|
|
|
_tp_plan = '' |
|
|
|
|
|
def __init__(self, config: InternVLChatConfig, vision_model=None, language_model=None, use_flash_attn=True): |
|
|
super().__init__(config) |
|
|
|
|
|
assert version_cmp(transformers.__version__, '4.37.0', 'ge') |
|
|
image_size = config.force_image_size or config.vision_config.image_size |
|
|
patch_size = config.vision_config.patch_size |
|
|
self.patch_size = patch_size |
|
|
self.select_layer = config.select_layer |
|
|
self.template = config.template |
|
|
self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) |
|
|
self.downsample_ratio = config.downsample_ratio |
|
|
self.ps_version = config.ps_version |
|
|
use_flash_attn = use_flash_attn if has_flash_attn else False |
|
|
config.vision_config.use_flash_attn = True if use_flash_attn else False |
|
|
config.llm_config._attn_implementation = 'flash_attention_2' if use_flash_attn else 'eager' |
|
|
|
|
|
logger.info(f'num_image_token: {self.num_image_token}') |
|
|
logger.info(f'ps_version: {self.ps_version}') |
|
|
if vision_model is not None: |
|
|
self.vision_model = vision_model |
|
|
else: |
|
|
self.vision_model = InternVisionModel(config.vision_config) |
|
|
if language_model is not None: |
|
|
self.language_model = language_model |
|
|
else: |
|
|
architecture: str = config.llm_config.architectures[0] |
|
|
if architecture == 'LlamaForCausalLM': |
|
|
self.language_model = LlamaForCausalLM(config.llm_config) |
|
|
elif architecture == 'Qwen2ForCausalLM': |
|
|
self.language_model = Qwen2ForCausalLM(config.llm_config) |
|
|
elif architecture == 'Qwen3MoeForCausalLM': |
|
|
self.language_model = Qwen3MoeForCausalLM(config.llm_config) |
|
|
elif architecture == 'Qwen3ForCausalLM': |
|
|
self.language_model = Qwen3ForCausalLM(config.llm_config) |
|
|
else: |
|
|
raise NotImplementedError(f'{architecture} is not implemented.') |
|
|
|
|
|
vit_hidden_size = config.vision_config.hidden_size |
|
|
llm_hidden_size = config.llm_config.hidden_size |
|
|
|
|
|
self.mlp1 = nn.Sequential( |
|
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), |
|
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), |
|
|
nn.GELU(), |
|
|
nn.Linear(llm_hidden_size, llm_hidden_size) |
|
|
) |
|
|
|
|
|
self.mlp2 = nn.Sequential( |
|
|
nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 4), |
|
|
nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 4, llm_hidden_size * 2), |
|
|
nn.GELU(), |
|
|
nn.Dropout(0.1), |
|
|
nn.Linear(llm_hidden_size * 2, llm_hidden_size * 2), |
|
|
nn.GELU(), |
|
|
nn.Dropout(0.1), |
|
|
nn.Linear(llm_hidden_size * 2, llm_hidden_size) |
|
|
) |
|
|
|
|
|
self.pooling_before_gating = CrossAttentionPooling(dim=vit_hidden_size) |
|
|
self.gating = Gating(hidden_size=vit_hidden_size) |
|
|
|
|
|
self.flash_mode = getattr(config, "flash_mode", False) |
|
|
if self.flash_mode: |
|
|
self.flash_relative_threshold = config.flash_relative_threshold |
|
|
self.flash_absolute_threshold = config.flash_absolute_threshold |
|
|
|
|
|
self.img_context_token_id = None |
|
|
self.conv_template = get_conv_template(self.template) |
|
|
self.system_message = self.conv_template.system_message |
|
|
|
|
|
|
|
|
def compress_visual_tokens_in_sentence( |
|
|
self, |
|
|
input_embeds: torch.Tensor, |
|
|
input_ids: torch.Tensor, |
|
|
mask_idx: torch.Tensor, |
|
|
img_context_token_id: int, |
|
|
gate_result, |
|
|
) -> tuple: |
|
|
|
|
|
N, C = input_embeds.shape |
|
|
|
|
|
input_ids = input_ids.squeeze(0) |
|
|
selected = (input_ids == img_context_token_id) |
|
|
padded = torch.cat([torch.tensor([0], device=selected.device), selected.int(), torch.tensor([0], device=selected.device)]) |
|
|
diff = torch.diff(padded) |
|
|
|
|
|
starts = (diff == 1).nonzero(as_tuple=True)[0] |
|
|
ends = (diff == -1).nonzero(as_tuple=True)[0] |
|
|
lengths = ends - starts |
|
|
|
|
|
keep_mask = torch.ones(N, dtype=torch.bool, device=input_embeds.device) |
|
|
|
|
|
delete_flags = torch.zeros(N, dtype=torch.int32, device=input_embeds.device) |
|
|
|
|
|
p = random.uniform(0, 1) |
|
|
|
|
|
total_blocks = 0 |
|
|
block_counts = [] |
|
|
for l in lengths.tolist(): |
|
|
if l % 256 != 0: |
|
|
raise ValueError(f"l % 256 != 0, l = {l}") |
|
|
num_blocks = l // 256 |
|
|
block_counts.append(num_blocks) |
|
|
total_blocks += num_blocks |
|
|
|
|
|
flag_idx = 0 |
|
|
for s, e, l, num_blocks in zip(starts.tolist(), ends.tolist(), lengths.tolist(), block_counts): |
|
|
for i in range(num_blocks): |
|
|
block_start = s + i * 256 |
|
|
block_end = block_start + 256 |
|
|
|
|
|
compress = gate_result[flag_idx] |
|
|
flag_idx += 1 |
|
|
|
|
|
if compress: |
|
|
keep_mask[block_start + 64 : block_end] = False |
|
|
delete_flags[block_start + 64 : block_end] = 1 |
|
|
|
|
|
cumulative_deletes = torch.cumsum(delete_flags, dim=0) |
|
|
cumulative_deletes = torch.cat([cumulative_deletes, cumulative_deletes[-1:].clone()], dim=0) |
|
|
|
|
|
|
|
|
mask_idx = mask_idx.squeeze(0) |
|
|
updated_mask_idx = mask_idx - cumulative_deletes[mask_idx.to(cumulative_deletes.device)].to(mask_idx.device) |
|
|
updated_mask_idx = updated_mask_idx.unsqueeze(0) |
|
|
|
|
|
new_input_embeds = input_embeds[keep_mask.to(input_embeds.device), :] |
|
|
new_input_ids = input_ids[keep_mask.to(input_ids.device)] |
|
|
|
|
|
return new_input_embeds, new_input_ids, updated_mask_idx, keep_mask |
|
|
|
|
|
def get_image_num_per_sample( |
|
|
self, |
|
|
input_ids: torch.Tensor, |
|
|
): |
|
|
input_ids = input_ids.squeeze(0) |
|
|
selected = (input_ids == self.img_context_token_id) |
|
|
padded = torch.cat([torch.tensor([0], device=selected.device), selected.int(), torch.tensor([0], device=selected.device)]) |
|
|
diff = torch.diff(padded) |
|
|
|
|
|
starts = (diff == 1).nonzero(as_tuple=True)[0] |
|
|
ends = (diff == -1).nonzero(as_tuple=True)[0] |
|
|
lengths = ends - starts |
|
|
|
|
|
return lengths |
|
|
def forward( |
|
|
self, |
|
|
pixel_values: torch.FloatTensor, |
|
|
input_ids: torch.LongTensor = None, |
|
|
attention_mask: Optional[torch.Tensor] = None, |
|
|
position_ids: Optional[torch.LongTensor] = None, |
|
|
image_flags: Optional[torch.LongTensor] = None, |
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None, |
|
|
labels: Optional[torch.LongTensor] = None, |
|
|
use_cache: Optional[bool] = None, |
|
|
output_attentions: Optional[bool] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
return_dict: Optional[bool] = None, |
|
|
) -> Union[Tuple, CausalLMOutputWithPast]: |
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict |
|
|
|
|
|
image_flags = image_flags.squeeze(-1) |
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() |
|
|
|
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
vit_embeds = vit_embeds[image_flags == 1] |
|
|
vit_batch_size = pixel_values.shape[0] |
|
|
|
|
|
B, N, C = input_embeds.shape |
|
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
input_ids = input_ids.reshape(B * N) |
|
|
selected = (input_ids == self.img_context_token_id) |
|
|
try: |
|
|
input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) |
|
|
except Exception as e: |
|
|
vit_embeds = vit_embeds.reshape(-1, C) |
|
|
print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' |
|
|
f'vit_embeds.shape={vit_embeds.shape}') |
|
|
n_token = min(selected.sum(), vit_embeds.size(0)) |
|
|
input_embeds[selected][:n_token] = input_embeds[selected][:n_token] * 0.0 + vit_embeds[:n_token] |
|
|
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
|
|
|
outputs = self.language_model( |
|
|
inputs_embeds=input_embeds, |
|
|
attention_mask=attention_mask, |
|
|
position_ids=position_ids, |
|
|
past_key_values=past_key_values, |
|
|
use_cache=use_cache, |
|
|
output_attentions=output_attentions, |
|
|
output_hidden_states=output_hidden_states, |
|
|
return_dict=return_dict, |
|
|
) |
|
|
logits = outputs.logits |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
|
|
|
shift_logits = logits[..., :-1, :].contiguous() |
|
|
shift_labels = labels[..., 1:].contiguous() |
|
|
|
|
|
loss_fct = CrossEntropyLoss() |
|
|
shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) |
|
|
shift_labels = shift_labels.view(-1) |
|
|
|
|
|
shift_labels = shift_labels.to(shift_logits.device) |
|
|
loss = loss_fct(shift_logits, shift_labels) |
|
|
|
|
|
if not return_dict: |
|
|
output = (logits,) + outputs[1:] |
|
|
return (loss,) + output if loss is not None else output |
|
|
|
|
|
return CausalLMOutputWithPast( |
|
|
loss=loss, |
|
|
logits=logits, |
|
|
past_key_values=outputs.past_key_values, |
|
|
hidden_states=outputs.hidden_states, |
|
|
attentions=outputs.attentions, |
|
|
) |
|
|
|
|
|
def pixel_shuffle(self, x, scale_factor=0.5): |
|
|
n, w, h, c = x.size() |
|
|
|
|
|
x = x.view(n, w, int(h * scale_factor), int(c / scale_factor)) |
|
|
|
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
|
|
|
x = x.view(n, int(h * scale_factor), int(w * scale_factor), |
|
|
int(c / (scale_factor * scale_factor))) |
|
|
if self.ps_version == 'v1': |
|
|
warnings.warn("In ps_version 'v1', the height and width have not been swapped back, " |
|
|
'which results in a transposed image.') |
|
|
else: |
|
|
x = x.permute(0, 2, 1, 3).contiguous() |
|
|
return x |
|
|
|
|
|
def split_and_merge(self, features: torch.Tensor, split_sizes: torch.Tensor): |
|
|
""" |
|
|
features: Tensor of shape [T, 1024, 1024] |
|
|
split_sizes: 1D Tensor like [3, 3, 4] — 每个样本 tile 数 |
|
|
|
|
|
returns: List of Tensors of shape [tile_i * 1024, 1024] |
|
|
""" |
|
|
|
|
|
tile_splits = torch.split(features, split_sizes, dim=0) |
|
|
|
|
|
|
|
|
merged = [x.reshape(-1, x.shape[-1]) for x in tile_splits] |
|
|
|
|
|
return merged |
|
|
|
|
|
def extract_feature_flash(self, pixel_values, lengths): |
|
|
|
|
|
with torch.no_grad(): |
|
|
vit_embeds_1024 = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
output_hidden_states=False, |
|
|
return_dict=True).last_hidden_state |
|
|
|
|
|
vit_embeds_1024 = vit_embeds_1024[:, 1:, :] |
|
|
h = w = int(vit_embeds_1024.shape[1] ** 0.5) |
|
|
vit_embeds_1024 = vit_embeds_1024.reshape(vit_embeds_1024.shape[0], h, w, -1) |
|
|
|
|
|
|
|
|
lengths = [int(x) for x in lengths.tolist()] |
|
|
vit_embeds_1024_split_and_merge = self.split_and_merge(vit_embeds_1024, lengths) |
|
|
|
|
|
gate = self.pooling_before_gating(vit_embeds_1024_split_and_merge) |
|
|
gate = self.gating(gate) |
|
|
|
|
|
vit_embeds_256 = vit_embeds_1024.clone() |
|
|
|
|
|
with torch.no_grad(): |
|
|
vit_embeds_64 = self.pixel_shuffle(vit_embeds_1024, scale_factor=self.downsample_ratio ** 2) |
|
|
vit_embeds_64 = vit_embeds_64.reshape(vit_embeds_64.shape[0], -1, vit_embeds_64.shape[-1]) |
|
|
vit_embeds_64 = self.mlp2(vit_embeds_64) |
|
|
|
|
|
vit_embeds_256 = self.pixel_shuffle(vit_embeds_256, scale_factor=self.downsample_ratio) |
|
|
vit_embeds_256= vit_embeds_256.reshape(vit_embeds_256.shape[0], -1, vit_embeds_256.shape[-1]) |
|
|
vit_embeds_256 = self.mlp1(vit_embeds_256) |
|
|
|
|
|
return vit_embeds_64, vit_embeds_256, gate |
|
|
|
|
|
def extract_feature(self, pixel_values): |
|
|
if self.select_layer == -1: |
|
|
vit_embeds = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
output_hidden_states=False, |
|
|
return_dict=True).last_hidden_state |
|
|
else: |
|
|
vit_embeds = self.vision_model( |
|
|
pixel_values=pixel_values, |
|
|
output_hidden_states=True, |
|
|
return_dict=True).hidden_states[self.select_layer] |
|
|
vit_embeds = vit_embeds[:, 1:, :] |
|
|
|
|
|
h = w = int(vit_embeds.shape[1] ** 0.5) |
|
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], h, w, -1) |
|
|
vit_embeds = self.pixel_shuffle(vit_embeds, scale_factor=self.downsample_ratio) |
|
|
vit_embeds = vit_embeds.reshape(vit_embeds.shape[0], -1, vit_embeds.shape[-1]) |
|
|
vit_embeds = self.mlp1(vit_embeds) |
|
|
return vit_embeds |
|
|
|
|
|
def batch_chat(self, tokenizer, pixel_values, questions, generation_config, num_patches_list=None, |
|
|
history=None, return_history=False, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', |
|
|
IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', verbose=False, image_counts=None): |
|
|
if history is not None or return_history: |
|
|
print('Now multi-turn chat is not supported in batch_chat.') |
|
|
raise NotImplementedError |
|
|
|
|
|
if image_counts is not None: |
|
|
num_patches_list = image_counts |
|
|
print('Warning: `image_counts` is deprecated. Please use `num_patches_list` instead.') |
|
|
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
|
self.img_context_token_id = img_context_token_id |
|
|
|
|
|
if verbose and pixel_values is not None: |
|
|
image_bs = pixel_values.shape[0] |
|
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
|
|
queries = [] |
|
|
for idx, num_patches in enumerate(num_patches_list): |
|
|
question = questions[idx] |
|
|
if pixel_values is not None and '<image>' not in question: |
|
|
question = '<image>\n' + question |
|
|
template = get_conv_template(self.template) |
|
|
template.system_message = self.system_message |
|
|
template.append_message(template.roles[0], question) |
|
|
template.append_message(template.roles[1], None) |
|
|
query = template.get_prompt() |
|
|
|
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
|
query = query.replace('<image>', image_tokens, 1) |
|
|
queries.append(query) |
|
|
|
|
|
tokenizer.padding_side = 'left' |
|
|
model_inputs = tokenizer(queries, return_tensors='pt', padding=True) |
|
|
input_ids = model_inputs['input_ids'].to(self.device) |
|
|
attention_mask = model_inputs['attention_mask'].to(self.device) |
|
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) |
|
|
generation_config['eos_token_id'] = eos_token_id |
|
|
generation_output = self.generate( |
|
|
pixel_values=pixel_values, |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
**generation_config |
|
|
) |
|
|
responses = tokenizer.batch_decode(generation_output, skip_special_tokens=True) |
|
|
responses = [response.split(template.sep.strip())[0].strip() for response in responses] |
|
|
return responses |
|
|
|
|
|
def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, |
|
|
num_patches_list=None, IMG_START_TOKEN='<img>', IMG_END_TOKEN='</img>', IMG_CONTEXT_TOKEN='<IMG_CONTEXT>', |
|
|
verbose=False): |
|
|
|
|
|
if history is None and pixel_values is not None and '<image>' not in question: |
|
|
question = '<image>\n' + question |
|
|
|
|
|
if num_patches_list is None: |
|
|
num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] |
|
|
assert pixel_values is None or len(pixel_values) == sum(num_patches_list) |
|
|
|
|
|
img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) |
|
|
self.img_context_token_id = img_context_token_id |
|
|
|
|
|
template = get_conv_template(self.template) |
|
|
template.system_message = self.system_message |
|
|
eos_token_id = tokenizer.convert_tokens_to_ids(template.sep.strip()) |
|
|
|
|
|
history = [] if history is None else history |
|
|
for (old_question, old_answer) in history: |
|
|
template.append_message(template.roles[0], old_question) |
|
|
template.append_message(template.roles[1], old_answer) |
|
|
template.append_message(template.roles[0], question) |
|
|
template.append_message(template.roles[1], None) |
|
|
query = template.get_prompt() |
|
|
|
|
|
if verbose and pixel_values is not None: |
|
|
image_bs = pixel_values.shape[0] |
|
|
print(f'dynamic ViT batch size: {image_bs}') |
|
|
|
|
|
for num_patches in num_patches_list: |
|
|
image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN |
|
|
query = query.replace('<image>', image_tokens, 1) |
|
|
|
|
|
model_inputs = tokenizer(query, return_tensors='pt') |
|
|
input_ids = model_inputs['input_ids'].to(self.device) |
|
|
attention_mask = model_inputs['attention_mask'].to(self.device) |
|
|
generation_config['eos_token_id'] = eos_token_id |
|
|
generation_output = self.generate( |
|
|
pixel_values=pixel_values, |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
**generation_config |
|
|
) |
|
|
response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] |
|
|
response = response.split(template.sep.strip())[0].strip() |
|
|
history.append((question, response)) |
|
|
if return_history: |
|
|
return response, history |
|
|
else: |
|
|
query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') |
|
|
query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '<image>') |
|
|
if verbose: |
|
|
print(query_to_print, response) |
|
|
return response |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate_flash( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
input_ids: Optional[torch.FloatTensor] = None, |
|
|
attention_mask: Optional[torch.LongTensor] = None, |
|
|
visual_features: Optional[torch.FloatTensor] = None, |
|
|
generation_config: Optional[GenerationConfig] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
**generate_kwargs, |
|
|
) -> torch.LongTensor: |
|
|
|
|
|
assert self.img_context_token_id is not None |
|
|
if pixel_values is not None: |
|
|
if visual_features is not None: |
|
|
vit_embeds = visual_features |
|
|
else: |
|
|
lengths = self.get_image_num_per_sample(input_ids) / 256 |
|
|
|
|
|
lengths_sum = torch.ones(int(lengths.sum().item()), dtype=torch.int64) |
|
|
lengths = lengths_sum.repeat_interleave(1) |
|
|
vit_embeds_64, vit_embeds_256, gate_result = self.extract_feature_flash(pixel_values, lengths) |
|
|
|
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
B, N, C = input_embeds.shape |
|
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
|
|
input_ids = input_ids.reshape(B * N) |
|
|
|
|
|
relative_threshold_value = torch.quantile(gate_result[:, 0].to(torch.float32), self.flash_relative_threshold) |
|
|
gate_result = (gate_result[:, 0] > relative_threshold_value) & (gate_result[:, 0] >= self.flash_absolute_threshold) |
|
|
|
|
|
selected_embeds = [] |
|
|
for i in range(gate_result.size(0)): |
|
|
if gate_result [i]: |
|
|
selected_embeds.append(vit_embeds_64[i]) |
|
|
else: |
|
|
selected_embeds.append(vit_embeds_256[i]) |
|
|
|
|
|
vit_embeds = torch.cat(selected_embeds, dim=0) |
|
|
|
|
|
assert torch.all(attention_mask == 1) |
|
|
input_embeds, input_ids, attention_mask, keep_mask = self.compress_visual_tokens_in_sentence( |
|
|
input_embeds=input_embeds, |
|
|
input_ids=input_ids, |
|
|
mask_idx=attention_mask, |
|
|
img_context_token_id=self.img_context_token_id, |
|
|
gate_result=gate_result, |
|
|
) |
|
|
|
|
|
attention_mask = torch.ones(1, input_embeds.shape[0]).to(input_embeds.device) |
|
|
|
|
|
selected = (input_ids == self.img_context_token_id) |
|
|
assert selected.sum() != 0 |
|
|
input_embeds[selected] = vit_embeds.to(input_embeds.device) |
|
|
|
|
|
input_embeds = input_embeds.reshape(B, -1, C) |
|
|
else: |
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
|
|
outputs = self.language_model.generate( |
|
|
inputs_embeds=input_embeds, |
|
|
attention_mask=attention_mask, |
|
|
generation_config=generation_config, |
|
|
output_hidden_states=output_hidden_states, |
|
|
use_cache=True, |
|
|
**generate_kwargs, |
|
|
) |
|
|
|
|
|
return outputs |
|
|
|
|
|
@torch.no_grad() |
|
|
def generate_normal( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
input_ids: Optional[torch.FloatTensor] = None, |
|
|
attention_mask: Optional[torch.LongTensor] = None, |
|
|
visual_features: Optional[torch.FloatTensor] = None, |
|
|
generation_config: Optional[GenerationConfig] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
**generate_kwargs, |
|
|
) -> torch.LongTensor: |
|
|
|
|
|
assert self.img_context_token_id is not None |
|
|
if pixel_values is not None: |
|
|
if visual_features is not None: |
|
|
vit_embeds = visual_features |
|
|
else: |
|
|
vit_embeds = self.extract_feature(pixel_values) |
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
B, N, C = input_embeds.shape |
|
|
input_embeds = input_embeds.reshape(B * N, C) |
|
|
|
|
|
input_ids = input_ids.reshape(B * N) |
|
|
selected = (input_ids == self.img_context_token_id) |
|
|
assert selected.sum() != 0 |
|
|
input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) |
|
|
|
|
|
input_embeds = input_embeds.reshape(B, N, C) |
|
|
else: |
|
|
input_embeds = self.language_model.get_input_embeddings()(input_ids) |
|
|
|
|
|
outputs = self.language_model.generate( |
|
|
inputs_embeds=input_embeds, |
|
|
attention_mask=attention_mask, |
|
|
generation_config=generation_config, |
|
|
output_hidden_states=output_hidden_states, |
|
|
use_cache=True, |
|
|
**generate_kwargs, |
|
|
) |
|
|
|
|
|
return outputs |
|
|
|
|
|
def generate( |
|
|
self, |
|
|
pixel_values: Optional[torch.FloatTensor] = None, |
|
|
input_ids: Optional[torch.FloatTensor] = None, |
|
|
attention_mask: Optional[torch.LongTensor] = None, |
|
|
visual_features: Optional[torch.FloatTensor] = None, |
|
|
generation_config: Optional[GenerationConfig] = None, |
|
|
output_hidden_states: Optional[bool] = None, |
|
|
**generate_kwargs, |
|
|
) -> torch.LongTensor: |
|
|
|
|
|
if getattr(self, "flash_mode", False): |
|
|
return self.generate_flash( |
|
|
pixel_values=pixel_values, |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
visual_features=visual_features, |
|
|
generation_config=generation_config, |
|
|
output_hidden_states=output_hidden_states, |
|
|
**generate_kwargs, |
|
|
) |
|
|
else: |
|
|
return self.generate_normal( |
|
|
pixel_values=pixel_values, |
|
|
input_ids=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
visual_features=visual_features, |
|
|
generation_config=generation_config, |
|
|
output_hidden_states=output_hidden_states, |
|
|
**generate_kwargs, |
|
|
) |
|
|
|
|
|
@property |
|
|
def lm_head(self): |
|
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def get_output_embeddings(self): |
|
|
return self.language_model.get_output_embeddings() |
|
|
|
|
|
def get_input_embeddings(self): |
|
|
return self.language_model.get_input_embeddings() |
|
|
|
|
|
def set_input_embeddings(self, value): |
|
|
return self.language_model.set_input_embeddings(value) |
|
|
|
|
|
def set_output_embeddings(self, value): |
|
|
return self.language_model.set_output_embeddings(value) |
|
|
|