# -------------------------------------------------------- # NaViL # Copyright (c) 2025 OpenGVLab # Licensed under The MIT License [see LICENSE for details] # -------------------------------------------------------- import os import warnings from typing import Any, List, Optional, Tuple, Union import copy from dataclasses import dataclass import torch import torch.distributed as dist from torch import nn from torch.nn import CrossEntropyLoss import transformers from transformers import (AutoModel, GenerationConfig, LlamaForCausalLM, LlamaTokenizer, Qwen2ForCausalLM) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ModelOutput, logging from transformers.models.qwen2.modeling_qwen2 import Qwen2RMSNorm from .configuration_navil_chat import NaViLChatConfig from .modeling_navil_vit_anyres import NaViLVisionModelAnyRes from .conversation import get_conv_template from .modeling_internlm2_ve import InternLM2VEForCausalLM # from navil.model.qwen3.modeling_qwen3_ve import Qwen3VEForCausalLM from .modeling_internlm2_ve import InternLM2RMSNorm from .image_processing_qwen2_vl import Qwen2VLImageProcessor from .constants import ( SPECIAL_TOKEN_LIST, IMG_CONTEXT_TOKEN, IMG_END_TOKEN, IMG_START_TOKEN, IMG_UNCOND_TOKEN, VAE_MEAN, VAE_STD, ) from .modular_intern_vit import ( InternVisionFlashAttention2, InternVisionSdpaAttention, InternMLP, NORM2FN, InternVisionRotaryEmbedding, ) logger = logging.get_logger(__name__) logger.setLevel(logging.INFO) def version_cmp(v1, v2, op='eq'): import operator from packaging import version op_func = getattr(operator, op) return op_func(version.parse(v1), version.parse(v2)) @dataclass class CausalLMOutputWithPast(ModelOutput): """ Base class for causal language model (or autoregressive) outputs. Args: loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided): Language modeling loss (for next-token prediction). logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`): Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`): Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`) Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see `past_key_values` input) to speed up sequential decoding. hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`): Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`. Hidden-states of the model at the output of each layer plus the optional initial embedding outputs. attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`): Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length, sequence_length)`. Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads. """ loss: Optional[torch.FloatTensor] = None logits: torch.FloatTensor = None past_key_values: Optional[Tuple[Tuple[torch.FloatTensor]]] = None hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None attentions: Optional[Tuple[torch.FloatTensor, ...]] = None log_dict: Optional[dict] = None class NaViL(PreTrainedModel): config_class = NaViLChatConfig main_input_name = 'pixel_values' _no_split_modules = ['NaViLVisionModelAnyRes', 'InternLM2DecoderLayer', 'Qwen3DecoderLayer'] _supports_flash_attn_2 = True def __init__(self, config: NaViLChatConfig, vision_model=None, language_model=None): super().__init__(config) self.config = config assert version_cmp(transformers.__version__, '4.51.0', 'ge') image_size = config.force_image_size or config.vision_config.image_size patch_size = config.vision_config.patch_size self.patch_size = patch_size self.select_layer = config.select_layer self.template = config.template self.num_image_token = int((image_size // patch_size) ** 2 * (config.downsample_ratio ** 2)) self.downsample_ratio = config.downsample_ratio self.patch_aspect_ratio = 1.0 self.ps_version = config.ps_version self.llm_arch_name = config.llm_config.architectures[0] logger.info(f'init - image_size: {image_size}, patch_size: {patch_size}, num_image_token: {self.num_image_token}') logger.info(f'ps_version: {self.ps_version}') if vision_model is not None: self.vision_model = vision_model else: self.vision_model = NaViLVisionModelAnyRes(config.vision_config) if language_model is not None: self.language_model = language_model else: llm_config = config.llm_config if config.llm_config.architectures[0] == 'InternLM2VEForCausalLM': self.language_model = InternLM2VEForCausalLM(llm_config) else: raise NotImplementedError(f'{config.llm_config.architectures[0]} is not implemented.') vit_hidden_size = config.vision_config.hidden_size llm_hidden_size = config.llm_config.hidden_size self.mlp1 = nn.Sequential( nn.LayerNorm(vit_hidden_size * int(1 / self.downsample_ratio) ** 2), nn.Linear(vit_hidden_size * int(1 / self.downsample_ratio) ** 2, llm_hidden_size), nn.GELU(), nn.Linear(llm_hidden_size, llm_hidden_size) ) self.img_context_token_id = None self.img_start_token_id = None self.img_end_token_id = None self.img_uncond_token_id = None self.img_line_break_token_id = None self.img_frame_break_token_id = None self.pad_token_id = None self.conv_template = get_conv_template(self.template) if hasattr(config, 'system_message'): self.system_message = config.system_message else: self.system_message = self.conv_template.system_message min_pixels = config.min_dynamic_patch * (patch_size ** 2) max_pixels = config.max_dynamic_patch * (patch_size ** 2) down_sample_ratio = config.vision_config.downsample_ratio self.image_processor = Qwen2VLImageProcessor( do_resize=False, do_pad=True, do_rescale=True, do_normalize=True, image_mean=VAE_MEAN, image_std=VAE_STD, min_pixels=min_pixels, max_pixels=max_pixels, patch_size=patch_size, temporal_patch_size=1, merge_size=int(1.0 / down_sample_ratio), ) ##### ---- Special token embeddings ---- ##### self.special_token_embedding = nn.Embedding(len(SPECIAL_TOKEN_LIST), config.llm_config.hidden_size) self.special_token_list = copy.deepcopy(SPECIAL_TOKEN_LIST) self.special_token_id_list = None # Remember to initialize this in the training script after tokenizer is loaded self.group = None # Distributed group. Remember to set this in the training script def init_special_token_ids(self, tokenizer): special_token_id_list = [] for token in SPECIAL_TOKEN_LIST: special_token_id_list.append(tokenizer.convert_tokens_to_ids(token)) self.special_token_id_list = special_token_id_list self.img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN) self.img_end_token_id = tokenizer.convert_tokens_to_ids(IMG_END_TOKEN) self.img_uncond_token_id = tokenizer.convert_tokens_to_ids(IMG_UNCOND_TOKEN) def replace_img_special_tokens(self, input_embeds, input_ids): assert self.special_token_id_list is not None, "model's special_token_id_list is not initialized" for i, token_id in enumerate(self.special_token_id_list): token_pos = input_ids == token_id input_embeds[token_pos] = input_embeds[token_pos] * 0.0 + self.special_token_embedding.weight[i] return input_embeds def _init_weights(self, module): if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=0.02) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=0.02) elif isinstance(module, (nn.LayerNorm, Qwen2RMSNorm, InternLM2RMSNorm)): if hasattr(module, 'bias') and module.bias is not None: module.bias.data.zero_() if module.weight is not None: module.weight.data.fill_(1.0) def forward( self, pixel_values: torch.FloatTensor, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, image_flags: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, generation_modality: Optional[int] = 0, statistics: Optional[torch.LongTensor] = None, loss_weight: Optional[List] = None, loss_reduction_all_gather: Optional[bool] = False, padding_type: Optional[str] = None, type_ids: Optional[torch.LongTensor] = None, image_grid_thw: Optional[torch.LongTensor] = None, video_grid_thw: Optional[torch.LongTensor] = None, rope_deltas: Optional[torch.LongTensor] = None, # cache_position: Optional[torch.LongTensor] = None, second_per_grid_ts: Optional[torch.Tensor] = None, ) -> Union[Tuple, CausalLMOutputWithPast]: ignore_flag = False return_dict = return_dict if return_dict is not None else self.config.use_return_dict image_flags = image_flags.squeeze(-1) input_embeds = self.language_model.get_input_embeddings()(input_ids).clone() input_embeds = self.replace_img_special_tokens(input_embeds, input_ids) if video_grid_thw is not None: grid_thw = video_grid_thw else: grid_thw = image_grid_thw vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw) vit_embeds = vit_embeds[image_flags == 1] vit_embeds_ori = vit_embeds_ori[image_flags == 1] vit_batch_size = image_flags.sum().item() log_dict_keys = [ "text_loss", "text_acc1", ] log_dict = {k: torch.tensor(0.0, device=self.device) for k in log_dict_keys} return_feature_scale = True B, N, C = input_embeds.shape selected = (input_ids == self.img_context_token_id) try: input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds.reshape(-1, C) # ignore_flag = False except Exception as e: vit_embeds = vit_embeds.reshape(-1, C) print(f'warning: {e}, input_embeds[selected].shape={input_embeds[selected].shape}, ' f'vit_embeds.shape={vit_embeds.shape}', force=True) n_token = selected.sum() if n_token > vit_embeds.shape[0]: selected = selected.view(-1, selected.shape[-1]) # 确保是 [B, N] 形状 batch_size = selected.shape[0] max_visual_tokens = vit_embeds.shape[0] // batch_size # 每个批次可用的视觉特征数量 for i in range(batch_size): # 获取当前批次中的图像标记位置 curr_selected = selected[i] # 只保留前 max_visual_tokens 个标记位置 curr_indices = torch.where(curr_selected)[0][:max_visual_tokens] # 更新选择标记 selected[i] = False selected[i, curr_indices] = True input_embeds[selected] = input_embeds[selected] * 0.0 + vit_embeds[:n_token] ignore_flag = True # input_embeds = input_embeds.reshape(B, N, C) visual_token_mask = (selected + (input_ids == self.img_start_token_id)) outputs = self.language_model( inputs_embeds=input_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, visual_token_mask=visual_token_mask, generation_modality=generation_modality, padding_type=padding_type, # or self.train_padding_type, skip_lm_head=False, # imgen return_feature_scale=return_feature_scale, ) logits = outputs.logits # B, N, C if labels is not None and loss_weight is not None: loss_weight = torch.tensor(loss_weight, dtype=torch.float32, device=labels.device) # Shift so that tokens < n predict n shift_logits = logits[..., :-1, :].contiguous() shift_labels = labels[..., 1:].contiguous() shift_weights = loss_weight[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss(reduction='none') shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) shift_weights = shift_weights.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) shift_weights = shift_weights.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) shift_weights_sum = shift_weights.sum() if loss_reduction_all_gather: dist.all_reduce(shift_weights_sum, op=dist.ReduceOp.AVG, group=self.group) pred_ids = shift_logits.argmax(dim=-1) pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum() log_dict.update({ "text_loss": ((loss * shift_weights).sum() / shift_weights_sum).detach(), "text_acc1": pred_acc }) loss = loss * shift_weights loss = loss.sum() / shift_weights_sum if ignore_flag: loss = loss * 0.0 elif labels is not None: # To reduce gpu memory, remove the image parts of the logits and labels shift_selected = (input_ids == self.img_context_token_id)[..., :-1] shift_logits = logits[..., :-1, :][~shift_selected] shift_labels = labels[..., 1:][~shift_selected] # Shift so that tokens < n predict n # shift_logits = logits[..., :-1, :].contiguous() # shift_labels = labels[..., 1:].contiguous() # Flatten the tokens loss_fct = CrossEntropyLoss() shift_logits = shift_logits.view(-1, self.language_model.config.vocab_size) shift_labels = shift_labels.view(-1) # Enable model parallelism shift_labels = shift_labels.to(shift_logits.device) loss = loss_fct(shift_logits, shift_labels) pred_ids = shift_logits.argmax(dim=-1) pred_acc = 100.0 * ((shift_labels == pred_ids) * (shift_labels != -100)).sum() / (shift_labels != -100).sum() log_dict.update({ "text_loss": loss.mean().detach(), "text_acc1": pred_acc }) if ignore_flag: loss = loss * 0.0 if not return_dict: output = (logits,) + outputs[1:] return (loss,) + output if loss is not None else output if return_feature_scale: log_dict["feature_scale"] = { "image": outputs.feature_scale[0], "text": outputs.feature_scale[1], } return CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, log_dict=log_dict ) def extract_feature(self, pixel_values, grid_thw=None): if grid_thw is not None: grid_thw = grid_thw.to(pixel_values.device) vit_embeds = self.vision_model( pixel_values=pixel_values, output_hidden_states=False, return_dict=True, grid_thw=grid_thw ).last_hidden_state vit_embeds = pixel_shuffle_v2(vit_embeds, scale_factor=self.downsample_ratio, patch_aspect_ratio=self.patch_aspect_ratio) vit_embeds_after_mlp = self.mlp1(vit_embeds) return vit_embeds_after_mlp, vit_embeds def chat(self, tokenizer, pixel_values, question, generation_config, history=None, return_history=False, num_patches_list=None, num_scales: list = [2], IMG_START_TOKEN='', IMG_END_TOKEN='', IMG_CONTEXT_TOKEN='', IMG_LINE_BREAK_TOKEN='', IMG_FRAME_BREAK_TOKEN='', anyres_image_size=True, verbose=False, ): if history is None and pixel_values is not None and '' not in question: question = '\n' * len(num_scales) + question if num_patches_list is None: assert not anyres_image_size, "Please provide `num_patches_list` when anyres_image_size is True." num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] assert pixel_values is None or anyres_image_size or len(pixel_values) == sum(num_patches_list) img_context_token_id = tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) self.img_context_token_id = img_context_token_id img_start_token_id = tokenizer.convert_tokens_to_ids(IMG_START_TOKEN) self.img_start_token_id = img_start_token_id self.img_line_break_token_id = tokenizer.convert_tokens_to_ids(IMG_LINE_BREAK_TOKEN) self.img_frame_break_token_id = tokenizer.convert_tokens_to_ids(IMG_FRAME_BREAK_TOKEN) template = get_conv_template(self.template) template.system_message = self.system_message eos_token_id = tokenizer.convert_tokens_to_ids(template.sep) history = [] if history is None else history for (old_question, old_answer) in history: template.append_message(template.roles[0], old_question) template.append_message(template.roles[1], old_answer) template.append_message(template.roles[0], question) template.append_message(template.roles[1], None) query = template.get_prompt() if verbose and pixel_values is not None: image_bs = pixel_values.shape[0] print(f'dynamic ViT batch size: {image_bs}') if anyres_image_size: merge_size = int(1.0 / self.downsample_ratio) for image_idx in range(len(num_scales)): num_scales_prev = sum(num_scales[:image_idx]) num_scale = num_scales[image_idx] _num_image_token_list = num_patches_list[num_scales_prev:num_scales_prev + num_scale] image_tokens = f"{IMG_START_TOKEN}" for i in range(len(_num_image_token_list)): _image_tokens = "" t, h, w = _num_image_token_list[i][0], _num_image_token_list[i][1] // merge_size, _num_image_token_list[i][2] // merge_size for _ in range(t): for _ in range(h): _image_tokens += f"{IMG_CONTEXT_TOKEN * w}{IMG_LINE_BREAK_TOKEN}" _image_tokens += f"{IMG_FRAME_BREAK_TOKEN}" image_tokens += _image_tokens image_tokens += f"{IMG_END_TOKEN}" query = query.replace('', image_tokens, 1) else: for num_patches in num_patches_list: image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN query = query.replace('', image_tokens, 1) model_inputs = tokenizer(query, return_tensors='pt') input_ids = model_inputs['input_ids'].cuda() attention_mask = model_inputs['attention_mask'].cuda() generation_config['eos_token_id'] = eos_token_id generation_output = self.generate( pixel_values=pixel_values, input_ids=input_ids, attention_mask=attention_mask, image_grid_thw=num_patches_list, **generation_config ) response = tokenizer.batch_decode(generation_output, skip_special_tokens=True)[0] response = response.split(template.sep)[0].strip() # fix for InternLM2-base (textvqa) response = response.replace("<|im_end|", "") response = response.replace("<|im_end", "") response = response.replace("<|im", "") history.append((question, response)) if return_history: return response, history else: query_to_print = query.replace(IMG_CONTEXT_TOKEN, '') query_to_print = query_to_print.replace(IMG_LINE_BREAK_TOKEN, '') query_to_print = query_to_print.replace(IMG_FRAME_BREAK_TOKEN, '') query_to_print = query_to_print.replace(f'{IMG_START_TOKEN}{IMG_END_TOKEN}', '') if verbose: print(query_to_print, response) return response @torch.no_grad() def generate( self, pixel_values: Optional[torch.FloatTensor] = None, input_ids: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.LongTensor] = None, visual_features: Optional[torch.FloatTensor] = None, generation_config: Optional[GenerationConfig] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, image_grid_thw: Optional[torch.LongTensor] = None, **generate_kwargs, ) -> torch.LongTensor: assert self.img_context_token_id is not None grid_thw = image_grid_thw if pixel_values is not None: if visual_features is not None: vit_embeds = visual_features else: vit_embeds, vit_embeds_ori = self.extract_feature(pixel_values, grid_thw) input_embeds = self.language_model.get_input_embeddings()(input_ids) input_embeds = self.replace_img_special_tokens(input_embeds, input_ids) B, N, C = input_embeds.shape # input_embeds = input_embeds.reshape(B * N, C) # input_ids = input_ids.reshape(B * N) selected = (input_ids == self.img_context_token_id) # B, N assert selected.sum() != 0 input_embeds[selected] = vit_embeds.reshape(-1, C).to(input_embeds.device) # input_embeds = input_embeds.reshape(B, N, C) else: input_embeds = self.language_model.get_input_embeddings()(input_ids) input_embeds = self.replace_img_special_tokens(input_embeds, input_ids) selected = None # input_embeds = self.replace_special_tokens(input_embeds, input_ids) visual_token_mask = selected + (input_ids == self.img_start_token_id) if selected is not None else None position_ids = None generate_kwargs['position_ids'] = position_ids outputs = self.language_model.generate( inputs_embeds=input_embeds, attention_mask=attention_mask, generation_config=generation_config, output_hidden_states=output_hidden_states, # return_dict=return_dict, use_cache=True, visual_token_mask=visual_token_mask, **generate_kwargs, ) return outputs def pixel_shuffle_v2(x, scale_factor=0.5, patch_aspect_ratio=1.0): # input shape: N, L, C or N, H, W, C # output shape: N, L * (scale_factor ** 2), C / (scale_factor ** 2) if x.ndim == 3: n, l, c = x.size() h = w = int(l ** 0.5) # N, L, C --> N, H, W, C x = x.reshape(n, h, w, c) n, h, w, c = x.size() h_scale_factor = scale_factor * (patch_aspect_ratio ** 0.5) w_scale_factor = scale_factor / (patch_aspect_ratio ** 0.5) # N, H, W, C --> N, H, W * w_scale_factor, C // w_scale_factor x = x.reshape(n, h, int(w * w_scale_factor), int(c / w_scale_factor)) # N, H, W * w_scale_factor, C // w_scale_factor --> N, W * w_scale_factor, H, C // w_scale_factor x = x.permute(0, 2, 1, 3).contiguous() # N, W * w_scale_factor, H, C // w_scale_factor --> N, W * w_scale_factor, H * h_scale_factor, C // (w_scale_factor * h_scale_factor) x = x.reshape(n, int(w * w_scale_factor), int(h * h_scale_factor), int(c / (w_scale_factor * h_scale_factor))) # N, W * w_scale_factor, H * h_scale_factor, C // (w_scale_factor * h_scale_factor) --> N, H * h_scale_factor, W * w_scale_factor, C // (w_scale_factor * h_scale_factor) x = x.permute(0, 2, 1, 3).contiguous() # N, H * h_scale_factor, W * w_scale_factor, C // (w_scale_factor * h_scale_factor) --> N, L * (scale_factor ** 2), C // (scale_factor ** 2) x = x.reshape(n, int(h * h_scale_factor * w * w_scale_factor), int(c / (h_scale_factor * w_scale_factor))) return x