File size: 23,323 Bytes
1a05ac7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0383930
 
 
 
 
 
 
 
 
1a05ac7
 
0383930
 
 
 
 
 
 
 
 
1a05ac7
0383930
 
 
 
 
1a05ac7
0383930
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1a05ac7
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
# coding=utf-8
# Copyright 2025 OpenMOSS and HuggingFace Inc. teams. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import logging
import os
import random
import uuid as uuid_module
from collections import OrderedDict, defaultdict
from pathlib import Path
from typing import List, Optional, Sequence, Tuple, Union

import numpy as np
import onnxruntime
from hyperpyyaml import load_hyperpyyaml

import torch
import torchaudio
import torchaudio.compliance.kaldi as kaldi
from safetensors.torch import load_file
from torch import nn
from transformers import PreTrainedModel, WhisperFeatureExtractor

from .configuration_moss_speech_codec import MossSpeechCodecConfig
from .modeling_whisper import WhisperVQEncoder, WhisperVQConfig
from .utils import extract_speech_token

logger = logging.getLogger(__name__)

def set_seed(seed: int) -> None:
    if not isinstance(seed, int):
        raise TypeError("Seed must be an integer.")

    logger.info("Setting random seed to %s", seed)
    random.seed(seed)
    np.random.seed(seed)
    if torch.cuda.is_available():
        torch.cuda.manual_seed_all(seed)
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False
    else:
        torch.manual_seed(seed)
    os.environ["PYTHONHASHSEED"] = str(seed)
    os.environ["TF_CUDNN_DETERMINISTIC"] = "1"


def fade_in_out(fade_in_mel, fade_out_mel, window):
    device = fade_in_mel.device
    fade_in_mel, fade_out_mel = fade_in_mel.cpu(), fade_out_mel.cpu()
    mel_overlap_len = int(window.shape[0] / 2)
    fade_in_mel[..., :mel_overlap_len] = fade_in_mel[..., :mel_overlap_len] * window[:mel_overlap_len] + \
                                         fade_out_mel[..., -mel_overlap_len:] * window[mel_overlap_len:]
    return fade_in_mel.to(device)


tts_speech_prev = None
tts_mel_prev = None


class AudioDecoder(nn.Module):
    def __init__(
        self,
        config_path: Union[str, os.PathLike],
        flow_ckpt_path: Union[str, os.PathLike],
        hift_ckpt_path: Union[str, os.PathLike],
        campplus_model: Union[str, os.PathLike],
        device: Union[str, torch.device] = "cuda",
    ) -> None:
        super().__init__()
        self.device = torch.device(device) if isinstance(device, str) else device

        with open(config_path, "r", encoding="utf-8") as config_file:
            logger.info("Loading decoder configurations from %s", config_path)
            self.scratch_configs = load_hyperpyyaml(config_file)

        # Load models
        self.flow = self.scratch_configs["flow"]
        self.flow.load_state_dict(torch.load(flow_ckpt_path, map_location=self.device), strict=False)
        self.hift = self.scratch_configs["hift"]
        self.hift.load_state_dict(torch.load(hift_ckpt_path, map_location=self.device))
        self.hift = self.hift.eval()
        self.sample_rate = self.scratch_configs["sample_rate"]
        self.feat_extractor = self.scratch_configs["feat_extractor"]

        # Move models to the appropriate device
        self.flow.to(self.device)
        self.hift.to(self.device)
        self.mel_overlap_dict = defaultdict(lambda: None)
        self.hift_cache_dict = defaultdict(lambda: None)
        self.token_min_hop_len = 2 * self.flow.input_frame_rate
        self.token_max_hop_len = 4 * self.flow.input_frame_rate
        self.token_overlap_len = 3.5
        self.mel_overlap_len = int(self.token_overlap_len / self.flow.input_frame_rate * 24000 / (480 * 2))
        self.mel_window = np.hamming(2 * self.mel_overlap_len)
        # hift cache
        self.mel_cache_len = 1
        self.source_cache_len = int(self.mel_cache_len * 480)
        # speech fade in out
        session_options = onnxruntime.SessionOptions()
        session_options.graph_optimization_level = onnxruntime.GraphOptimizationLevel.ORT_ENABLE_ALL
        session_options.intra_op_num_threads = 1
        self.campplus_session = onnxruntime.InferenceSession(
            str(campplus_model),
            sess_options=session_options,
            providers=["CPUExecutionProvider"],
        )
        self.speech_window = np.hamming(2 * self.source_cache_len)

    def token2wav(
        self,
        token: torch.Tensor,
        uuid: str,
        prompt_token: Optional[torch.Tensor] = None,
        prompt_feat: Optional[torch.Tensor] = None,
        embedding: Optional[torch.Tensor] = None,
        finalize: bool = False,
    ) -> Tuple[torch.Tensor, torch.Tensor]:
        prompt_token = prompt_token if prompt_token is not None else torch.zeros(1, 0, dtype=torch.int32)
        prompt_feat = prompt_feat if prompt_feat is not None else torch.zeros(1, 0, 80)
        embedding = embedding if embedding is not None else torch.zeros(1, 192)

        tts_mel = self.flow.inference(
            token=token.to(self.device),
            token_len=torch.tensor([token.shape[1]], dtype=torch.int32, device=self.device),
            prompt_token=prompt_token.to(self.device),
            prompt_token_len=torch.tensor([prompt_token.shape[1]], dtype=torch.int32, device=self.device),
            prompt_feat=prompt_feat.to(self.device),
            prompt_feat_len=torch.tensor([prompt_feat.shape[1]], dtype=torch.int32, device=self.device),
            embedding=embedding.to(self.device),
            streaming=False,
            finalize=finalize,
        )

        tts_mel = tts_mel[0]
        if self.mel_overlap_dict[uuid] is not None:
            tts_mel = fade_in_out(tts_mel, self.mel_overlap_dict[uuid], self.mel_window)
        # append hift cache
        if self.hift_cache_dict[uuid] is not None:
            hift_cache_mel, hift_cache_source = (
                self.hift_cache_dict[uuid]["mel"],
                self.hift_cache_dict[uuid]["source"],
            )
            tts_mel = torch.cat([hift_cache_mel, tts_mel], dim=2)

        else:
            hift_cache_source = torch.zeros(1, 1, 0)

        # keep overlap mel and hift cache
        if not finalize:
            self.mel_overlap_dict[uuid] = tts_mel[:, :, -self.mel_overlap_len:]
            tts_mel = tts_mel[:, :, :-self.mel_overlap_len]
            tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)

            self.hift_cache_dict[uuid] = {
                "mel": tts_mel[:, :, -self.mel_cache_len:],
                "source": tts_source[:, :, -self.source_cache_len:],
                "speech": tts_speech[:, -self.source_cache_len:],
            }
            tts_speech = tts_speech[:, :-self.source_cache_len]

        else:
            tts_speech, tts_source = self.hift.inference(speech_feat=tts_mel, cache_source=hift_cache_source)
            del self.hift_cache_dict[uuid]
            del self.mel_overlap_dict[uuid]
        return tts_speech, tts_mel


    def offline_inference(self, token: torch.Tensor) -> torch.Tensor:
        this_uuid = str(uuid_module.uuid1())
        tts_speech, tts_mel = self.token2wav(token, uuid=this_uuid, finalize=True)
        return tts_speech.cpu()

    def stream_inference(
        self,
        token: torch.Tensor,
        prompt_token: Optional[torch.Tensor] = None,
        prompt_feat: Optional[torch.Tensor] = None,
        embedding: Optional[torch.Tensor] = None,
        block_size: int = 8,
    ) -> torch.Tensor:
        token = token.to(self.device)
        this_uuid = str(uuid_module.uuid1())

        prompt_tensor = (
            prompt_token.to(self.device)
            if prompt_token is not None
            else torch.zeros(1, 0, dtype=torch.int32, device=self.device)
        )
        prompt_speech_feat = (
            prompt_feat.to(self.device)
            if prompt_feat is not None
            else torch.zeros(1, 0, 80, device=self.device)
        )
        embedding = embedding.to(self.device) if embedding is not None else torch.zeros(1, 192, device=self.device)

        base_prompt_tensor = prompt_tensor
        base_prompt_feat = prompt_speech_feat

        tts_speechs: List[torch.Tensor] = []
        tts_mels: List[torch.Tensor] = []
        prev_mel: Optional[torch.Tensor] = None

        for idx in range(0, token.size(1), block_size):
            tts_token = token[:, idx : idx + block_size]

            prompt_tensor_current = base_prompt_tensor
            prompt_feat_current = base_prompt_feat
            if prev_mel is not None:
                prompt_feat_current = torch.cat(
                    [base_prompt_feat.transpose(1, 2)] + tts_mels,
                    dim=-1,
                ).transpose(1, 2)
                prompt_tensor_current = torch.cat([base_prompt_tensor, token[:, :idx]], dim=-1)

            is_finalize = idx + block_size >= token.size(-1)

            tts_speech, tts_mel = self.token2wav(
                tts_token,
                uuid=this_uuid,
                prompt_token=prompt_tensor_current,
                prompt_feat=prompt_feat_current,
                embedding=embedding,
                finalize=is_finalize,
            )

            prev_mel = tts_mel
            tts_speechs.append(tts_speech)
            tts_mels.append(tts_mel)

        tts_speech = torch.cat(tts_speechs, dim=-1).cpu()

        return tts_speech

    def streaming_inference(
        self,
        token: torch.Tensor,
        prompt_token: Optional[torch.Tensor] = None,
        prompt_feat: Optional[torch.Tensor] = None,
        embedding: Optional[torch.Tensor] = None,
        uuid: Optional[str] = None,
        prev_mel: Optional[torch.Tensor] = None,
        prev_token: Optional[torch.Tensor] = None,
        is_finalize: bool = True,
    ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[torch.Tensor]]:
        token = token.to(self.device)
        this_uuid = uuid or str(uuid_module.uuid1())

        prompt_speech_feat = (
            prompt_feat.to(self.device)
            if prompt_feat is not None
            else torch.zeros(1, 0, 80, device=self.device)
        )
        flow_prompt_speech_token = (
            prompt_token.to(self.device)
            if prompt_token is not None
            else torch.zeros(1, 0, dtype=torch.int32, device=self.device)
        )
        embedding_tensor = (
            embedding.to(self.device)
            if embedding is not None
            else torch.zeros(1, 192, device=self.device)
        )

        if prev_mel is not None:
            prompt_speech_feat = prev_mel
        if prev_token is not None:
            flow_prompt_speech_token = prev_token

        tts_speech, tts_mel = self.token2wav(
            token,
            uuid=this_uuid,
            prompt_token=flow_prompt_speech_token,
            prompt_feat=prompt_speech_feat,
            embedding=embedding_tensor,
            finalize=is_finalize,
        )

        if prev_mel is not None:
            prev_mel = torch.cat([prev_mel, tts_mel], dim=1)
        else:
            prev_mel = tts_mel
        if prev_token is not None:
            prev_token = torch.cat([prev_token, token], dim=-1)
        else:
            prev_token = token

        return tts_speech.cpu(), prev_mel, prev_token


class MossSpeechCodec(PreTrainedModel):
    """MossSpeech codec model (Whisper-VQ encoder + Flow/HiFT decoder).

    Notes
    - API is designed to be compatible with the existing
      `MossSpeechProcessor` usages, while adopting a Transformers-style layout
      similar to HF codec models (`xcodec`, `encodec`).
    - `encode` accepts raw audio tensors or file paths. It returns a Python
      list of codec token ids per input sample for backward-compatibility.
    - `decode` accepts either a 3D LongTensor `(B, 1, T)` or a nested list of
      token ids, and returns a dict with a list of waveforms under
      `"syn_wav_list"` (matching current processor expectations).
    """

    config_class = MossSpeechCodecConfig

    def __init__(
        self,
        encoder_weight_path: Union[str, os.PathLike],
        encoder_config_path: Union[str, os.PathLike],
        encoder_feature_extractor_path: Union[str, os.PathLike],
        flow_path: Union[str, os.PathLike],
    ) -> None:
        super().__init__(config=MossSpeechCodecConfig())

        # Whisper-VQ encoder
        self.sample_rate = 16000
        config = WhisperVQConfig.from_pretrained(str(encoder_config_path))
        self.whisper_vqmodel = WhisperVQEncoder(config)

        state_dict = load_file(str(encoder_weight_path))
        new_state_dict: OrderedDict[str, torch.Tensor] = OrderedDict()
        for k, v in state_dict.items():
            if k.startswith("encoder."):
                new_state_dict[k[len("encoder."):]] = v
        self.whisper_vqmodel.load_state_dict(new_state_dict, strict=False)

        self.feature_extractor = WhisperFeatureExtractor.from_pretrained(
            str(encoder_feature_extractor_path)
        )

        # Flow / HiFT decoder stack
        self.flow_path = str(flow_path)
        self.audio_decoder = AudioDecoder(
            config_path=os.path.join(self.flow_path, "config.yaml"),
            flow_ckpt_path=os.path.join(self.flow_path, "flow.pt"),
            hift_ckpt_path=os.path.join(self.flow_path, "hift.pt"),
            campplus_model=os.path.join(self.flow_path, "campplus.onnx"),
        ).eval()

    @torch.no_grad()
    def encode(
        self,
        inputs: Union[
            Sequence[Union[str, os.PathLike, Tuple[torch.Tensor, int], torch.Tensor]],
            torch.Tensor,
        ],
        *,
        sampling_rate: Optional[int] = None,
        batch_size: int = 128,
    ) -> List[List[int]]:
        """Encode audio into codec token ids.

        Accepts one of:
        - a list of file paths
        - a list of `(waveform, sr)` tuples
        - a list of 1D/2D waveforms (sr assumed 16k)
        - a batched tensor with shape `(B, C, T)` or `(B, T)`
        """
        # Normalize to a list the helper can consume
        if isinstance(inputs, torch.Tensor):
            if inputs.dim() == 2:
                inputs = inputs.unsqueeze(1)  # (B, 1, T)
            if inputs.dim() != 3:
                raise ValueError("`inputs` must be (B, C, T) when passing a tensor.")
            sr = sampling_rate or self.sample_rate
            items: List[Tuple[torch.Tensor, int]] = [
                (inputs[i].squeeze(0).cpu(), sr) for i in range(inputs.size(0))
            ]
        else:
            items = list(inputs)  # type: ignore[assignment]

        # Use the existing utility (supports file paths, tuples, tensors)
        audio_tokens: List[List[int]] = extract_speech_token(
            self.whisper_vqmodel, self.feature_extractor, items, batch_size=batch_size
        )
        return audio_tokens

    def _extract_speech_feat(self, speech: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        speech_feat = self.audio_decoder.feat_extractor(speech).squeeze(dim=0).transpose(0, 1)
        speech_feat = speech_feat.unsqueeze(dim=0)
        speech_feat_len = torch.tensor([speech_feat.shape[1]], dtype=torch.int32)
        return speech_feat, speech_feat_len

    def _extract_spk_embedding(self, speech_16k: torch.Tensor) -> torch.Tensor:
        feat = kaldi.fbank(speech_16k, num_mel_bins=80, dither=0, sample_frequency=16000)
        feat = feat - feat.mean(dim=0, keepdim=True)
        embedding = self.audio_decoder.campplus_session.run(
            None,
            {self.audio_decoder.campplus_session.get_inputs()[0].name: feat.unsqueeze(0).cpu().numpy()},
        )[0].flatten().tolist()
        return torch.tensor([embedding])

    @torch.no_grad()
    def decode(
        self,
        audio_codes: Union[Sequence[Sequence[int]], torch.LongTensor],
        *,
        prompt_speech: Optional[Union[str, os.PathLike]] = None,
        prompt_speech_sample_rate: Optional[int] = None,
        use_spk_embedding: bool = True,
        use_prompt_speech: bool = True,
        finalize: bool = True,
        device: torch.device = torch.device("cuda"),
    ) -> dict:
        """Decode codec token ids back to waveform(s).

        Args
        - audio_codes: `(B, 1, T)` or Python nested lists per sample.
        - prompt_speech: path to the enrollment audio used for conditioning.
        Returns
        - {"syn_wav_list": List[Tensor(T)]}
        """
        if isinstance(audio_codes, torch.Tensor):
            if audio_codes.dim() == 3 and audio_codes.size(1) == 1:
                codes_list: List[List[int]] = [
                    audio_codes[i, 0].detach().cpu().tolist() for i in range(audio_codes.size(0))
                ]
            elif audio_codes.dim() == 2:
                codes_list = [row.detach().cpu().tolist() for row in audio_codes]
            else:
                raise ValueError("`audio_codes` must be (B, 1, T) or (B, T) when passing a tensor.")
        else:
            codes_list = [list(c) for c in audio_codes]

        if prompt_speech is None or not os.path.exists(str(prompt_speech)):
            raise ValueError("`prompt_speech` path is required for decoding and must exist.")

        prompt_wav, orig_sr = torchaudio.load(str(prompt_speech))
        target_sr = self.audio_decoder.sample_rate
        if orig_sr != target_sr:
            prompt_wav = torchaudio.transforms.Resample(orig_freq=orig_sr, new_freq=target_sr)(prompt_wav)

        device = device if torch.cuda.is_available() or device.type == "cpu" else torch.device("cpu")
        speech_token = torch.tensor(self.encode([str(prompt_speech)])[0], device=device).unsqueeze(0)
        speech_feat, speech_feat_len = self._extract_speech_feat(prompt_wav)

        if target_sr == 24000:
            token_len = min(int(speech_feat.shape[1] / 4), speech_token.shape[1])
            speech_feat, speech_feat_len[:] = speech_feat[:, : 4 * token_len], 4 * token_len
            speech_token, _ = speech_token[:, :token_len], token_len

        prompt_16k = torchaudio.transforms.Resample(orig_freq=target_sr, new_freq=16000)(prompt_wav)
        embedding = self._extract_spk_embedding(prompt_16k).to(device)

        speech_feat = speech_feat.to(device)
        speech_feat_len = speech_feat_len.to(device)

        syn_wav_list: List[torch.Tensor] = []
        for codes in codes_list:
            codes_t = torch.tensor(codes, device=device).unsqueeze(0)
            uuid = os.urandom(16).hex()

            kwargs = {"uuid": uuid, "finalize": finalize}
            if use_prompt_speech:
                kwargs.update({"prompt_token": speech_token, "prompt_feat": speech_feat})
            if use_spk_embedding:
                kwargs.update({"embedding": embedding})

            tts_speech, _ = self.audio_decoder.token2wav(codes_t, **kwargs)
            syn_wav_list.append(tts_speech.squeeze())

        return {"syn_wav_list": syn_wav_list}

    @classmethod
    def from_pretrained(
        cls,
        pretrained_model_name_or_path: Union[str, os.PathLike],
        *,
        revision: Optional[str] = None,
        cache_dir: Optional[Union[str, os.PathLike]] = None,
        force_download: bool = False,
        local_files_only: bool = False,
        token: Optional[Union[str, bool]] = None,
        use_auth_token: Optional[Union[str, bool]] = None,  # back-compat with HF Transformers kwarg
        subfolder: Optional[str] = None,
        **kwargs,
    ):
        """Instantiate codec from a local directory or a Hugging Face Hub repo.
        This mirrors the typical Hugging Face ``from_pretrained`` behavior:
        - If ``pretrained_model_name_or_path`` is a local folder, files are loaded from it.
        - Otherwise, it is treated as a Hub repo ID and downloaded with ``snapshot_download``.
        Expected layout inside the resolved base folder:
        - ``model.safetensors`` (Whisper VQ encoder weights)
        - ``config.json`` (Whisper VQ config)
        - ``preprocessor_config.json`` (WhisperFeatureExtractor params)
        - ``flow/{config.yaml, flow.pt, hift.pt, campplus.onnx}``
        """
        # Resolve local directory vs HF Hub repo.
        base: Path
        path_str = str(pretrained_model_name_or_path)
        if os.path.isdir(path_str):
            base = Path(path_str)
        else:
            try:
                from huggingface_hub import snapshot_download  # lazy import to avoid hard dependency at import time
            except Exception as exc:  # pragma: no cover
                raise RuntimeError(
                    "huggingface_hub is required to load from a repo id; please `pip install huggingface_hub`."
                ) from exc
            # HF Transformers historically supports both `token` and deprecated `use_auth_token`.
            if token is None and use_auth_token is not None:
                token = use_auth_token
            snapshot_path = snapshot_download(
                repo_id=path_str,
                revision=revision,
                cache_dir=str(cache_dir) if cache_dir is not None else None,
                force_download=force_download,
                local_files_only=local_files_only,
                token=token,
            )
            base = Path(snapshot_path)
        if subfolder:
            base = base / subfolder
        tokenizer_dir = base
        flow_dir = base / "flow"
        # Validate expected files and provide actionable error messages, similar to HF patterns.
        missing: List[str] = []
        if not (tokenizer_dir / "model.safetensors").exists():
            missing.append(str(tokenizer_dir / "model.safetensors"))
        if not (tokenizer_dir / "config.json").exists():
            missing.append(str(tokenizer_dir / "config.json"))
        if not (tokenizer_dir / "preprocessor_config.json").exists():
            missing.append(str(tokenizer_dir / "preprocessor_config.json"))
        for fname in ("config.yaml", "flow.pt", "hift.pt"):
            if not (flow_dir / fname).exists():
                missing.append(str(flow_dir / fname))
        # `campplus.onnx` may be named differently in some drops; only warn if absent.
        has_campplus = (flow_dir / "campplus.onnx").exists()
        if missing:
            raise FileNotFoundError(
                "Missing required codec assets under resolved path. The following files were not found: "
                + ", ".join(missing)
            )
        if not has_campplus:
            logger.warning("campplus.onnx not found under %s; decoding speaker embedding may fail.", flow_dir)
        encoder_weight_path = str(tokenizer_dir / "model.safetensors")
        encoder_config_path = str(tokenizer_dir / "config.json")
        encoder_feature_extractor_path = str(tokenizer_dir)
        flow_path = str(flow_dir)
        return cls(
            encoder_weight_path=encoder_weight_path,
            encoder_config_path=encoder_config_path,
            encoder_feature_extractor_path=encoder_feature_extractor_path,
            flow_path=flow_path,
        )