File size: 8,104 Bytes
6e98c1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from transformers.configuration_utils import PretrainedConfig
from transformers.modeling_rope_utils import rope_config_validation

class PaddleOCRVisionConfig(PretrainedConfig):
    model_type = "paddleocr_vl"
    base_config_key = "vision_config"

    def __init__(
        self,
        hidden_size=768,
        intermediate_size=3072,
        num_hidden_layers=12,
        num_attention_heads=12,
        num_channels=3,
        image_size=224,
        patch_size=14,
        hidden_act="gelu_pytorch_tanh",
        layer_norm_eps=1e-6,
        attention_dropout=0.0,
        spatial_merge_size=2,
        temporal_patch_size=2,
        tokens_per_second=2,
        **kwargs,
    ):
        super().__init__(**kwargs)

        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.num_channels = num_channels
        self.patch_size = patch_size
        self.image_size = image_size
        self.attention_dropout = attention_dropout
        self.layer_norm_eps = layer_norm_eps
        self.hidden_act = hidden_act
        self.spatial_merge_size = spatial_merge_size
        self.temporal_patch_size = temporal_patch_size
        self.tokens_per_second = tokens_per_second



class PaddleOCRVLConfig(PretrainedConfig):
    """
    Configuration class.

    This class stores the configuration of an Ernie model, defining the model architecture.
    It inherits from PretrainedConfig and can be used to control model outputs.
    """

    model_type = "paddleocr_vl"
    keys_to_ignore_at_inference = ["past_key_values"]
    sub_configs = {"vision_config": PaddleOCRVisionConfig}

    # Default tensor parallel plan for base model `Qwen3`
    base_model_tp_plan = {
        "layers.*.self_attn.q_proj": "colwise",
        "layers.*.self_attn.k_proj": "colwise",
        "layers.*.self_attn.v_proj": "colwise",
        "layers.*.self_attn.o_proj": "rowwise",
        "layers.*.mlp.gate_proj": "colwise",
        "layers.*.mlp.up_proj": "colwise",
        "layers.*.mlp.down_proj": "rowwise",
    }
    base_model_pp_plan = {
        "embed_tokens": (["input_ids"], ["inputs_embeds"]),
        "layers": (["hidden_states", "attention_mask"], ["hidden_states"]),
        "norm": (["hidden_states"], ["hidden_states"]),
    }

    def __init__(
        self,
        vocab_size=32000,
        hidden_size=768,
        intermediate_size=11008,
        max_position_embeddings=32768,
        num_hidden_layers=2,
        num_attention_heads=2,
        image_token_id=101304,
        video_token_id=101305,
        vision_start_token_id=101306,
        rms_norm_eps=1e-6,
        use_cache=False,
        use_flash_attention=False,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        head_dim=128,
        hidden_act="silu",
        use_bias=False,
        rope_theta=10000,
        weight_share_add_bias=True,
        ignored_index=-100,
        attention_probs_dropout_prob=0.0,
        hidden_dropout_prob=0.0,
        compression_ratio: float = 1.0,
        num_key_value_heads=None,
        max_sequence_length=None,
        tie_word_embeddings=False,
        vision_config=None,
        rope_scaling=None,
        **kwargs,
    ):
        """
        Initialize configuration with default or specified parameters.

        Args:
            vocab_size (int): Size of the vocabulary (number of unique tokens)
            hidden_size (int): Dimensionality of the encoder layers and the pooler layer
            intermediate_size (int): Dimensionality of the "intermediate" (feed-forward) layer
            max_position_embeddings (int): Maximum sequence length the model can handle
            num_hidden_layers (int): Number of hidden layers in the Transformer encoder
            num_attention_heads (int): Number of attention heads for each attention layer
            rms_norm_eps (float): The epsilon used by the RMS normalization layers
            use_cache (bool): Whether to use caching for faster generation (decoding)
            use_flash_attention (bool): Whether to use FlashAttention for optimized attention computation
            pad_token_id (int): Token ID used for padding sequences
            bos_token_id (int): Token ID used for beginning-of-sequence
            eos_token_id (int): Token ID used for end-of-sequence
            use_bias (bool): Whether to use bias terms in linear layers
            rope_theta (float): The base period of the RoPE embeddings
            weight_share_add_bias (bool): Whether to share bias weights in certain layers
            ignored_index (int): Target value that is ignored during loss computation
            attention_probs_dropout_prob (float): Dropout probability for attention weights
            hidden_dropout_prob (float): Dropout probability for hidden layers
            compression_ratio (float): Ratio for KV cache compression (1.0 = no compression)
            num_key_value_heads (int): Number of key/value heads (for Grouped Query Attention)
            max_sequence_length (int): Maximum sequence length for positional embeddings
            **kwargs: Additional keyword arguments passed to parent class
        """

        # Set default for tied embeddings if not specified.
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            **kwargs,
        )
        if isinstance(vision_config, dict):
            self.vision_config = self.sub_configs["vision_config"](**vision_config)
        elif vision_config is None:
            self.vision_config = self.sub_configs["vision_config"]()        
        self.vocab_size = vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.max_position_embeddings = max_position_embeddings
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        self.use_flash_attention = use_flash_attention
        self.pad_token_id = pad_token_id
        self.bos_token_id = bos_token_id
        self.eos_token_id = eos_token_id
        self.image_token_id = image_token_id
        self.video_token_id = video_token_id
        self.vision_start_token_id = vision_start_token_id
        self.head_dim = head_dim
        self.hidden_act=hidden_act
        self.sliding_window = None
        self.hidden_size = hidden_size
        self.use_bias = use_bias
        self.weight_share_add_bias = weight_share_add_bias
        self.rope_theta = rope_theta
        self.ignored_index = ignored_index
        self.attention_probs_dropout_prob = attention_probs_dropout_prob
        self.hidden_dropout_prob = hidden_dropout_prob
        self.compression_ratio = compression_ratio
        self.num_key_value_heads = num_key_value_heads
        self.max_sequence_length = max_sequence_length
        self.rope_scaling = rope_scaling
        if self.rope_scaling is not None and "type" in self.rope_scaling:
            if self.rope_scaling["type"] == "mrope":
                self.rope_scaling["type"] = "default"
            self.rope_scaling["rope_type"] = self.rope_scaling["type"]
        rope_config_validation(self, ignore_keys={"mrope_section"})        
        super().__init__(tie_word_embeddings=tie_word_embeddings, **kwargs)